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precision and informational limits 
in inelastic optical spectroscopy
peter török1,2 & Matthew R. Foreman  2

Using Fisher information and the Cramér-Rao lower bound, we analyse fundamental precision limits 
in the determination of spectral parameters in inelastic optical scattering. General analytic formulae 
are derived which account for the instrument response functions of the dispersive element and relay 
optics found in practical Raman and Brillouin spectrometers. Limiting cases of dispersion and diffraction 
limited spectrometers, corresponding to measurement of Lorentzian and Voigt lineshapes respectively, 
are discussed in detail allowing optimal configurations to be identified. Effects of defocus, spherical 
aberration, detector pixelation and a finite detector size are also considered.

Interactions between either acoustic or optical phonons in a material and an incident photon can give rise to ine-
lastic scattering, known more specifically as Brillouin or Raman scattering respectively1,2. Such processes provide 
a means by which to probe the vibrational, micro-mechanical and compositional properties of samples3–7. As 
such, recent decades have seen development of a wealth of experimental techniques for acquisition of inelastic 
scattering spectra including fibre, imaging and near field based setups8–13. Inelastic scattering is, however, an 
intrinsically weak process. Despite improvements in achievable signal to noise ratios using surface enhancements, 
stimulated processes, interferometric or heterodyne detection14–18, the value of experimental data can be dramat-
ically degraded by noise. Systematic quantitative analysis of achievable precision in inelastic optical spectroscopy 
is, however, hitherto lacking and will thus form the focus of this article. Evaluation of such limits is not only of 
importance in terms of aiding system design19–21, particularly in scenarios with limited photon budgets, but can 
also enable benchmarking of data processing algorithms and analysis protocols22,23.

Within this context, we first detail the model of signal acquisition adopted throughout this work. We restrict 
attention to measurement of spontaneous scattering spectra by means of angularly/spatially dispersive spectrom-
eters, as opposed to scanning etalon based alternatives. In particular, our treatment incorporates the imperfect 
nature of the dispersive element required in any spectroscopic experiment, and allows for additional, poten-
tially aberrated, relay optics. We then proceed to outline the information theoretic precision limit, given by the 
Cramér-Rao lower bound, as applied to the problem of extracting spectral parameters in inelastic spectroscopy. 
Finally, we apply these results to a number of limiting cases and numerical examples.

Detection Model in spectrometers
An ideal spontaneous or thermally excited Brillouin or Raman spectrum consists of a central Rayleigh scattering 
peak flanked by the Stokes and anti-Stokes scattering peaks corresponding to generation or annihilation of a 
phonon. If the Rayleigh peak is centred at frequency ω0, then the two inelastic peaks are centred at ω ω= ± Ω±1 0 , 
where Ω is the inelastic frequency shift. Assuming each peak has an arbitrary lineshape ω ω ΓF( , , )p p  for 

= ±p 0, 1, the associated complex amplitude of each spectral frequency component, denoted ω, is given by

∑ω ω ω= Γ
=−

+
s A F( ) ( ; , )

(1)p
p p p

1

1

where Γ = Γ = Γ− +1 1  is the intrinsic full-width half-maximum (FWHM) of the inelastic peaks, Γ0 is the intrinsic 
FWHM of the Rayleigh peak and ±A 1,0 describes their respective magnitudes. The lineshape is assumed to be 
normalised such that ∫ ω ω| | =

−∞

∞ F d( ) 12 , meaning that | |Ap
2 describes the total power in a given spectral peak. 

Assuming any measurements are made over a time long compared to the phonon coherence time and restricting 
attention to spontaneous inelastic processes it follows that the power spectrum is
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In this work we will assume that the spectral lineshapes are Lorentzian in nature, i.e. ω ω ω ωΓ = ΓF L( , , ) ( ; , )p p p p  
where

ω ω
π ω ω
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In an experimental scenario an observed spectrum is subject to the instrumental response of the spectrometer 
used to measure it24,25, such that the measured lineshape may not be a pure Lorentzian. The core function of an 
optical spectrometer is to spatially separate each individual frequency component, ω, present in an input wave. To 
achieve this a dispersive element, such as a grating or virtually imaged phase array (VIPA)26, is used to discrimi-
nate different frequency components through the angle at which they are diffracted or transmitted. By placing a 
detector in the far field region of the dispersive element, the angular discrimination is converted to a spatial sep-
aration of differing frequency components through diffraction alone. In practice, the dispersive element produces 
a spatially extended distribution on the detector even for a monochromatic input as can be described by the 
associated complex amplitude response function ωh x( , )disp , where x describes the spatial coordinate in the detec-
tor plane. Note that since single or stand alone dispersive devices only produce a one-dimensional angular sepa-
ration we restrict our discussion to a single spatial coordinate x. Nevertheless, our analysis applies to any number 
of dispersive spectrometers arranged in a crossed configuration along the direction of dispersion. High finesse 
VIPAs, for example, give rise to Lorentzian peaks on the detector for a monochromatic input. For simplicity, in 
this work we also assume a linear mapping between the input frequency of light and the ideal location of the 
resulting peak on the detector, such that

ω ω= −h x h x x( , ) ( ( )) (4)disp disp 0

where ω α ω ω= −x ( ) ( )0 off , α describes the scaling constant between frequency and real space and ωoff  allows for 
an arbitrary spectral offset. To account for the finite free spectral range (FSR), ΩFSR, inherent in a spectrometer we 
let

∑ α− = − + Ω
=−∞

∞
h x x B h x x q( ) ( )

(5)q
qdisp 0 disp 0 FSR

where the different FSRs are indexed by q and we have assumed that the lineshape of an individual peak, hdisp, is 
the same for each FSR up to a slowly varying amplitude variation described by the factor Bq. We shall also make 
the further simplifying assumption that ∑ | | ==−∞

∞ B 1q q
2 , which assuming γΩ FSR disp, where γdisp parametrises 

the width of hdisp, implies ∫ ∫| | = | |
−∞

∞

−∞

∞h dx h dxdisp
2

disp
2 .

Although the angular dispersion of a dispersive element can be converted to a spatial separation by detection 
in the Fraunhofer zone as discussed above, more commonly additional optics are placed after the dispersive ele-
ment since this enables smaller device footprints and greater ease of use. One simple means by which this trans-
formation can be achieved is to place a single lens a focal length from the exit surface of the dispersive element 
so as to achieve a Fourier transform of the output waveform. Introduction of such optics, which are not ideal, 
degrades the final detected lineshape for a monochromatic input further. Non-ideality arises not only from the 
finite numerical aperture of practical optical elements, but also due to aberrations that may be present.

Whilst all lens aberrations modify the shape of the amplitude response function (also known as the point 
spread function or PSF), the resulting consequences can differ in the context of inelastic spectroscopy. Aberrations 
that change the location of the maximum of a peak on the detector, for example, can result in erroneous estimates 
of the absolute frequency of that peak if they are not properly accounted for. Tilt, for example, produces a uniform 
shift of all peaks which can give rise to a systematic frequency shift, although practically tilt is of little interest as it 
is easily removable via calibration. Field-dependent shifts, on the other hand, arising from say coma or distortion, 
not only can give rise to errors in the estimated spectral frequency but also consequently in the inferred Brillouin 
or Raman shifts. Aberrations that change the observed shape (but not position) of a peak uniformly throughout 
the detection field (i.e. defocus and spherical aberration) can instead lead to systematic errors in the determi-
nation of the peak width which is a measure of the phonon decay lifetime. Such errors, can however become 
non-systematic, if an aberration affects the peak width differently depending on field position (e.g. curvature of 
field).

In addition to their effect on the observed lineshape, strong aberrations can also produce a non-linear spatial 
dispersion. Minimisation of aberrations is however usually sought through appropriate optical design, such that 
we can reasonably restrict attention to the weakly aberrated regime. The spectral amplitude response function of 
the dispersive element and additional optics combined can in this case be described by

ω ω ω= − ⊗h x h x x h x( , ) ( ( )) ( , ), (6)spec disp 0 opt

where ωh x( , )opt  is the PSF of the relay optics and we have implicitly assumed that the response functions are shift 
invariant. Since the spectral bandwidths encountered in Brillouin spectroscopy are small we shall also assume 
that we can safely neglect chromatic aberrations such that ω =h x h x( , ) ( )opt opt . Within the context of Raman 
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spectroscopy in which larger bandwidths are encountered we assume that optics are corrected for chromatic 
aberration. Although introduced in relation to hdisp, the parameter α appearing in ωx ( )0  is now also used to 
account for additional linear scale factors between ω and x that may arise from the relay optics.

The assumption of shift invariance made in Eq. (6) is a limitation to our theory, since it means only 
field-independent monochromatic aberrations, i.e. defocus and spherical aberration can be described. In order to 
gauge under what experimental conditions our results might therefore be applicable, we briefly digress to con-
sider the Maréchal condition as applied to possible coma (the lowest order field dependent aberration) in the lens. 
The Maréchal condition27 requires the Seidel sum for coma to be less than 1.2λ for the optical system to be diffrac-
tion limited. For a singlet lens, the focal length thus needs to satisfy λ≥ .f X d( )/(2 4 )3 2 2  where d is the marginal 
ray height at the lens. Figure 1 shows the minimum required focal length for a singlet assuming a detector size of 

=X 14mm and a wavelength of λ = 561nm. For more complex lenses, such as achromatic doublets, a simple 
analogous criterion does not exist meaning aberration tolerances of these lenses must instead be determined 
individually. As an example, assuming the same detector size as above, the Seidel sum of an achromatic doublet 
supplied by a popular optical component manufacturer of focal length =f 100mm and diameter =d2 50mm, is 

λ= .S 1 9II . Since coma is a linear function of field position, a maximum detector size that can hence be used with 
this lens is = .X 8 8mm, thus highlighting the need for careful analysis of aberrations before a lens can be safely 
used.

Returning now to our detection model, we note that the signal observed on a position resolving detector (ini-
tially neglecting pixelation) when a spectrum of frequencies is input is proportional to the total incident intensity. 
Assuming the detector integration time is long relative to the optical periods involved, the observed signal at a 
position x is hence

∫ ω ω ω= Π






 | |

∞
I x N x

X
S h x d( ) ( ) ( , )

(7)det
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spec
2

where Π z( ) is the top hat function defined by
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(8)

X is the full spatial width of the detector, and N is a normalisation constant which will be discussed later. Using 
Eqs (2) and (5–7) we thus have

∫

∫
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In this work we adopt simple models for the response function of the dispersive element and relay optics. 
Firstly we shall assume that the lineshape produced by the dispersive element is Lorentzian in profile such that

γ= κh x AL x x e( ) ( , , ) , (10)
i x

disp 0 disp
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Figure 1. Minimum focal length for which coma in a singlet lens can be safely neglected as determined using 
the Maréchal condition.

https://doi.org/10.1038/s41598-019-42619-7


4Scientific RepoRts |          (2019) 9:6140  | https://doi.org/10.1038/s41598-019-42619-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

where A is a scale factor and we have allowed for a phase tilt for reasons that will become apparent below. The 
associated coherent transfer function of the dispersive element, defined as the Fourier transform of the amplitude 
response function, is hence given by the one sided exponential, viz.

~ ∫π
γ

κ κ

=

=







− +



 −






Θ −

−∞

∞ −h k h x e dk

ix k k

( ) 1
2

( ) ,

exp
2

( ) [ ],
(11)

x
ik x

x

x x

disp disp

disp
0

x

where kx denotes the spatial frequency coordinate in the Fourier domain and the Heaviside function κΘ −k[ ]x  is 
unity for κ≥kx  and zero otherwise. To ensure the dispersive element is passive (| | ≤h k( ) 1xdisp  for all kx) the scale 
factor has been set to π γ=A [2 / ]disp

1/2.
To model the PSF h x( )opt  of the relay optics, we consider a single, potentially aberrated, lens of finite numerical 

aperture, NA, such that28

∫= Π
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where = Πh k k k iW k k( ) [ /( NA)]exp[ ( /( NA))]x x xopt 0 0  (defined analogously to Eq. (11)) is the coherent transfer 
function of the lens and W k k( /( NA))x 0  describes a phase aberration in the pupil. In two-dimensional optical 
systems it is common to represent a perturbed wavefront using the Zernike functions φZ r( , )nm  because they form 
an orthonormal complete basis over the domain of the (circular) pupil27, however, for the one-dimensional model 
employed in this work such a description is unsuitable. Instead, noting that the Legendre polynomials form an 
orthonormal basis on the interval −[ 1, 1], a more appropriate formalism for the one-dimensional problem29 is to 
let

∑










=










W k
k

a L k
kNA NA

,
(13)

x

n
n n

x

0 0

where Ln(z) is the nth order Legendre polynomial. Notably, the Legendre polynomial of order n has a similar 
functional form to the rotationally symmetric Zernike functions, i.e. Zn0, and thus a correspondence can be made 
between the one and two dimensional aberrations. For example, defocus in a two-dimensional system is described 
by φ = −Z r r( , ) 2 120

2 , whilst the second order Legendre polynomial is given by = −L z z( ) (3 1)2
2 /2. Although 

the numerical value of the coefficients differ between the two polynomials (due to the differing orthogonality 
domains), both exhibit a quadratic phase perturbation to the wavefront. Accordingly, in a one-dimensional sys-
tem L2 can be associated with defocus (and similarly for higher order aberrations). With regards to Eq. (13), it is 
also important to observe that in the presence of field dependent aberrations an is a function of observation posi-
tion x. Our assumption of shift invariance, however, precludes this possibility such that we can only legitimately 
consider defocus ( =n 2) and spherical aberration. Restricting to primary spherical aberration ( =n 4) only we 
have =a 0n  for ≠n 2, 4.

Finally we must define the normalisation constant N. Specifically, N is defined in terms of the total integrated 
intensity that would impinge on an infinite detector, ∫=∞ →∞ −∞

∞I I x dxlim ( )X det , such that
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Upon reordering the integrals we find
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We can evaluate the integral factor in Eq. (15) using Parseval’s theorem ultimately yielding
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Experimentally it is better to maximise the energy throughput of the spectrometer, which is limited due to the 
finite numerical aperture of the relay optics. Practically this implies that the field distribution at the exit surface of 
the dispersive element (corresponding to hdisp) is positioned so as to maximally fill the entrance pupil of the relay 
optics (described by the top hat function in hopt). This corresponds, for the 1D case considered here, to selecting 
κ = −k NA0  yielding

π
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parametrising precision with Fisher Information
Any experimental study is at heart an estimation problem, in which an observer estimates the value of some 
parameter(s) of interest from a noise corrupted signal. Ultimately we wish to consider the accuracy to which the 
inelastic shift Ω can be determined since this is the principle parameter of interest in inelastic spectroscopy. It is 
frequently reasonable to assume that the Rayleigh frequency ω0 is known a priori since measurements are gener-
ally performed using a pre-calibrated laser excitation source. For completeness, however, we assume ω0 is also 
unknown. Analysis of the precision limits can be simplified by considering the related problem of estimating the 
centre of mass frequency of the spectrum (determined from a single FSR) ω  and the separation of the two inelas-
tic peaks Ω = Ω2 , i.e. we consider estimation of the parameter vector ω= Ωw ( , ). This alternative parametrisa-
tion is notably more suitable for cases in which the Rayleigh peak is saturated on the detector, or suppressed18 
which can hence hamper direct determination of ω0 and Ω. The centre of mass of the spectrum is given by

∫
∫

ω
ω ω ω

ω ω
ω ω χ= = +

| | − | | Ω

| | + | | + | |
+

Ω
.−∞

∞

−∞

∞
+ −

− +



S d

S d
A A

A A A

( )

( )
( )

2 (18)
0

1
2

1
2

1
2

0
2

1
2 0

It hence follows that ω ω χ= − Ω± ( 1) /21 . Henceforth we assume that α ω ω= − + Ω +x q x( )0 FSR  such 
that the centre of mass of the spectrum is ideally located at x .

In some applications, it may be of interest to estimate further spectral parameters (or indeed required by fit-
ting algorithms), such as the width of each peak from which phonon lifetimes can be determined. For complete-
ness in what follows we shall thus consider the expanded parameter vector ω= Ω Γ | |Aw ( , , { }, { })p p

2 , however in 
our numerical examples we shall principally restrict attention to the achievable precision when determining the 
inelastic frequency shift.

The parameter vector w is not measured directly, but is instead inferred from noisy intensity measurements on 
the detector. In the previous section we neglected pixelation of the detector, however, in reality this is unreasona-
ble and we thus relax this restriction now. In the ideal noise free case, the measured intensities from each pixel 
form a data vector = …I I II [ , , , ]Ndet 1 2 p

 where Np is the total number of pixels,

∫=I I x dx( ) ,
(19)j

X
det

j

Xj is the domain of the jth pixel i.e. ∈ − ∆ + ∆x x x[ /2, /2)j j , ∆ is the pixel size and xj is the centre of the pixel. 
Accordingly the measured data vector takes the form δ= +I I Imeas det  where δI is an unknown noise vector.

The expected precision of an observer’s estimate of a parameter vector w can be conveniently parametrised 
using the covariance matrix, w , derived from, for example, repeated measurements. The Cramér-Rao lower 
bound (CRLB), however, states that the covariance matrix w  for an ideal observer is lower bounded by the 
inverse of the so-called Fisher information matrix (FIM) w according to the matrix inequality30

K J≥ − , (20)w w
1

where the FIM is defined as

 =
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E f
w w

I wln ( ) ,
(22)

T T

I meas

|f I w( )I meas  is the probability density function (PDF) describing the conditional probability of measuring a par-
ticular value of Imeas for a given w and E[ ] denotes the statistical expectation. The CRLB also implies the weaker 
set of inequalities σ ≥ 1/[ ]w iiw

2
i

, where σw
2

i
 is the estimation variance for each individual parameter wi. It is impor-

tant to note, however, that the CRLB as expressed by Eq. (20) explicitly quantifies the uncertainty achievable by 
any unbiased estimator and hence represents a fundamental limit to measurement precision, which can be 
asymptotically achieved using a maximum likelihood estimator30.

Using the chain rule, the FIM can be expressed in the alternative form31

 =




∂
∂









∂
∂





I
w

I
w

,
(23)

T

w I
det det

det

where Idet
 is defined analogously to (22) in terms of the conditional PDF |f I I( )I meas det . The appropriate choice of 

|f I I( )I meas det  depends on the precise nature of noise present on a measurement. In inelastic optical spectroscopy 
the noise primarily derives from either the camera used to record the spectrum (e.g. due to dark current or read 
noise) or from the signal itself (in the form of shot noise). Shot noise is described by a Poisson PDF for which the 
noise variance scales with the mean intensity. Consequently, shot noise is more apparent at low signal levels and 
hence at shorter acquisition times. Given inelastic scattering is generally a weak process, shot noise is typically 
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dominant. Although longer exposure times can be used to mitigate the effects of shot noise, this can come at the 
expense of increased dark noise which itself is also Poisson distributed. Gaussian distributed read out noise can 
dominate if dark currents can then be sufficiently suppressed, for instance, by cooling the detector. In the case 
where read out noise is not the dominate noise source, however, a Gaussian PDF can still provide a good approx-
imation to a Poisson PDF if the mean intensity is large enough. This shall be assumed to be the case for the major-
ity of this work, albeit a short discussion of precision in inelastic spectroscopy in the presence of Poisson 
distributed noise is given below. At this point we thus make the simplifying assumption that the noise on each 
pixel is statistically independent and identically distributed according to a Gaussian PDF, i.e.

πσ σ
| =






−

⋅ 





f I I I I( ) 1
2

exp
2 (24)I meas det 2

det det
2

from which it follows that J I σ= /I
2

det
 where  is the ×N Np p identity matrix. Hence

 ∑
σ

=
∂

∂

∂

∂

I
w

I
w

[ ] 1 ,
(25)

kl
j

j

k

j

l
w 2

where wk is the kth element of w and [ ]klw  denotes the (j, k)th element of the FIM. The assumption of statistically 
independent and identically distributed noise implies that the dominant noise source is white in colour. Realistic 
noise sources, however, can frequently induce correlations between the noise for differing spectral components or 
on each pixel. Nevertheless, with knowledge of the power spectral density of the noise source a pre-whitening 
filter can be constructed and applied, as is common in signal processing applications30. Moreover, coloured noise 
can be more fully treated within the framework of asymptotic Fisher information as has been discussed in refs 32 
and33.

Numerical Examples and Limiting Cases
Having established a theoretical framework to describe the obtainable precision in inelastic optical spectroscopy, 
we now consider a number of examples to illustrate the key experimental dependencies. Although the FIM can be 
evaluated numerically for the general case using Eqs (9), (19) and (25), we can also obtain analytic results for a 
number of limiting cases. Numerical examples will be restricted to consideration of the precision in determining 
Ω, as parametrised by =Ω Ω Ω ΩJ J /4, ,  only, since determination of the frequency shift Ω from inelastic scattering of 
light is the core task of inelastic optical spectroscopy, however, we will derive analytic results for all elements of 
the FIM.

Infinite-extent finely-pixelated detector: dispersion limited. We first consider the case in which pix-
elation of the detector is fine with respect to the spatial widths of any spectral features, i.e. α∆ Γ p, for = ±p 0, 1. 
The detector is also assumed to be infinite in spatial extent. The lineshape of the detected spectrum is assumed to be 
dictated by the Lorentzian lineshape of the underlying inelastic and Rayleigh peaks and the response function of the 
dispersive element. Physically, this implies that the spatial width of the PSF, γopt, is also much smaller than the spatial 
widths of any spectral features and that of the grating or VIPA, denoted γdisp, i.e. γ αΓ popt  and γ γopt disp. With 
these assumptions we can make the approximations α ω ω γ− = ′ − + Ω +h x x L x q x( ) ( ; ( ) , )disp 0 FSR disp , 

δ=h x x( ) ( )opt  whereby from Eq. (9)

∫∑ ω ω

α ω ω γ ω

≈ | | | + Ω Γ |

× + − + Ω .

∞
I x N A B L p

L x x q d

( ) ( ; , )

( , ( ), ) (26)

I
I

p q
p q pdet

,

2

0
0

2

FSR disp
2

Note that we use the sub- and superscript I to distinguish this case and that we here use the normalisation constant NI 
(in distinction to N used for the general case above) since we have applied an arbitrary scaling to hdisp and h x( )opt  for 
mathematical convenience. Specifically, we have = ∑ | |∞ =−

+N I A/I p p1
1 2. Noting ζ ζ− = +L z a z L z z a( ; , ) ( , , )p p p p  

and ζ ζ=L z a z a a a L z z( / ; / , / ) ( ; , )p p p p  (as follow from inspection of Eq. (3)), Eq. (26) can be transformed to

∫∑ αω α ω α

αω α ω γ αω

≈ | | | + Ω Γ |

× | − + Ω − |

−∞

∞

¯ ¯

I x N A B L p

L x x q d

( ) ( ; ( ), )

( ; ( ), ) ( ), (27)

I
I

p q
p q pdet

,

2
0

2

FSR disp
2

where we have also assumed that we are considering frequencies which are large compared to the relevant linew-
idths and spectral separations, such that we can safely extend the integration over ω to −∞. Equation (27) there-
fore shows that I x( )I

det  is given by the convolution of two Lorentzians, which is itself a Lorentzian function. 
Specifically we find

∑ α α γ≈ | | + Ω Γ +I x N A B L x x( ) ( ; , )
(28)

I
I

p q
p q pq pdet

,

2
disp

2

where χΩ = − Ω + Ωp q( ) /2pq FSR. Now using Eq. (23) we can express the elements of the FIM as
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 ∫σ
≈

∆

∂

∂

∂

∂−∞

∞ I x
w

I x
w

dx[ ] 1 ( ) ( )

(29)kl
j
I

j

k

j
I

j

l
jw 2

where the integration range on xj follows since we have assumed an infinite detector,

∫∑ α α γ= | | + Ω Γ +( )I N A B L x x dx; ,
(30)

j
I

I
p q

p q
X

pq p
,

2
disp

2

j

∑ α α γ≈ | | ∆ + Ω Γ +( )N A B L x x; ,
(31)

I
p q

p q j pq p
,

2
disp

2

and the approximations hold in the fine pixelation limit. Evaluating the derivatives in Eq. (29) (remembering that 
α ω ω= −x ( off) where ωoff  is a pre-calibrated constant) we find

∑ω
α
π

γ α

α γ

∂

∂
≈ ∆ | |

− − Ω

− − Ω +

I
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x x
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,

(32)
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2
2 2 2
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I
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( ) /4
,

(35)

j
I

p
I

q

q p

j pq p
2

2

2 2

where γ α γ= Γ +p p disp. The form of the denominators in Eqs (32–35) means that for a specific peak of order (p, 
q) the derivative term is only non-negligible in the region of the peak. As such when evaluating the product of 
derivative terms in Eq. (29) when Ω > Γ + Γ0  (i.e. the inelastic and Rayleigh peaks are well separated) it is rea-
sonable to neglect any cross terms between peaks of different orders. With this approximation, substitution of Eqs 
(32–35) into Eq. (29) allows the integration to be performed, yielding

∑
α

π α γ
=

| |

Γ +ω ω
=−

+
J J
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,
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p
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1 2 4
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3

∑
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=

− | |
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+
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p
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1
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3
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∑
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=

− | |
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| |

Γ +| | Γ ′
′

J J
A

2 ( )
,

(41)A
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pp
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p
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2
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2

where σ= ∆∑ | |=−∞
∞J N B /I q q0

2 4 2. All other elements of the Fisher information matrix are zero, i.e. 
= = = =ω ωΓ Ω Γ | | Ω | |

J J J J 0I I
A

I
A

I
, , , ,p p p p

2 2 .

For many applications, the inelastic frequency shift Ω (or equivalently Ω) is the primary parameter of interest. 
In Brillouin spectroscopy, for example, the Brillouin shift is proportional to the acoustic velocity of phonons in a 
material and can thus provide insights into mechanical properties of a sample10,11. The precision to which Ω can 
be determined is parametrised by Ω ΩJ , . An example calculation of Ω ΩJ ,  is therefore shown in Fig. 2. Curves shown 
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are for a full numerical calculation (solid blue) using Eqs (9), (19) and (25) and for the approximate analytic result 
(dashed grey) given in Eq. (37). For the numerical calculation the detector was necessarily finite in size and a 
relatively large numerical aperture of = .NA 0 2 was used such that the PSF had a width of γ = .1 4airy  μm (or half 
a pixel), whereas the width of the dispersive element response function was set at 3 pixels (8.4 μm). Derivatives 
were calculated using a finite difference approximation. For simplicity only a single FSR was considered, i.e. 

δ=Bq q0 however it should be noted that this does not greatly affect our conclusions. All other simulation param-
eters are listed in Table 1,

The Fisher information in Fig. 2 is plotted as a function of the ratio of the dimensionless parameter 
ρ α γ= Γ/ disp which describes the ratio of the intrinsic spatial width relative to the width of the dispersive ele-
ment’s response function. Good agreement between the numerical and approximate results is generally evident, 
except that the Fisher information (FI) calculated numerically drops to zero at α γΓ ∼/ 13disp . This discrepancy 
will be discussed further below and arises because our numerical calculations necessarily consider a finite sized 
detector in contrast to the assumption made in our theoretical analysis.

Physical insight into the behaviour shown in Fig. 2 and indeed into Eqs (36–41) can be gained by first consid-
ering the case of a purely monochromatic input, but allowing for the finite width of the amplitude response func-
tion of the dispersive element (Γ = 0p , γ ≠ 0disp ). In this case the contribution to Eqs (36–41) from each spectral 
peak follows an inverse power law (of varying degree) in the instrumental peak width γdisp. As the spatial width of 
a peak decreases, so the energy contained within that peak is confined to a smaller area, such that the signal to 
noise ratio at each position on the detector improves and a better estimation precision ultimately results. In each 
non-zero element of the FIM, there is however an additional dependence on the scale factor α appearing in the 
numerator (with the exception Eq. (39)). This factor captures the intuitive expectation that spatial positions, sep-
arations or widths can be more precisely determined when they are magnified. Taking the estimation of Ω as an 
illustrative example, we note that as α decreases so the inelastic peaks are positioned closer together on the detec-
tor, however, the finite (fixed) peak width means it is consequently harder to individually resolve the peaks and 
hence determine their separation.

0 4 8 12 16

Lorentzian approx.

Dispersion limited

0

1

2

10-16

Figure 2. Numerical calculation (blue solid line) of Ω ΩJ ,  and the corresponding Lorentzian based 
approximation (dashed grey line). A finely pixelated detector with =N 5000p  pixels was assumed. The width of 
the response function of the dispersive element was taken as γ = .8 4disp  μm and the relay lens assumed to have a 
numerical aperture of = .NA 0 2 such that the spectrometer is dispersion limited. See Table 1 for other 
simulation parameters.

Parameter Symbol Value

Size of CCD X 14 mm

Free spectral range ΩFSR 40 GHz

Amplitude of Rayleigh peak A0 1

Amplitude of inelastic peaks A±1 0.2

Spectral width of Rayleigh peak Γ0 0.2 GHz

Spectral width of inelastic peaks Γ 0.2 GHz

Frequency shift Ω 12.5 GHz

Rayleigh wavelength λ 561 nm

Table 1. Values of simulations parameters common to all examples.
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Similarly, when considering an ideal spectrometer, but allowing for a finite intrinsic spectral width (γ = 0disp , 
Γ ≠ 0p ), we find that the non zero elements of the FI decrease as the spatial width, αΓp, of the observed peaks 
increases. In this case however, since the intrinsic spatial width decreases with α, the difficulty in resolving indi-
vidual peaks is somewhat mitigated. In the general dispersion limited case (γ ≠ 0disp , Γ ≠ 0p ) the total observed 
linewidth is dictated by both the intrinsic spectral width and the broadening caused by the dispersive element, as 
reflected by the aggregate width α γΓ +p disp appearing in the denominators of Eqs (36–41), however the princi-
ples dictating the estimation precision are the same. Finally we note that whilst Eqs (36–41) predict that the 
obtainable FI tends to infinity as α γΓ + → 0p disp , this information divergence is of no physical relevance since 
the widths of the peaks on the detector become comparable to the pixel size in this limit hence invalidating our 
assumption of a finely pixelated detector. This case is considered in greater detail below.

The relative magnitude of α and γdisp can be experimentally controlled, for example, by varying the magnifica-
tion factor of the relay lens, so as to achieve an optimal balance between the two competing effects hence yielding 
a maximum FI (or equivalent the best obtainable precision). When considering inelastic peaks of equal amplitude 
A Eq. (37), for example, can be written in the form

πγ
ρ

ρ
=

| |
Γ +Ω ΩJ J A

(1 ) (42)
I

,
0

4

disp
2

2

3

such that a maximum FI of πγ| | ΓJ A4 /(27 )0
4

disp
2  can be obtained when ρ = 2, or equivalently when the intrinsic 

spatial inelastic peak width is twice that of the amplitude response function of the dispersive element α γΓ = 2 disp. 
Similar maxima are also found in ω ωJ ,  and Γ Γ ′

J ,p p
, whereas the maximum correlation between estimates of | |Ap

2 
and Γp (as described by | | Γ ′

J A ,p p
2 ) occurs when ρ = 1 or equivalently α γΓ = disp. There exists no optimal configu-

ration for the remaining elements of the FIM.

Infinite-extent finely-pixelated detector: diffraction limited. In a similar vein to above we can 
determine the FIM for an infinite-extent, finely pixelated detector, however, instead of assuming the intensity 
distribution on the detector is limited by the response function of the dispersive element, we can instead consider 
the case in which the PSF, h x( )opt , of the relaying optics dominates. For a one-dimensional case without aberra-
tions, the finite numerical aperture NA of the optics implies that π γ∼h x x( ) sinc( / )opt Abbe  where γ λ= /(2NA)Abbe  
determines the position of the first zero of h(x). For simplicity, however, we approximate the instrument response 
function by a Gaussian distribution,

γ
πγ γ

=







−

− 







G x x
x x

( ; , ) 1
(2 )

exp
( )
4

,
(43)

p
p

opt
opt
2 1/4

2

opt
2

with a spatial width of γopt chosen so as to match the full-width half-maximum of the sinc function, implying 
γ γ π γ= . = .1 89549 /(2 ln2 ) 0 36235opt Abbe Abbe. For this case we thus make the approximations: δ′ − =h x x( )disp 0  

α ω ω′ − − + Ω −x q x( ( ) )FSR  and γ=h x G x( ) ( ; 0, )opt opt , whereby

∫∑ ω ω

α ω ω γ ω

= | | | + Ω Γ |

× − + Ω + − .

∞
I x N A B L p

G q x x d

( ) ( ; , )

( ( ) ; 0, ) (44)

II
II

p q
p q pdet

,

2

0
0

2

FSR opt
2

Again we use the normalisation constant NII since we have scaled hdisp and h x( )opt  for convenience where we find 
=N NII I.
Once more using the properties of Lorentzians as above in addition to similar properties for Gaussian line-

shapes we can write the resulting intensity distribution as the convolution of a Lorentzian and a Gaussian line-
shape, i.e.

∑ α α γ= | | + Ω ΓI x N A B V x x( ) ( ; , , )
(45)

II
II

p q
p q pq pdet

,

2
opt

where α α γ+ Ω ΓV x x( ; , , )pq p opt  is the Voigt profile34. For simplicity we do not consider the full integral form for 
the Voigt profile, but instead restrict attention to the pseudo-Voigt distribution34 whereby

α α γ η α β α

η α β

+ Ω Γ ≈ | + Ω |

+ − | + Ω |

V x x L x x

G x x

( ; , , ) ( ; , / )

(1 ) ( ; , /(2 2ln2 )) (46)

pq p p pq p

p pq p

2

2

where μ β=p L p, /βp,

η μ μ μ= . − . + .1 36603 0 47719 0 11116 , (47)p p p p
2 3
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and the FWHM of the Lorentzian and Gaussian intensity distributions are β α= Γ2L p p,  and β γ= 2 2ln2G opt 
respectively. Using this approximation we rewrite η η= ∑ + −I I x I x( ) (1 ) ( )j p q p pq

L
j p pq

G
j,  where I x( )pq

L
j  and I x( )pq

G
j  

derive from the Lorentzian and Gaussian terms of the (p, q)th order peak. Again neglecting any cross term 
between adjacent peaks and also neglecting any parameter dependence of η we have that
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where the dependence of Ipq on xj has been suppressed for clarity. It then follows that the FIM can be partitioned 
into three contributions viz.    = + +II L G GL

w w w w . The first term, L
w , will take the same form as Eqs (36–41) 

with the replacement γ → 0disp  and with an additional factor of ηp
2 within the summations. The FIM associated 

with the second term can be evaluated by following the same logic as in the previous section ultimately yielding
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where α= Γrp p/ γ(2 2 )opt ,

π= + −f z z w z z( ) (2 1) ( ) 2 , (59)2

π= −g z zw z( ) ( ) 1, (60)

=w z z z( ) exp[ ]erfc[ ] (61)2
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and all other elements of GL
w  are zero.

Numerical results comparing the calculated FI Ω ΩJ ,  to the analytic Voigt based approximation for the diffrac-
tion limited case are shown in Fig. 3, now plotted as a function of the ratio τ α γ= Γ/ opt. Simulation parameters 
are again given in Table 1. Additionally a numerical aperture of = .NA 0 01 corresponding to γ ≈ .3 6opt  pixels was 
used, whilst a negligible value of γ = .8 4nmdisp  was assumed. Individual contributions to the analytic result from 
L, G and GL are also shown. Good qualitative agreement between the numerical and approximate results are 
seen, however, for small τ numerical discrepancies are relatively large. This discrepancy is a result of the Gaussian 
approximation used to represent the PSF, with the exact functional form playing a more critical result in this 
regime (as reflected by the relative importance of G and GL). Aberrations present in the relay optics which alter 
the shape of the PSF (i.e. excluding tilt and piston) would thus be expected to have a significant effect at small τ 
(e.g. from use of larger magnifications), as is indeed borne out in calculations as shown in Fig. 4. Specifically, we 
have plotted the variation of Ω ΩJ ,  using the same parameters used for Fig. 3, however, with the addition of one 

0

0.8

0.4

1.6

1.2

2
10-16

0 4 8 12

Voigt approx.

Diffraction limitedr

g

m

Figure 3. Numerical calculation (blue solid line) of Ω ΩJ ,  and the corresponding Voigt based approximation 
(dashed grey line). A finely pixelated detector with =N 5000p  pixels was assumed. The width of the response 
function of the dispersive element was taken as γ = .8 4nmdisp  and the relay lens assumed to have a numerical 
aperture of = .NA 0 01 such that the spectrometer is diffraction limited. See Table 1 for other simulation 
parameters. Individual contributions to the Voigt approximation are shown by the dot-dashed light blue, green 
and purple lines corresponding to Eqs (37) (see also text), (51) and (55) respectively.

Defocus

Spherical

Voigt approx.

Diffraction limited

0

0.8

0.4

1.6

1.2

2
10-16

0 4 8 12

Figure 4. Numerical results (blue solid curve) for the diffraction limited case (as per. Fig. 3), with the addition 
of one wave of defocus (green dash-dotted curve) and spherical aberration (light blue dash-dotted curve). The 
Voigt based approximation is also shown by the grey dashed curve.
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wave of defocus or spherical aberration. For each case the reduction in the obtainable FI, resulting from the over-
all PSF broadening, is similar in each case, however, the shift in the optimal τ is relatively small.

Figure 5 shows the numerical variation of Ω ΩJ ,  for arbitrary values of γdisp and γopt in the aberration free case, 
whereby it is seen that the obtainable precision monotonically decreases for fixed α as either response function 
broadens.

Finite-extent finely-pixelated detector. The cases considered hitherto have assumed an infinite detec-
tor. Accordingly, when determining the elements of the FIM, the summation over each data point Ij (defined by 
Eq. (19)) could be accurately modelled by an integration over an infinite domain, as was done in Eq. (29). Upon 
considering the more realistic case of a detector of finite spatial extent X (albeit still finely pixelated), the integra-
tion domain in Eq. (29) must be restricted to X. Assuming that any given spectral feature does not straddle the 
edge of the detector, the effect of the finite integration domain is to limit the summation over q (and potentially 
p). Specifically, denoting the spatial position of the spectral peak indexed by p and q as α= + Ωx xpq pq and its 
associated experimental width by γ, the summations appearing in Eqs (36–41) and (50–58) are only over peaks 
for which γ| ± |x Xmax [ ] /2pq . No information is obtained from peaks falling beyond the spatial extent of the 
detector as would be expected by intuition thus accounting for the drop in the calculated FI to zero seen in 
Figs 2–4. Only partial information is obtained for peaks which straddle the edge of the detector. Moreover, only a 
single FSR was considered in our discussion thus far, however, when multiple FSRs are present, a staggered fall off 
in the FI to zero is seen, with each step occurring when a single peak moves out of the detection area.

Coarse pixelation. To illustrate the effect of pixelation on the obtainable estimation accuracy it is sufficient 
to consider the FI obtained from measurement of a single peak of the intensity distribution falling on the detector. 
We assume that the detector has Np pixels indexed by = …j N1, 2, , p. Due to our assumption that each peak 
does not overlap significantly, the total FI then follows by summing the information obtained for each individual 
peak (c.f. for example Eqs (36–41)). For simplicity we shall assume a Lorentzian lineshape of width γ, such that

α χ γ= | | | + − Ω | .I x A L x x p( ) ( ; ( ) , ) (62)pdet
2 2

In the extreme case of coarse pixelation we can assume that the pixels are so large that a single spectral peak 
spans only three pixels before falling to negligible intensities. The measured data values Ij are thus zero unless 

− ≤ ≤ +n j n1 1, where n is the index of the centre pixel of the three under consideration. Since we have 
assumed that ≈I x( ) 0det  on all but three pixels we can extend the integration domains appearing in Eq. (19), such 
that
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For the Lorentzian lineshape assumed, the integration can be performed analytically yielding
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Figure 5. Variation of Ω ΩJ ,  as a function of the width of the PSF and dispersive element response function γopt 
and γdisp assuming αΩFSR/ = .X 0 25.
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and = | | − −− +I A I In p n n
2

1 1, where α χ= − Ω +x p x( )p . Letting | |I A in p p n
2

, , for a single FSR we have
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where l, m, n denote the indices of the central pixel for the = −p 1, 0, 1 order peak respectively. An element of 
the FIM then follows as
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where we have used the equivalent definition of FIM given in Eq. (22). It is important to note that in Eq. (65) we 
have introduced the mapping function t(p). In particular t(p) is the integer satisfying the inequality

α χ− ∆ < − Ω + ≤ + ∆ .x p x x/2 ( ) /2 (66)t t

To gain further insight we temporally redefine the pixel index j such that the jth pixel is centred at =x 0, whereby 
= − ∆ … − … ∆t X Xfloor[ /(2 )], , 1, 0, 1, ceil[ /(2 )].  Hence = ∆x tt  and t  i s  the integer  sat is fying 

∆ − ∆ < ≤ ∆ + ∆t x t/2 /2p . Thus ∆ − ≤ < ∆ +x t x/ 1/2 / 1/2p p  implying

α χ
=





 ∆

−






=






− Ω
∆

+
∆

−





.¯t

x p xround 1
2

round ( ) 1
2 (67)

p

Typically Ω ∆ / 1 implying that t, and hence the acquired FIM, oscillates rapidly as a function of α. Since α 
describes the linear mapping between the frequency and spatial domain, this means that the obtainable FIM, and 
hence the obtainable precision, is strongly dependent on the angular dispersion of the spectrometer and the opti-
cal magnification in the coarse pixelation regime. This behaviour is to be expected because in this regime the 
details of the spectral peak are barely resolvable by the detector. Similarly, the obtainable precision depends 
strongly on the registration of the incident spectrum with respect to the detector pixels, as parametrised by x . To 
illustrate the oscillations we have numerically calculated Ω ΩJ ,  for a detector with varying numbers of pixels. 
Specifically we use the parameters given in Table 1 and consider a detector with 100, 250, 500 and 1000 pixels 
(corresponding to pixel sizes of 140, 56, 28, 14 μm respectively). The width of the dispersive element’s response 
function was fixed at γ = 84disp  μm, whilst the numerical aperture of the relay lens was set such that 
γ γ= /10opt disp . With these parameters the simulated spectrometer operates within the dispersion limited regime. 
Numerical results are shown in Fig. 6. For the largest pixel size (corresponding to γ = .0 6disp  pixels) large oscilla-
tions in Ω ΩJ ,  are observed. The magnitude of these oscillations decrease as the pixel size decreases until the finely 
pixelated regime is reached. We note that in these simulations the larger choice of γdisp means that the optimal 
configuration (ρ = 2) requires a scaling factor α for which the inelastic spectral peaks lie beyond the detector and 
no information regarding Ω can be obtained. In turn this means that the peak in Ω ΩJ ,  is not seen (as compared to 
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Figure 6. Calculated Fisher information in the coarse pixelation limit. Peak widths of γ = 84disp  μm and 
γ = .8 4opt  μm were assumed, whilst the number of pixels on a finite size detector was varied. Other simulation 
parameters are given in Table 1.
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e.g. Fig. 2). Instead the optimal α is that for which the inelastic peaks lie just within the spatial extent of the detec-
tor (assuming that the Rayleigh peak is centred).

Within any experimental context it is desirable to avoid oscillations in the obtainable precision and thus it is 
useful to estimate the pixel size at which coarse pixelation effects become relevant. To do so we consider the inten-
sity recorded on a single pixel j for a single Lorentzian peak. For a peak of arbitrary width γ we have

I I x dx

A x x x x

( )

arctan
/2

/2
arctan

/2
/2 (68)
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where the integration has been performed analytically in a similar fashion to above. Performing a Maclaurin 
expansion in terms of the ratio of the pixel size and linewidth, i.e. ∆/γ, yields

γ≈ ∆ + ∆ .I I x O( ) [( / ) ] (69)j jdet
3

To lowest order in ∆/γ we can thus consider each pixel reading to be a discrete sample of the underlying lineshape 
(as per intuitive expectations), whereby the problem of coarse pixelation can be analysed in terms of under sam-
pling of the incident intensity distribution. In particular, we first note that the power spectrum of a Lorentzian 
lineshape of width γ decays in the spatial frequency domain over a range of γ∆ ∼k /2x  and can thus be taken as 
approximately band-limited. Applying the Nyquist-Shannon sampling theorem35,36 then implies that to avoid 
under sampling, and hence informational oscillations, we require

 γ
∆

∆
= .

k
1

2 4 (70)x

Similar conclusions can also be made for alternative lineshapes. This criterion is indeed supported by the data 
shown in Fig. 6 which exhibits oscillations in the FI for the =N 100 and 250 cases, corresponding to γ ∆ =/ 3/5 
and 3/2 respectively, whereas for =N 1000 (γ ∆ =/ 6) oscillations are negligible. The =N 500 (γ ∆ =/ 3) case 
lies close to the limit set by Eq. (70) such that oscillations may be expected, however, none are evident in Fig. 6. 
Primarily, this behaviour is due to the fact that the approximations made in deriving Eq. (70) begin to break down 
when γ∆ ∼/ 1. As such, Eq. (70) should only be viewed as a general experimental rule of thumb.

poisson distributed noise. Hitherto, discussion of the precision in inelastic optical spectroscopy has been 
limited to the simpler case of Gaussian distributed noise. This model is appropriate when read out noise domi-
nates or if the mean signal is sufficiently high. In this section, however, we relax this assumption and instead 
briefly consider the effects of Poisson noise. To begin we must revisit the form of the FIM as was previously given 
by Eq. (25). For Poisson distributed noise (again assuming the noise on each pixel is independent) it can be shown 
that Idet

 is a diagonal matrix with on diagonal elements given by 1/Ij
30. Accordingly, the FIM is given by
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The additional 1/Ij factor complicates the analysis of the limiting cases discussed above considerably. Particularly, 
we note that evaluation of the integrals involved (e.g. the analog of Eq. (29)) can not be performed analytically. 
Numerical determination of the FIM in the general case can, however, be performed. In this vein, Fig. 7, shows 
the results of numerical calculations analogous to those presented in Figs 2 and 6, albeit within a Poisson noise 
regime, i.e. using Eq. (71). Note that for these plots we have defined = ∆∑ | |=−∞

∞J N Bq q0
2 4. Two points of interest 
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Figure 7. As per (left) Fig. 2 and (right) Fig. 6 albeit assuming Poisson distributed noise.
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can be made based on Fig. 7. Firstly, in contrast to Fig. 2, no peak in the obtainable FI is seen. This difference 
arises because the signal to noise ratio from Gaussian and Poisson distributed noise exhibit different dependen-
cies on the mean intensity recorded on a pixel. As such the balance between the improvement in signal to noise 
ratio, e.g. from a narrower instrumental peak width γdisp, and the effect of the linear scaling factor α discussed 
earlier is altered. In the Poisson noise regime the best precision is thus found to occur when the spectrum fills the 
detector without clipping of the spectral peaks. Secondly, the right hand plot of Fig. 7 clearly shows that as the 
number of detector pixels is increased, the obtainable FI also increases. This trend similarly arises as a result of the 
decrease in the mean intensity recorded on each pixel as the number of pixels increases (for a fixed intensity dis-
tribution). Whilst for the Gaussian case the noise variance is fixed giving rise to a limiting FI as pixel count 
increases (as seen in Fig. 6), in the Poisson case the drop in mean intensity implies that the noise variance also 
decreases such that the mean intensity can be determined more precisely. In the presence of Poisson noise, detec-
tors with a finer pixelation thus not only enable greater estimation precision, but they also help avoid informa-
tional oscillations which can still be present at low pixel counts.

Conclusions
In this paper we have established the fundamental precision limits achievable when determining key spectral 
parameters in inelastic optical spectroscopy. In such applications, parameters such as the frequency shift of 
Raman or Brillouin scattered photons and the linewidth of the corresponding spectral peaks are of interest since 
they can provide quantitative information about the micro-mechanical, elastic and molecular information of 
material samples. Precision limits were derived using the concept of Fisher information and the Cramér-Rao 
lower bound taking into account the instrument response function of the dispersive element and potential defo-
cus or spherical aberration in the detection optics, in addition to the size and pixelation of the detector itself. As 
such our results are applicable to a broad range of spectroscopic instruments. We also note that such limits are 
asymptotically achievable through use of a maximum likelihood estimation strategy. Whilst our analysis only 
employed a one-dimensional description of the lens, we note that this allowed significant physical insight to be 
gained through the analytic derivations it enabled. Moreover, a one-dimensional model is valid whenever one 
dimension of the PSF is large compared to the other. Since cylindrical lenses are frequently used in spectroscopic 
applications this is often the case. Nevertheless, extension of the above treatment to two dimensions is simple, 
albeit mathematically more involved. In particular, such a generalisation would only affect the optical model, for 
example, through use of Zernike aberration functions and two dimensional convolution integrals. Information 
theoretic aspects of our analysis would, however, remain unaffected except that the summations in Eqs (25) and 
(71) would be taken over a two dimensional array of detector pixels. Qualitatively similar behaviour to that found 
using the one-dimensional treatment, with only minor numerical differences, would be expected.

Although general formulae were given for the obtainable precision, a number of limiting cases were also con-
sidered providing greater insight into the obtainable precision. Specifically, we gave simplified results for both a 
dispersion and diffraction limited spectrometer. Optimal configurations (in terms of angular dispersion or optical 
magnification) could then be found for estimation of either the central frequency, inelastic shift or peak width 
in the Gaussian noise regime. These optima occur when the competing effects of the experimental lineshape 
and spatial separation of peaks on the detector are balanced. Numerical calculations were also presented for 
more general scenarios, including a discussion of the effects of Poisson noise. For fixed dispersion/magnification 
the obtainable precision was found to worsen as the widths of the response functions increased. Defocus and 
spherical aberration in the relay optics were also found to reduce the obtainable precision as would be intuitively 
expected, however, their effect on determining the optimal spectrometer configurations was found to be minimal 
even for relatively strong aberration strengths. Finally, although detector pixelation was shown to imply that 
informational limits can be highly sensitive to detector registration and other experimental parameters, this was 
only found to be significant in the coarse pixelation regime whereby spectral linewidths and pixel size are compa-
rable, i.e. when the spectrum is sampled below the Nyquist rate. Given the high pixel count on many modern day 
detectors, this is unlikely to be of practical importance.
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