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Multi-modal medical image fusion can reduce information redundancy, increase the
understandability of images and provide medical staff with more detailed pathological
information. However, most of traditional methods usually treat the channels of multi-
modal medical images as three independent grayscale images which ignore the correlation
between the color channels and lead to color distortion, attenuation and other bad effects
in the reconstructed image. In this paper, we propose a multi-modal medical image fusion
algorithm with geometric algebra based sparse representation (GA-SR). Firstly, the multi-
modal medical image is represented as a multi-vector, and the GA-SRmodel is introduced
for multi-modal medical image fusion to avoid losing the correlation of channels. Secondly,
the orthogonal matching pursuit algorithm based on geometric algebra (GAOMP) is
introduced to obtain the sparse coefficient matrix. The K-means clustering singular
value decomposition algorithm based on geometric algebra (K-GASVD) is introduced
to obtain the geometric algebra dictionary, and update the sparse coefficient matrix and
dictionary. Finally, we obtain the fused image by linear combination of the geometric
algebra dictionary and the coefficient matrix. The experimental results demonstrate that the
proposed algorithm outperforms existing methods in subjective and objective quality
evaluation, and shows its effectiveness for multi-modal medical image fusion.

Keywords: multi-modal medical image, sparse representation, geometric algebra, image fusion, dictionary
learning (DL)

1 INTRODUCTION

Medical Image fusion technology integrates technologies in many fields such as computer
technology, sensor technology, artificial intelligence, and image processing. It comprehensively
extracts image information collected by different sensors and concentrates all the information of the
image, which can reduce the information redundancy of the image, enhance the readability of the
image and providemore specific disease information for diagnosis (Riboni andMurtas, 2019; Li et al.,
2021; Wang et al., 2022).

According to the types of fused images, medical image fusion can be divided into unimodal
medical image fusion and multi-modal medical image fusion (Tirupal et al., 2021). A unimodal
medical image refers to multiple images of a patient’s organ collected by the same device, which are
combined into one image by corresponding fusion algorithm. The purpose is to collect image
information under different contrasts (Zhang. et al., 2021). Multi-modal medical images refer to
images obtained by different imaging methods. Different types of medical images contain different
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information, and the obtained fused image can summarize
various feature information to provide medical staff with more
comprehensive pathological information (Zhu et al., 2017).
Common medical images include CT images, MR images, and
SPECT images (Thieme et al., 2012; Nazir et al., 2021; Engudar
et al., 2022).

Multi-modal medical image fusion mainly includes the
following methods: morphological methods, knowledge
based methods, wavelet based methods, neural network
based methods, methods based on fuzzy logic, and so on
(James and Dasarathy, 2014). Naeem used discrete wavelet
transform (DWT) to fuse images with different details, which
changed the uniformity of the details contained in the fused
image (Naeem et al., 2016). Guruprasad et al. (2013) proposed
an image fusion algorithm based on DWT-DBSS and use the
maximum selection rule to obtain detailed fusion coefficients.
Bruno presents a novel Wavelet-based method to fuse medical
images according to the MRA approach, that aims to put the
right “semantic” content in the fused image by applying two
different quality indexes: variance and modulus maxima
(Alfano et al., 2007). A hierarchical image fusion scheme is
presented which preserves the details of the input images of
most relevance for visual perception (Marshall and
Matsopoulos, 2002).

Sparse representation (Shao et al., 2020) can deal with the
natural sparsity of signals by the physiological properties of the
human visual system, which is a linear combination of
dictionary atoms and sparse coefficients to represent the
signal with as few atoms as possible in a given overcomplete
dictionary. Bin Yang and Shutao Li (2010) first introduced
sparse representation into image fusion, and adopted the
sliding window technique to make the fusion process robust
to noise and registration. Zong and Qiu (2017) proposed a
fusion method based on classified image blocks, which used the
directional gradient histogram feature to classify image blocks
to establish a sub-dictionary. It can reduce the loss of image
details and improve the quality of image fusion.

Traditional sparse representation fusion method usually
processes the color channels separately, which easily destroys
the correlation between image channels and results in loss of
color in the fused image. Geometric algebra (GA) has been
considered as one of the most powerful tools in multi-
dimensional signal processing and has witnessed great success
in a wide range of applications, such as physics, quantum
computing, electromagnetism, satellite navigation, neural
computing, camera geometry, image processing, robotics, and
computer vision, et al. (da Rocha and Vaz, 2006; Wang et al.,
2019a; Wang et al., 2021a). Inspired by the paper (Wang et al.,
2019b), the geometric algebra-based sparse representation (GA-
SR) is introduced for multi-modal medical image fusion in
this paper.

The rests of this paper are organized as follows. In Section 2,
this paper introduces the basic knowledge of geometric algebra.
Section 3 introduces the GA-SR algorithm and the fusion steps of
the proposed algorithm. Section 4 provides the experimental
analysis including subjective and objective quality evaluations.
Finally, Section 5 concludes the papers.

2 GEOMETRIC ALGEBRA

Geometric algebra combines quaternions and Grassmann
algebras, which can extend operations to higher-dimensional
spaces. The geometric algebra space does not rely on
coordinate information for calculation (Batard et al., 2009),
and all geometric operators are included in the space. Any
multi-modal medical image can be represented by geometric
algebraic orthonormal base as a multi-vector for overall
processing, which can ensure the correlation between each
channel of the image (da Rocha and Vaz, 2006; López-
González et al., 2016).

Geometric algebra is generated by quadratic space, and is
defined as follows. Let Gn denote the 2n dimensional geometric
algebraic space generated by the orthonormal basis vectors
{γ1, γ2, . . . , γn}, including the following complete orthonormal
base: Eq. 1

{1, {γi}, {γiγj}, / , {γ1γ2/γn}} (1)
For example, the orthonormal base of G3 vector space consists

of 23 � 8 vectors, which are {1, γ1, γ2, γ3, γ12, γ13, γ23} .
The orthonormal base in the geometric algebraic space Gn

satisfies the following basic operation rules, Eqs 2–5

γi ∧ γj � −γj ∧ γi, i ≠ j, i, j � 1, 2, . . . , n (2)
γ2i � 1, i, j � 1, 2, . . . , n (3)

γi · γj �
1
2
(γiγj + γjγi), i, j � 1, 2, . . . , n (4)

γiγj � γi · γj + γi ∧ γj, i, j � 1, 2, . . . , n (5)
where ∧ represents the outer product symbol, represents the inner
product symbol, γiγj represents the geometric product of γi and
γj, which is equal to the sum of the inner and outer products of γi
and γj.

3 GEOMETRIC ALGEBRA BASED SPARSE
REPRESENTATION BASED MULTI-MODAL
MEDICAL IMAGE FUSION BASED ON
In this section, the GA-SR based multi-modal medical image
fusion is provided.

3.1 Geometric Algebra Based Sparse
Representation Model
The sparse representation model of GA multi-vector can be
defined as

mina
����a‖0, s.t.q � Da (6)

where D � (E0(D) + ∑1≤ i≤ n Ei(D)γi +∑1≤ i< j≤ n Eij(D)γij+
/ + E1/n(D)γ1/n ∈ (Gn)N×M) is a
geometric algebra dictionary containing M dictionary atoms,
and a � (E0(a) +∑1≤ i≤ n Ei(a)γi +∑1≤ i< j≤ n Eij(a)γij +/+
E1/n(a)γ1/n ∈ (Gn)M) is a sparse coefficients vector in
geometric algebra form. ‖a‖0 is the objective function, which is
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used to calculate the number of non-zero vectors in the vector a.
The multi-modal medical image based on the GA-SR model can
be described in the Eq. 7

[0/Ei(q)/Eij(q)/E1/n(q)] � [E0(D)/Ei(D)/Eij(D)/E1/n(D)]�a
(7)

For a three-channel multi-modal medical image
Q′ ∈ (G2)N×K, it is assumed that each image block
q′ ∈ (G2)

��
N

√
×
��
N

√
can be converted into a vector q′ ∈ (G2)N of

lengthN, and the vector q′ can be expressed as shown in the Eq. 8

q′ � 0 + E1(q′)γ1 + E2(q′)γ2 + E12(q′)γ12 ∈ (G2)N (8)
For a three-channel multi-modal medical image, its sparse

representation model can be defined as shown in the Eq. 9

mina′
����a′‖0, s.t.q′ � D′a′ (9)

Where D′ � E0(D′) + E1(D′)γ1 + E2(D′)γ2 + E12(D′)γ12,
D′ ∈ (G2)N×M is a three-channel geometric algebra dictionary
consisting of M dictionary atoms, a′ � (E0(a′) + E1(a′)γ1 +
E2(a′)γ2 + E12(a′)γ12) is the corresponding geometric algebra
coefficient vector, and ‖a′‖0 is used to calculate the number of
non-zero elements in the vector a′.

Therefore, the GA-SR model of the three-channel medical
image can be described as follows

[0 E1(q′) E2(q′) E12(q′) ] � [E0(D′) E1(D′) E2(D′) E12(D′)]a′ (10)

The general form of a three-channel medical image sparse
coefficient matrix can be obtained by

(a′) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E0(a′) E1(a′) E2(a′) −E12(a′)
E1(a′) E0(a′) −E12(a′) E2(a′)
E2(a′) E12(a′) E0(a′) −E1(a′)
E12(a′) E2(a′) −E1(a′) E0(a′)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

3.2 The Representation of Multi-Modal
Medical Image
Any pixel F of a multi-modal medical image can be represented as
a multi-vector form in Gn space, as shown in the Eq. 12

F(x, y) � F0(i, j) + ∑
1≤ i≤ n

Fi(i, j)γi + ∑
1≤ i< j≤ n

Fij(i, j)γij +/

+ F1/n(i, j)γ1/n, F(i, j) ∈ R (12)
While γi, γij, γ1...n are the orthonormal base of geometric

algebra, and Fi(i, j), Fij(i, j),/, F1/n(i, j) represent the
pixels of the multi-modal medical image at (i, j). Each
channel of a multi-modal medical image can be encoded on
an orthonormal basis of geometric algebra. Therefore, a multi-
modal medical image Q of sizeM × N andQ ∈ (Gn)M×N can be
expressed as

Q � E0(Q) +∑
1≤ i≤ n

Ei(Q)γi +∑
1≤ i< j≤ n

Eij(Q)γij +/

+ E1/n(Q)γ1/n , E(Q) ∈ (R)M×N (13)

Assuming that each image block of the multi-modal medical
image Q ∈ (Gn)N×K is q ∈ (Gn)

��
N

√
×
��
N

√
, where N represents the

size of image and K represents the number of image patches,
which can be converted into a vector form of length N, and the
geometric algebra form of the image block q is shown in the
Eq. 14

q � E0(q) +∑
1≤ i≤ n

Ei(q)γi +∑
1≤ i< j≤ n

Eij(q)γij +/

+ E1/n(q)γ1/n, E(q) ∈ R (14)

3.3 The Proposed Fusion Algorithm
Let M1 and M2 represent two multi-modal medical source
images, respectively, and the framework of GA-SR based
multi-modal medical image fusion is shown in Figure 1.

(1) The sliding window technique is introduced to divide the two
source images into several sub-image blocks. The size of the
sliding window is generally n × n and the step size is 1. The
image blocks are converted into column vectors, and the i th
image block is formed into the column vector which can be
denoted as xi

1, x
i
2.

(2) The sparse representation coefficients αi1 and αi2 of the
column vectors can be calculated by GAOMP algorithm
respectively in Wang et al. (2019b), which are described as
follows

αi
1 � argmin1

����xi
1 −DA

����22, s.t.
����αi

1

����≤ J (15)
αi2 � argmin2

����xi
2 −DA2

2

����, s.t.
����αi

2

����≤ J (16)
where D represents the adaptive dictionary of image blocks
obtained by dictionary training, αi1 and αi2 respectively
represent the sparse coefficient vectors obtained by GAOMP,
which can be combined to obtain a sparse coefficient matrix.
‖αi‖≤ J is the cutoff condition for dictionary training.

(3) The fused sparse coefficient matrix is obtained by the L1
norm (Yanan et al., 2020) maximum rule. The L1 norm refers
to the sum of the absolute values of the elements, and the L1
norm is the optimal convex approximation of the L0 norm,
which is more efficient than the L0 norm and is easier to
optimize the solution. The L1 coefficient of the
corresponding columns of the two sparse coefficient
matrices are calculated, and the column with the larger
norm is used as the column of the fused sparse coefficient
matrix. The fusion rules of the sparse coefficients are as
Eq. 17

αi
F � { αi

1,
����αi

1

����1 ≥ ����αi
2

����1
αi2,

����αi1����1 < ����αi
2

����1 (17)

(4) A dictionary training algorithm is used to obtain the
dictionary required for sparse representation. K-SVD is a
classic dictionary training algorithm (Fu et al., 2019) in sparse
representation. The K-GASVD algorithm in (Wang et al.,
2019b) consists of two steps, which are sparse coding
(Sandhya et al., 2021) and dictionary update (Thanthrige
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et al., 2020). The K-GASVD algorithm is used to perform and
update dictionary training on the obtained sparse coefficient
matrix.

(5) The fusion result of xi
1 and xi

2 can be obtained according to
the GA-SR model of the three-channel multi-modal medical
image, as shown in the Eq. 18

xi
F � Dαi

F (18)

(6) All image patches are processed in the same way, the image
block vector xi

F is calculated and converted into data sub-
blocks. Finally, we can obtain a new image block and
compose the final fused image QF.

4 EXPERIMENTAL ANALYSIS

In order to verify the effectiveness of the GA-SR based multi-modal
medical image fusion, the experiments are implemented on four
groups of multi-modal medical images selected from Harvard
Medical School Database in Matlab with other exiting methods,
such as Laplacian Pyramid algorithm (Liu et al., 2019), DWT-DBSS
algorithm (Guruprasad et al., 2013), SIDWT-Haar algorithm (Xin
et al., 2013) and Morphological Difference Pyramid algorithm
(Matsopoulos et al., 1995). The source images are SPECT images
obtained with different radionuclide elements, respectively. The
spatial resolution of each image is 256 × 256. The source images
used in the experiments are shown in Figure 2.

FIGURE 1 | The framework of GA-SR based multi-modal medical image fusion.

FIGURE 2 | Source images.
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4.1 Subjective Quality Evaluation
Themulti-modal medical images are fused by six different algorithms
respectively, and the obtained results are shown in Figures 3–6.

Figures 6A,B in each group are the source images used in the
experiment, and Figures 6C–H are the fused results obtained by
the six different algorithms. Subjectively, it can be seen that the

edge of the images obtained by the first four algorithms is
relatively complete, but the middle part is darker. The contrast
and clarity of the images are low, which indicates that these four
algorithms cannot fuse the two source images completely. As a
result, the fused image information is incomplete. It can be seen
that the fused images obtained by the SR algorithm and GA-SR

FIGURE 3 | Fusion results of the first group. (A) Source image SPECT-TL1 (B) Source image SPECT-TC1 (C) Laplacian Pyramid (D) DWT-DBSS (E) SIDWT-Haar
(F) Morphological Difference Pyramid (G) SR (H) GA-SR.

FIGURE 4 | Fusion results of the second group. (A) Source image SPECT-TL2 (B) Source image SPECT-TC2 (C) Laplacian Pyramid (D) DWT-DBSS (E) SIDWT-
Haar (F) Morphological Difference Pyramid (G) SR (H) GA-SR.
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algorithm are relatively complete, which can comprehensively
cover the color and structure information of the two source
images, and the fused images obtained are relatively clear.
However, there are multiple red spots of different sizes in the
images obtained by the SR algorithm, which cause the result to be
distorted. The red spots will cover the correct information of the

source image, which is not conducive to clinical diagnosis. As can
be seen from each group of Figure 6H, the images are relatively
clear, and there is no obvious occlusion area. The contrast of the
images is relatively high, which indicates that the fused images
obtained by the GA-SR algorithm can comprehensively cover the
source image. It can provide comprehensive pathological

FIGURE 5 | Fusion results of the third group. (A) Source image SPECT-TL3 (B) Source image SPECT-TC3 (C) Laplacian Pyramid (D)DWT-DBSS (E) SIDWT-Haar
(F) Morphological Difference Pyramid (G) SR (H) GA-SR.

FIGURE 6 | Fusion results of the fourth group. (A) Source image SPECT-TL4 (B) Source image SPECT-TC4 (C) Laplacian Pyramid (D) DWT-DBSS (E) SIDWT-
Haar (F) Morphological Difference Pyramid (G) SR (H) GA-SR.
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information for medical staff and convenience for clinical
medicine.

4.2 Objective Quality Evaluation
The evaluation indicators are adopted for objective evaluation of
image quality. In this paper, four indicators of CC (Correlation
Coefficient) (Li and Dai, 2009), PSNR (Peak Signal to Noise Ratio)
(Hore and Ziou, 2010), RMSE (Root Mean Square Error) (Zhao et al.,
2020) and Joint-Entropy (Okarma and Fastowicz, 2020) are used for
performance analysis with the six fusion algorithms, and four groups
of tables are obtained respectively, as shown in Tables 1–4.

For fusion of the four groups, the CC of each group of images
obtained by the GA-SR algorithm is higher than that obtained by
other algorithms, indicating that the correlation of the images
obtained by the GA-SR algorithm with the source image is higher,

and the obtained image information is more complete. At the
same time, the PSNR and RMSE of the images obtained by the
GA-SR algorithm are higher than those obtained by other
algorithms, indicating that the fused images obtained by the
GA-SR algorithm are closer to the source images and have less
distortion and more comprehensive information (Xiao et al.,
2021; Gao et al., 2022a; Gao et al., 2022b; Gao et al., 2022c).

4.3 Further Analysis
Dictionary training is very important for sparse representation, and
the quality of the dictionary directly affects the quality of image fusion.
The dictionaries training based on the K-SVD and K-GASVD
algorithms can be obtained respectively, as shown in Figure 7.

Figure 7A is the dictionary image obtained by the K-SVD
algorithm, and Figure 7B is the dictionary image obtained by the

TABLE 1 | Quality evaluation of fused images of the first group.

Evaluation standard Laplacian pyramid DWT-DBSS SIDWT-Haar Morphological difference
pyramid

SR GA-SR

CC 0.6923 0.6284 0.6481 0.6842 0.7058 0.74135
Joint-Entropy 3.4538 3.4572 3.3152 3.4986 5.8191 5.9109
PSNR 17.442 17.5662 17.7478 17.0234 15.6494 17.6253
RMSE 0.1342 0.1323 0.7335 0.1409 0.1644 0.1309

Column 1 of the table is the Evaluation standard. The other columns of the table are the evaluated values of different methods.

TABLE 2 | Quality evaluation of fused images of the second group.

Evaluation standard Laplacian pyramid DWT-DBSS SIDWT-Haar Morphological difference
pyramid

SR GA-SR

CC 0.6556 0.5840 0.602 0.6400 0.6832 0.71145
Joint-Entropy 3.9194 3.7748 3.7609 3.9974 6.67605 6.6487
PSNR 16.3629 16.5158 16.7125 15.8303 14.8449 16.8667
RMSE 0.1520 0.1494 0.1460 0.1616 0.1803 0.1362

Column 1 of the table is the Evaluation standard. The other columns of the table are the evaluated values of different methods.

TABLE 3 | Quality evaluation of fused images of the third group.

Evaluation standard Laplacian pyramid DWT-DBSS SIDWT-Haar Morphological difference
pyramid

SR GA-SR

CC 0.7046 0.6472 0.6665 0.6737 0.6889 0.7017
Joint-Entropy 3.6714 3.7782 3.5535 3.5208 6.7404 6.9520
PSNR 16.8556 16.7812 17.0263 16.6019 15.194 17.1890
RMSE 0.1436 0.1449 0.1408 0.1479 0.1732 0.1327

Column 1 of the table is the Evaluation standard. The other columns of the table are the evaluated values of different methods.

TABLE 4 | Quality evaluation of fused images of the fourth group.

Evaluation standard Laplacian pyramid DWT-DBSS SIDWT-Haar Morphological difference
pyramid

SR GA-SR

CC 0.6510 0.5897 0.6267 0.6235 0.56865 0.6582
Joint-Entropy 3.6212 3.6904 3.4017 3.9315 7.0763 6.61685
PSNR 17.0485 17.0083 17.1788 16.5814 15.0864 17.2829
RMSE 0.1405 0.1411 0.1384 0.1482 0.1754 0.1362

Column 1 of the table is the Evaluation standard. The other columns of the table are the evaluated values of different methods.
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K-GASVD algorithm. It is obvious that the color of the dictionary
image obtained by the K-SVD algorithm is relatively single, that is
because the K-SVD algorithm cannot fully handle the spectral
components of the source image, resulting in the generated
dictionary image containing a large number of gray image
blocks. The dictionary image of K-GASVD contains richer
comprehensive information.

In order to verify the effect of the number of dictionary atoms
on the quality of the fused image, we change the number of
dictionary atoms to obtain different dictionary images, and finally
obtain corresponding fused images. The relationship between the
PSNR and the atomic number of fused images obtained from
dictionaries with different atomic numbers is shown in Figure 8.

We can find that the PSNR of the fused images obtained by the
K-GASVDmodel is significantly higher than that of the K-SVDwith
the increase of the number of dictionary atoms. On the other hand,
the number of dictionary atoms required by the K-GASVDmodel is
about 3/10 of the number of atoms required by the K-SVDmodel if
the PSNR is same. Therefore, the number of atoms used in the
K-GASVD is significantly reduced in the realization of the same
fusion performance, which can present more colorful structures.

For computational complexity, it usually requires longer
computational time for multi-modal medical image fusion
than other existing real-valued algorithms, because of the non-
commutativity of geometric multiplication. Inspired by the work
in (Wang et al., 2021b), reduced geometric algebra (RGA) will be
introduced to improve our algorithm with lower computational
complexity.

5 CONCLUSION

In this paper, the multi-modal medical image is represented as a
multi-vector, and the GA-SR model is introduced for multi-
modal medical image fusion to avoid losing the correlation of
channels. And the dictionary learning method based on
geometric algebra is provided for more specific disease
information for diagnosis. The experimental results validate its
rationality and effectiveness. At next steps, we will focus on the
analysis and diagnosis of pathological information using GA-SR
based multi-modal medical image fusion.
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