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a synthetic vulnerable population 
dataset for fine scale geographical 
equity analysis and urban planning
Jérémy Gelb  1 ✉, Philippe apparicio2 & Hamzeh alizadeh1

Assessing the social and economic vulnerability of populations within a given area is essential for 
conducting environmental equity evaluations and devising effective public policies to mitigate 
disparities. However, prevailing indicators used to measure socio-economic vulnerability exhibit 
several shortcomings. Primarily relying on factor analysis, these indicators face challenges in terms 
of comparability over time, lack of standardized scales, and inherent limitations associated with 
composite indicators. To address these shortcomings, we propose a novel approach that estimates the 
number of potentially vulnerable individuals by constructing a synthetic population. Our methodology, 
developed using open tools and datasets, offers a scalable solution applicable to the entire Canadian 
context. The resulting percentage of potentially vulnerable populations demonstrates strong 
correlations with traditional vulnerability indicators commonly used in Canada, while overcoming their 
inherent limitations. The generated dataset holds significant potential and serves as a valuable resource 
for both researchers and governmental organizations. It provides a robust foundation for conducting 
equity analyses, assessments, and policy evaluations, thereby facilitating evidence-based decision-
making processes aimed at promoting social and economic inclusivity.

Background & Summary
Introduction. In this article, we describe a new methodology for quantifying the socio-economic vulnerabil-
ity in urban areas. Specifically, we propose to directly measure the number (or percentage) of people in a potential 
situation of socio-economic vulnerability. This indicator can be used to study the impacts of urban projects and 
policies in terms of environmental equity in a much more intuitive way when compared to the classical vulnera-
bility indices. Moreover, the proposed method addresses several common issues related to the classical vulnera-
bility indices, namely the absence of an interpretable measurement scale, the challenge of temporal comparability, 
the addition and substitution effects, and the arbitrary weighting of contributing factors1,2. These challenges are 
extensively discussed in the following sections. To attain this objective, we create a synthetic vulnerable popula-
tion that focuses on simulating individuals or groups characterized by a heightened potential for vulnerability in 
Canada. This vulnerability may be associated with various factors such as economic disadvantage, ethnic minority 
status, or other social determinants3,4. This synthetic population serves as a valuable tool for researchers, policy-
makers, and planners to analyze and address issues related to social equity, public health, urban development and 
transportation without compromising the privacy and confidentiality of actual vulnerable individuals.

Synthetic populations enable researchers and practitioners to conduct analyses, simulations, and assessments 
without directly accessing individual-level data, thereby addressing privacy concerns while still providing valu-
able insights into population dynamics and behaviours. A synthetic population refers to a simulated representa-
tion of a real population created through statistical methods and modelling techniques5. It is designed to mimic 
the demographic, socioeconomic, and other relevant characteristics of an actual population while preserving 
privacy and confidentiality6,7. A second objective of the study is to validate the ability of the proposed measure 
to adequately represent the phenomena of socio-economic vulnerability. To this end, we evaluate the quality of 
the synthetic population obtained (internal validation) and assess the association of the estimated proportion of 
potentially vulnerable people with two well-known indicators, the Canadien index of multiple deprivation8 and 
the index of material and social deprivation9 (external validation).
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We also describe the resulting database for the four largest metropolitan areas in Canada. This database is 
particularly useful for research on social vulnerability, as well as for government planning exercises aimed at 
environmental equity.

The data produced for this study is available for download on Zenodo10 along with all the necessary scripts 
for replicating the results or generating a synthetic vulnerable population for a different region.

Vulnerable populations. Social vulnerability is a concept with blurred boundaries. Many terms have been 
used to describe vulnerable populations, such as disadvantaged, underprivileged, medically undeserved, poverty 
stricken, socially marginalized, distressed population and underclasses11. From the outset, it is important to distin-
guish between an individual concept of vulnerability (vulnerable individuals) and a population concept (vulnera-
ble populations)12. This article specifically focuses on the examination of the population concept of vulnerability.

The genesis of the concept of population vulnerability can be traced back to the health sector, where the desig-
nation of “vulnerable populations” serves to identify individuals potentially more impacted by specific exposures, 
such as children, pregnant women, asthmatics, and the elderly. In this context, vulnerability is only perceived 
through a physiological lens, encompassing aspects of susceptibility stemming from inherent physical conditions. 
Subsequently, the analytical scope has expanded to incorporate dimensions of social vulnerability, with a height-
ened emphasis on marginalized segments of society, including individuals grappling with economic hardship, 
homelessness, ethnic minorities, and indigenous populations. Early work on these populations mainly focused 
on the consequences of this vulnerability at an individual level, emphasizing downstream factors, particularly 
from a health perspective. As the discourse evolved, the research paradigm has expanded to encompass a more 
comprehensive examination of vulnerable populations and the intricate societal mechanisms contributing to the 
genesis of this vulnerability. This shift in focus is notably characterized by a consideration of upstream factors, 
which encapsulate environmental characteristics, disparities, and educational discrimination, among other deter-
minants13. This turning point in the conceptualization of vulnerability can be attributed to Aday’s theoretical 
framework of vulnerability3, associating individual physical dimensions, such as age, gender, ethnic origin, and 
disabilities, with economic-social capital factors, including income, education and housing, along with commu-
nity capital aspects like relationships, family structure and social networks. Moreover, this framework underscores 
the significance of resource availability in delineating both physical and mental health states. This nuanced theo-
retical foundation marks a pivotal departure from earlier perspectives by illuminating the multifaceted nature of 
vulnerability and emphasizing the intricate interplay of individual and societal factors in shaping health outcomes.

The accumulation of different stressors and the lack of resources to cope with them leads to a situation of vul-
nerability, i.e. “a stressful social disorganization as a normative reality of life”14. More recently still, postmodern 
critical analysis has deconstructed the concept of vulnerability to propose a non-dichotomous definition based 
on a gradient, linking resilience and vulnerability15 and implying that each human has his or her own level of vul-
nerability in his or her social context. However, this type of relativistic definition offers rather limited perspec-
tives in practice since it does not guide decision-making and intervention prioritization4. The difficulty of clearly 
defining the vulnerability of populations has led to the adoption of an approach that Wrigley and Dawson4 
named population listing. Many studies adopt a rudimentary approach by delineating vulnerability through 
the enumeration of population groups, such as the youth, elderly, visible minorities, and low-income individ-
uals, etc. While this method serves to illustrate vulnerability through exemplification, it falls short of offering a 
direct and explicit definition of the concept. Therefore, resulting lists exhibit a notable tendency for overlapping 
categories, rendering them inherently incomplete and offering merely a heuristic portrayal of the vulnerability 
construct. Furthermore, the observed tendency for these delineated groups to intersect, as highlighted by Shi 
and Stevens11, prompts considerations of cumulative vulnerability and the intricate dynamics of intersectionality.

What these vulnerable populations have in common is that they have greater needs than the rest of the popu-
lation for various resources, or at least potentially suffer more from a limited access to these resources16. In short, 
a relatively broad definition of the social vulnerability of populations could therefore be a fusion of social, cul-
tural, economic, political, and institutional processes. These intricate elements collectively shape socioeconomic 
differentials, influencing both the exposure to and the subsequent recovery from various hazards17.

Nowadays, there are many areas of public intervention that consider the dimension of vulnerable popula-
tions. In addition to health, these include transport, and more specifically, mobility18,19 and accessibility20,21. Add 
to this the issue of housing22, green spaces23, exposure to various nuisances24,25, or food deserts26.

The cross-disciplinary use of vulnerability and its application in diverse contexts underscores the necessity 
for a more nuanced and comprehensive approach to elucidate its multifaceted nature. It also highlights the rele-
vance of having tools to identify vulnerable populations and measure their geographical distribution. This need 
is crucial both for the academic discourse, notably to enrich the growing literature on environmental equity, and 
for the practical sphere to aid decision-making and policy implementation.

Measuring vulnerability. The considerable diversity and heterogeneity of the definitions of vulnerability 
within the scientific literature are mirrored by an equally diverse landscape in its definition and measurement 
methods within the realm of public policy. While not exhaustive, we endeavour to provide a succinct overview 
of population vulnerability indicators, drawing from both Canadian and international contexts, used both in 
the academic and practical spheres. In fact, there are several articles presenting indicators of socio-economic 
vulnerability, but their use in urban planning is rather limited. For a more in-depth review of the literature on this 
topic, we refer the reader to the recent review of Mah et al.27. The five indicators presented below are very similar 
to those examined in this literature review. They include the main identified domains (at risk populations, edu-
cation, micro-level socioeconomic status, older population, household composition, employment, housing, etc.).  
The authors also conclude that the indicators reviewed are very similar in terms of domains included and 
methodology.
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In Canada, Statistics Canada produced an indicator based on the 2016 census called the Canadian Index of 
Multiple Deprivation (CIMD)8,28, which combines four dimensions: residential instability, economic depend-
ence, situational vulnerability and ethnocultural composition (see Table 1). According to Statistics Canada, it is 
a geographic index of disadvantage and marginalization. Its purpose is to provide a quantitative measure of these 
phenomena for policy planning and evaluation, or resource allocation. Methodologically, the index is derived 
through the summation of scores, ranging from 1 to 5, corresponding to the four delineated dimensions, derived 
through a principal component analysis (PCA). It is an extension of the foundational groundwork laid by the 
2006 Canadian Marginalization Index.

Similarly, the National Institute of Public Health in Quebec publishes since the late 1990s a material and social 
deprivation index9. It comprises six indicators relating to health status, material deprivation and social network 
fragility (see Table 1). A PCA is used to reduce the original variables to two distinct dimensions (social and mate-
rial), which are individually evaluated based on a 1 to 5 scale (quintiles of the first two components of PCA). These 
two dimensions can then be analyzed individually or in combination to create categories of bivariate vulnerability.

In France, INSERM29,30 offers an index of social disadvantage based on a PCA on four socio-demographic var-
iables (namely, unemployment rate, proportion of blue-collar workers in labour force, proportion of adults with 
a high school diploma, median income of households). However, only the first factor from the PCA is retained.

In the United States, the Agency for Toxic Substances and Disease Registry employs the Social Vulnerability 
Index31. It combines 16 variables encompassing socio-economic and ethnic dimensions, household character-
istics, as well as housing and transportation. These variables are converted into percentiles before being added 
together to obtain a final vulnerability score. This index holds the same name as the indicator proposed by Cutter 
et al.32, which is based on 42 variables combined in 11 factors by a PCA. The latter has had a major impact in the 
scientific literature, but also in public policy in the United States17.

More recently, the City of Montreal33 has also published an equity index of living environments. This multi-
dimensional indicator is designed to guide public intervention in neighbourhoods where socio-environmental 
vulnerability is prevalent. It combines 23 variables, grouped into six dimensions: social vulnerability (4 variables), 
economic vulnerability (2), environment (5), accessibility to urban resources (6), accessibility to cultural, sports and 

Canadien Index of Multiple 
Defavorisation Index of material and 

social deprivation 
(Quebec)

French deprivation index Social Vulnerability 
Index (USA)

Equity Index of Living 
environments (Montreal)(Canada) (France)

age Proportion of 65 years or older Proportion of 65 years 
or older

proportion of 14 years or 
younger

Proportion of 17 years or 
younger

ethnocultural
background

Proportion of the population 
belonging to a visible minority

Proportion of the population 
belonging to a visible 
minority

Proportion of the population 
belonging to Indigenous 
people

Proportion of the 
population belonging to 
a visible minority

Proportion of the population 
belonging to Indigenous 
people

Proportion of immigrants Proportion of recent 
immigrants

Household composition Proportion of single-person 
households

Proportion of 15 year 
or older living alone

Single-parent
Proportion of single-person 
householdshousehold with

children under 18

Proportion of the adults being 
married or living in common 
law couples

Proportion of 15 year 
or older separated, 
divorced or widowed

Proportion of single 
parent households

Income and occupation Proportion of the active 
population

Proportion of 15 year 
or older employed

median income of 
households

Persons below Proportion of low income 
based on Market Basket 
Measure poverty thresholds150% poverty

Ratio between jobs and 
population

Median income for 15 
year or older

Proportion of labourer 
in the active population 
between 15 and 64 years

Civilian (age 16+)

unemployed

Proportion of the population 
receiving social assistance 
from the government

Proportion of unemployed 
people in active 
population between 15 
and 64 years

Housing cost burden

Education Proportion of 25 years or older 
without a high school diploma

Proportion of 15 years 
or older without a high 
school diploma

Proportion of the 15 years 
or older with a with a high 
school diploma

Proportion of adults 
without a high school 
diploma

Proportion of adults without 
diploma

Housing Proportion of homeowners multi-unit structures Core housing need

Proportion of the population 
which moved in the last 5 years mobiles homes

Proportion of dwellings 
needing major repairs

crowding (At household 
level

Table 1 . Main dimensions in five widely used social vulnerability indices.
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leisure resources (3), urban safety (3). The variables of each dimension are introduced into a PCA, in which only the 
first factor is retained. These synthetic variables were then converted into quintiles, and the final score for each sec-
tor of analysis is obtained by counting the number of dimensions for which this sector belongs to the last quintile.

These index construction approaches have several advantages like their ability to reflect the multidimen-
sional aspect of vulnerability and to measure it along a gradient. In fact, they assume that vulnerability is a latent 
variable and therefore not directly observable. It must therefore be reconstructed using proxies. On the other 
hand, these composite indicators have a number of important limitations1:

•	 The absence of an interpretable measurement scale: These scores do not allow for natural interpretation and 
cannot be compared through mathematical operators. Consequently, asserting that a statistical sector is «X 
times» more vulnerable than another according to these indicators lacks substantive significance.

•	 The challenge of temporal comparability: This emanates from the reliance on factor analysis and various 
stages of data standardization in deriving these scores. Whenever new data is considered, these steps affect 
the new indicator scale, making it difficult to directly compare with previous results.

•	 Addition and substitution effects: Since these scores aggregate various dimensions, they suggest that a high 
score in one dimension can offset a low score in another dimension. This unintended consequence is unde-
sirable as it may obscure disparities or deficiencies in specific dimensions, compromising the precision and 
comprehensiveness of the assessment.

•	 Arbitrary weighting: Given the aggregation of multiple variables in these scores, a weighting mechanism is 
imperative. The selection of such weights (or the absence of weights) may hinge on statistical, empirical, or 
simply guided by judgment, but remains debatable in all cases.

These limitations have a direct impact on the quality of composite vulnerability indicators as planning tools. 
While their primary strength lies in pinpointing vulnerable sectors within a specific area at a particular moment, 
their efficacy diminishes when employed to track temporal progress or establish project or policy targets. In 
other words, the multiple limitations of these indicators hinder their applications in real-world usages. We can, 
however, observe a form of consensus in the identification of potentially vulnerable populations for these indi-
cators. This is consistent with the “listing” strategy identified by Wrigley and Dawson4 and mentioned in the 
previous section. The Table 1 lists the most common population groups used to construct these indicators.

article contribution. Considering the limitations outlined in the previous sections, we propose a different 
approach to the spatial measurement of social vulnerability. Instead of the conventional practice of formulat-
ing vulnerability scores, we identify and quantify vulnerable populations. We therefore seek to determine for a 
geographical entity the number of people in a potential situation of socio-economic vulnerability, rather than 
calculating a socio-economic vulnerability score. This approach clearly tackles the limitations outlined above.

•	 Firstly, looking at the number or share of people facing a situation of socio-economic vulnerability is a clear 
way to understand and interpret the situation.

•	 Secondly, it is easy to compare these indicators over time to see how things are changing.
•	 Thirdly, they can be used to effectively measure the impact of projects or policies and set achievable goals for 

improvement.

In Canada, we can work with census microdata, which provides an exhaustive, fine-scaled data set. However, 
the access to the complete microdata is limited, due to privacy rules that protect the confidentiality and anonymity 
of people who respond to the census. Instead, Statistics Canada releases only a representative sample of this detailed 
data as open data. As an alternative, we suggest utilizing this open data to create a synthetic vulnerable population.

In the following sections, we elaborate on the approach employed to build a synthetic vulnerable popula-
tion for four major Canadian metropolitan areas, Montreal, Vancouver, Toronto and Calgary. We limited our 
analysis to four regions to facilitate the presentation of the results. The regions of Montreal, Vancouver, Toronto 
and Calgary were chosen because they are the four biggest Canadian metropolitan areas and because they face 
different realities in terms of demographics, immigration and socioeconomic vulnerability34,35.

This construction relies on the utilization of the Public Use Microdata File (PUMF), and the Census Profiles, 
which constitutes a conventional compilation of census data at the dissemination area level. We then evaluate the 
results obtained by performing an internal validation (adjustment quality of the synthetic population) and an external 
validation (in comparison with the existing vulnerability indices). Finally, we conclude by illustrating the advantages 
and limitations of using a vulnerable synthetic population in the formulation, evaluation and monitoring of public 
policies.

Methods
Data sources. We leverage two main data sources for the generation of a vulnerable synthetic population:

•	 First, we use census profile data from Statistics Canada36,37 at the Dissemination Area (DA) level. These geo-
graphic units, with a population ranging between 400 and 700, represent the finest granularity at which cen-
sus data are aggregated and disseminated (Census profiles).

•	 Second, the Public Use Microdata File38,39 (PUMF), which contains individual data for a sample representing 
2.7% of the Canadian population. The individuals are grouped by provinces and metropolitan areas.
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Data from the 2016 and 2021 censuses are used for both data sources to generate a DA level synthetic popu-
lations corresponding to these two respective years. As stated earlier and illustrated in Table 1, there is a relative 
consensus on the characteristics of socio-economically vulnerable populations. We have retained all the dimen-
sions present in Table 1 (age, ethnocultural background, household composition, income and occupation, edu-
cation) except housing. Indeed, this dimension stands out as a material measure, whereas the other dimensions 
are individual or household characteristics. However, it would be possible to extend the methodology by using, 
for example, the variable of “core housing need”. Table 2 describes these dimensions and the variable associations 
between census profile data and PUMF microdata variables.

It should be noted from the outset that the synthetic population we are seeking to produce does not need 
to be hierarchical. In other words, since we want to estimate the number of people per dissemination area in a 
potential situation of socio-economic vulnerability, we need to create data at the individual level without assign-
ing each individual to a household. This simplifies the process of creating the synthetic population, eliminating 
the need for employing the Hierarchical PUMF file.

Data cleaning and imputation. The data from the census profiles has been pre-processed, mainly in two 
ways. Firstly, we ensured that neither individual categories nor cumulative sums surpassed the total population 
count within each DA. It should be noted that specific variables within the census profiles are derived from esti-
mates based on the responses of 25% of participants who completed the comprehensive questionnaire. Also, the 
overall figures in the census data are randomly rounded to a multiple of 5. Therefore, there is a potential occur-
rence where the value of certain variables surpasses the estimated total population within a DA.

To mitigate this discrepancy for these variables, we converted the absolute number of individuals into percentages 
using their respective totals. Then, we recalculated the absolute number by applying these percentages to the total 
population figure for each DA. The resulting absolute numbers were then integerized to the nearest multiple of 5.

Secondly, we address the issue of completing missing data. Due to privacy concerns and the need for com-
prehensive data, certain values may be missing from the DAs. Instances where all variables were missing were 
removed from the dataset. For the remaining observations, we used an imputation method based on the 10 
nearest neighbours. More specifically, each variable was converted into a ratio by relating it to the total number 
of people in the DA, then they were centred and reduced. The total number of people per DA was also centred 
and reduced. Finally, for each observation with missing data, the 10 nearest neighbours were identified through 
Euclidean distance calculation based on the retained characteristics. The medians of their values were computed 

Dimension Census profile data transformation PUMF data transformation

Visible minority Total visible minority population in 
private household None VISMIN – Visible 

minority
Dichotomized: 0 if not in a 
visible minority, 1 otherwise

Indigenous people Total of North American 
Indigenous (Indigenous identity) None

ABOID - 
Indigenous: 
Indigenous identity

Dichotomized: 0 if not in a 
North American Indigenous, 
1 otherwise

low education level

No certificate, diploma or degree

sum of the two totals
HDGREE – 
Education: Highest 
certificate, diploma 
or degree

Dichotomized: 1 if No 
certificate, diploma or degree 
OR Secondary (high) school 
diploma or equivalency 
certificate, 0 otherwise

Secondary (high) school diploma 
or equivalency certificate, in private 
households for the population aged 
15 years and over

low income level

In low income based on the Low-
income cut-offs, after tax (LICO-
AT) for the population in private 
households to whom low-income 
concepts are applicable

None
LICO_AT – Income: 
Low-income status 
based on LICO-AT

Dichotomized: 1 if Member of 
a low income economic family 
or low income person aged 
15 years and over not in an 
economic family, 0 otherwise

People living alone Private households by household 
size - 100% data, 1 person None HHSIZE – 

Household size
Dichotomized: 1 if 1 person, 0 
otherwise

Single parent 
household (2016)*

Lone-parent census families in 
private households - 100% data

The number of children was approximated up to six 
children by adjusting a decreasing power function to each 
Dissemination area minimizing the total absolute difference. 
The estimated number of households with 3, 4, 5, or 6 children 
was then integerised to fit the known number of households 
with 3 or more children. The estimated number of children 
in lone-parent census families was then added to the known 
number of parents to obtain the number of persons in lone-
parent census families

HHTYPE – 
Household type

Dichotomized: 1 if One-
census-family household 
with or without additional 
persons: Lone parent family, 0 
otherwise

1 child, 2 children, 3 or more 
children

Single parent 
household (2021)*

Parents in one-parent families & 
Children In a one-parent family sum of the two totals

Unemployed adults Population aged 15 years and over, 
Unemployed None LFACT – Labour: 

Labour force status
Dichotomized: 1 if 
unemployed, 0 otherwise or 
not applicable

recent immigrants
Immigrant status and period of 
immigration for the population in 
private households, 2011 to 2016

None
YRIMM – 
Immigration: Year of 
immigration

Dichotomized: 1 if within 
2011 and 2016, 0 otherwise

age
Age groups 0 to 14 years, 15 to 
19 years, 20 to 24 years, 65 years 
and over

None AGEGRP – Age Dichotomized in 4 groups 
accordingly

Table 2. Variables used in the generation of the synthetic potentially vulnerable population.
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and used as imputed values. These imputed values were then reverted into absolute ratios and numbers by apply-
ing the inverse transformation functions. Overall, this process impacted a very limited number of observations: 
149 in Toronto (1.9%), 49 in Montréal (0.7%), 34 in Calgary (1.9%) and 49 in Vancouver (1.4%).

Generating a synthetic population. A synthetic population can be defined as a database representing 
agents for whom all the characteristics under study are known. They are constructed from other sources of aggre-
gated or incomplete data and aim to reproduce a real population.

Three main families of methods are used to generate a synthetic population5,40: 1. Synthetic reconstruction, 
2. Combinatorial Optimization and 3. Statistical Learning.

In our case, we have access to a representative subset of individuals through the PUMF data, coupled with 
aggregate totals derived from census profiles. Notably, our synthetic population does not need to be hierarchical. 
We therefore opted for a hybrid approach combining Combinatorial Optimization and Synthetic reconstruction, 
as recommended by Yaméogo et al.40, and taking advantage of the benefits of both methods41. More precisely, the 
proposed methodology comprises two main steps:

 1. Sampling by DA seeking to reproduce as closely as possible the margins of the census profile.
 2. Weighting of individuals by DA to reduce any discrepancies with the targets.

The proposed methodology is summarized in Fig. 1 and elaborated below.
Combinatorial optimization methods include various optimization algorithms such as simulated anneal-

ing, hill climbing, genetic algorithms and greedy heuristics. Genetic algorithms have so far been little used for 
this type of exercise, despite their ability to find very efficient solutions to problems with many dimensions and 
to avoid getting stuck in local minima5. This is probably due to the need for the analyst to choose a large num-
ber of parameters for this type of model, such as the fitting function, the agent selection function, the genetic 
mixing function, the number of iterations, the number of agents and the learning speed. We decided to opt for 
this method after obtaining less satisfactory results with the simulated annealing and hill climbing algorithms.

A genetic algorithm is a heuristic optimization function directly inspired by the biological model of evolu-
tion42,43. It is made up of five central components:

•	 The initialization step
It is the starting state of the algorithm where all the parameters are selected randomly or accordingly to 
specified priors.

Fig. 1 Process of synthetic population generation.
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•	 Fitness function
It is responsible for evaluating the performance of the solutions obtained. It assigns a measure of how well 
each solution addresses the optimization goal. Solutions with higher fitness values are favoured in subse-
quent stages.

•	 Selection
It is responsible for selecting a subset of solutions for each generation. Solutions are chosen based on their 
fitness, with higher fitness solutions being more likely to be selected, mimicking the natural selection 
process.

•	 Crossover
Also known as recombination, this stage involves the exchange of genetic information between pairs of 
selected solutions emulating the genetic crossover mechanism.

•	 Mutation
It introduces random changes to the genetic information of some individuals in the population, simulating 
genetic mutations to inject diversity. It introduces new values for the parameters at each generation and 
prevents the algorithm from converging prematurely to suboptimal solutions.

These components collectively form an iterative process, wherein the population undergoes cycles of evalua-
tion, selection, crossover, and mutation. The initial population of solutions has randomly drawn parameters, so 
their adjustment is weak. At each iteration, the selection function chooses a set of solutions with the highest fitness 
scores. The parameters of these solutions are then crossed to generate a new generation of solutions, based on the 
best previous solutions. At each generation, the mutation function adds new values for the parameters, drawn at 
random, to explore the space of solutions in greater depth. After a certain number of iterations, or if the algorithm 
reaches a convergence criterion, the best solutions from the last generation are retained as potential solutions.

Below, we describe the key components of the genetic algorithm we have implemented to perform DA-level 
sampling from PUMF data.

Initialization. We initiate the process by generating 500 solutions. Each solution consists of a sample of the 
PUMF data, achieved with random draws. In this context, each sampled individual is a gene within its respective 
solution. It is important to highlight that if a particular category’s margin value is zero, individuals in the PUMF 
data falling into this category are removed from the microdata. For example, if in a specific DA, no low-income 
individuals are present, all individuals in the microdata belonging to this group are removed systematically prior 
to the sampling.

Fitness function. We use two fitness functions to evaluate the performance of our synthetic population. The first 
function is the Total Absolute Error (TAE), calculated by summing the absolute deviations of each population 
category count (see Table 2) in the local synthetic population from the expected margins for the DA. This aggre-
gated error is then rounded up to a threshold corresponding to 1% of the population of each DA. For example, 
if a DA has a total population of 500 people, then the TAE for this DA is rounded to the nearest multiple of 5. 
In this way, solutions with a difference in TAE less than this threshold are considered equivalent. To distinguish 
between these equivalent solutions and to prioritize those that yield more balanced outcomes for each variable, 
a second fitness function, the square root of the weighted mean of the relative squared deviations (RWMSER), 
comes into play.

In essence, the TAE offers a measure of overall accuracy, capturing the sum of absolute errors across var-
iables, while the RWMSER steps in to refine the assessment, providing a nuanced evaluation that prioritizes 
balanced performance across variables when distinguishing between comparable solutions. This dual-fitness 
approach enhances the algorithm’s ability to select and refine solutions, contributing to the robustness of our 
synthetic population generation process.
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Where:

•	 i is a specific population DA
•	 j is a specific category
•	 Oi is a vector with the counts for each category in the obtained sample for DA i
•	 Mi is a vector with the real counts for each category (margins) for DA i
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Selection. Our selection function orders the solutions for each generation according to the rounded TAE and 
the RWMSER, then retains the first quarter of the best solutions.

Crossover and mutation. Following the selection process, we calculate the overall score for each solution. 
This score is derived by taking the reciprocal of the solution’s rank, as determined in the selection phase, 
and subsequently dividing it by the maximum among the reciprocals of the ranks. The resulting values, 
denoted by w, are then assigned to the respective sampled individuals. The individuals present in the differ-
ent solutions are then grouped together in a single set denoted by E. To augment this set, E is completed by 
a random selection of individuals from the PUMF data (mutations), representing 35% of the total number 
of individuals present in E. These individuals added to the data are assigned a value of w equal to the mean 
of w in E. Finally, E is used to generate a new generation of 500 solutions by randomly drawing individuals 
from E, with a sampling probability proportional to w. This approach also known as gene pool recombina-
tion allows for the evolution of the population of solutions as a whole rather than its individual members44.

Convergence criterion. To limit the number of iterations, we have determined a convergence criterion. This 
involved assessing, over the preceding five iterations, whether both the TAE and the RWMSER failed to exhibit 
improvement beyond their respective tolerance thresholds. Specifically, the tolerance thresholds were set at 1% 
of the DA population for the TAE and 0.001 for the RWMSER. Additionally, the maximum allowable number 
of iterations was limited to 1000.

Calibrating the obtained synthetic population. One of the most common methods for adjusting a 
sample to align with the known characteristics and margins of a population is the Iterative Proportional Fitting 
Procedure45. This method is often used in multi-agent modelling exercises, during which the weights are con-
verted to integers, and individuals are duplicated according to these integer values to construct a synthetic 
population. The classic IPFP method has been the subject of several proposed enhancements. In particular, 
modifications have been suggested to incorporate a hierarchical element into its fitting process. The iterative 
proportional updating method46, and the hierarchical iterative proportional fitting47 are examples of such adap-
tations. Additionally, a family of approaches known as Generalized Raking48, offers an alternative perspective. It 
formulates the problem of assigning weights as a constrained optimization exercise, penalizing deviations from 
a weight of 1. Consequently, solutions obtained avoid a recurring problem with classical IPFP, which may assign 
disproportionately large weights to specific observations.

In our context, we opted for the Generalized Raking method since our synthetic population does not need 
to be hierarchical. In addition, this procedure is applied after the preselection of observations conducted by our 
genetic algorithm. It is therefore essential to penalize weights that are far from 1, given that the pre-selected 
individuals closely align with the target margins for each DA.

Calgary

2016

TAE/N MRE RWMSRE

2021

TAE/N MRE RWMSRETAE TAE

1% 11 0.016 0.018 0.015 10 0.018 0.015 0.015

25% 23 0.039 0.033 0.031 22 0.038 0.032 0.030

50% 29 0.047 0.042 0.038 28 0.046 0.040 0.037

75% 36 0.058 0.053 0.047 37 0.057 0.050 0.045

99% 95 0.086 0.099 0.081 87 0.083 0.089 0.074

Montreal TAE TAE/N MRE RWMSRE TAE TAE/N MRE RWMSRE

1% 11 0.019 0.017 0.017 10 0.019 0.016 0.017

25% 21 0.038 0.031 0.031 20 0.036 0.031 0.030

50% 26 0.046 0.040 0.037 26 0.044 0.038 0.036

75% 32 0.055 0.051 0.045 31 0.052 0.049 0.043

99% 62 0.078 0.097 0.076 64 0.075 0.100 0.071

Toronto TAE TAE/N MRE RWMSRE TAE TAE/N MRE RWMSRE

1% 11 0.018 0.015 0.013 10 0.017 0.014 0.013

25% 22 0.038 0.031 0.028 21 0.038 0.029 0.027

50% 27 0.046 0.041 0.036 27 0.045 0.038 0.035

75% 36 0.055 0.052 0.044 36 0.054 0.049 0.043

99% 105 0.097 0.103 0.076 114 0.091 0.098 0.071

Vancouver TAE TAE/N MRE RWMSRE TAE TAE/N MRE RWMSRE

1% 13 0.021 0.017 0.015 12 0.021 0.016 0.015

25% 24 0.041 0.032 0.029 24 0.039 0.031 0.028

50% 29 0.048 0.041 0.036 29 0.046 0.039 0.034

75% 36 0.057 0.052 0.044 37 0.053 0.048 0.042

99% 80 0.090 0.088 0.072 82 0.087 0.085 0.068

Table 3. Adjustment of the synthetic populations before weighting.
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In this study, the reweighting process is initiated for each DA, employing initial weight limits of 0.5 and 
2. If convergence is not achieved for a specific DA, the procedure is repeated using weight limits of 0.2 and 5. 
It should be noted that the weights obtained are retained even if the algorithm fails to converge. The 10 best 
samples selected by the genetic algorithm are reweighted and the weighted sample with the best RWMSER is 
selected as the final solution.

Data records
The potentially vulnerable synthetic population generated for Montreal, Calgary, Vancouver and Toronto CMAs 
is available on Zenodo10. The data is published with the code required to reproduce the results.

The data is provided at the individual level (one line per individual) as parquet files (binary data readable with 
several softwares like R49) to reduce the size of repository. At the DA level, the data is provided as a gpkg file and 
can be open with any GIS software. The data is available for 2016 and 2021.

The file pop_vuln_AD.gpkg contains the estimates of the number of potentially vulnerable people at the DA 
level. It contains 8 layers: Calgary_2016, Montreal_2016, Toronto_2016, Vancouver_2016 and the same four lay-
ers of 2021. They contain a set of geographic identifier columns (PRIDU, DRIDU, SDRIDU, ADIDU, …) that 
can be used to join this dataset with other StatCan data. The columns vuln1, vuln2, vuln3, vuln4, and vuln5 are 
the estimated number of potentially vulnerable people. Similarly, the columns vuln1_prt to vuln5_prt are the 
estimated proportions of potentially vulnerable people. The numbers in the columns’ names refer to the five defi-
nitions tested in the next section to determine whether a person should be considered as potentially vulnerable. 
We recommend using the definition 5 if the user does not want to use their own definition.

The individual data are stored in .parquet files like synth_pop_weighted_2016_Calgary. The name and the 
year are always specified in the same way. The columns available are:

•	 ADIDU, the geographical identifier linking each individual to its DA
•	 w, the weight given to the individual for calibration;
•	 age014, age15_24, age25_64, age65p, a set of binary variables indicating the age group of the individual;
•	 minoritevis, a binary variable indicating if the individual is a member of a visible minority;aboriginal, a binary 

variable indicating if the individual declared itself as ‘First Nations people, Métis or Inuit’;
•	 immig_recent, a binary variable indicating if the individual has immigrated in Canada during the last five years;
•	 loweduc, a binary variable indicating if the individual has a level of education equivalent or below secondary;
•	 unemployed, a binary variable indicating if the individual is unemployed;
•	 lone_parent, a binary variable indicating if the individual is a member of a household with only one parent;

Calgary

2016

TAE/N MRE RWMSRE

2021

TAE/N MRE RWMSRETAE TAE

95% 0 0.000 0.000 0.000 0 0.000 0.000 0.000

99% 0 0.000 0.000 0.000 0 0.000 0.000 0.000

99.90% 5 0.021 0.023 0.020 2 0.005 0.002 0.002

Montreal TAE TAE/N MRE RWMSRE TAE TAE/N MRE RWMSRE

95% 0 0.000 0.000 0.000 0 0.000 0.000 0.000

99% 0 0.000 0.000 0.000 0 0.000 0.000 0.000

99.90% 0 0.000 0.000 0.000 0 0.000 0.000 0.000

Toronto TAE TAE/N MRE RWMSRE TAE TAE/N MRE RWMSRE

95% 0 0.000 0.000 0.000 0 0.000 0.000 0.000

99% 0 0.000 0.000 0.000 0 0.000 0.000 0.000

99.90% 11 0.011 0.004 0.005 8 0.011 0.003 0.005

Vancouver TAE TAE/N MRE RWMSRE TAE TAE/N MRE RWMSRE

95% 0 0.000 0.000 0.000 0 0.000 0.000 0.000

99% 0 0.000 0.000 0.000 0 0.000 0.000 0.000

99.90% 6 0.011 0.014 0.015 6 0.012 0.003 0.005

Table 4. Adjustment of the synthetic populations after weighting.

Calgary Montreal Toronto Vancouver

2016 2021 2016 2021 2016 2021 2016 2021

Definition 1 69.8% 73.7% 66.9% 68.6% 79.6% 82.3% 79.9% 82.3%

Definition 2 33.0% 34.3% 33.8% 33.9% 43.6% 44.9% 43.7% 44.3%

Definition 3 10.5% 11.1% 13.2% 11.9% 17.2% 16.6% 17.0% 15.8%

Definition 4 33.9% 34.9% 34.7% 34.4% 44.3% 45.3% 44.7% 44.7%

Definition 5 14.3% 13.5% 17.5% 14.5% 21.5% 18.9% 22.4% 18.8%

Table 5. Proportion of potentially vulnerable population for each proposed definition.
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•	 lone_people, a binary variable indicating if the individual is a member of a household with only one person;
•	 low_income, a binary variable indicating if the individual is a member of a household with a low income, 

based on the measure LICO After Tax;

technical Validation
The second objective of the article is to validate the proposed methodology by ensuring the quality of the syn-
thetic population obtained (internal validation) and the association between the estimated proportion of poten-
tially vulnerable people and two well-known indicators: the Canadien Index of Multiple Defavorisation and the 
Index of material and social deprivation (external validation). Note that we used the existing ICDM and IMSD 
indicators to validate the construction of our measure because they have been widely used indicators in Canada 

% of the population 
potentially 
vulnerable (2016)

Canadian Index of Multiple Deprivation 2016

Economic dependency Residential instability Situational vulnerability Ethnocultural composition Global score

Calgary

definiton 1 0.131 0.413 0.46 0.757 0.733

definiton 2 0.126 0.483 0.563 0.76 0.813

definiton 3 0.148 0.495 0.583 0.709 0.814

definiton 4 0.125 0.495 0.565 0.753 0.82

definiton 5 0.102 0.586 0.576 0.658 0.83

Montreal

definiton 1 0.453 0.662 0.546 0.685 0.842

definiton 2 0.445 0.731 0.596 0.722 0.864

definiton 3 0.387 0.741 0.585 0.724 0.806

definiton 4 0.435 0.75 0.6 0.716 0.871

definiton 5 0.314 0.83 0.59 0.674 0.815

Toronto

definiton 1 0.276 0.276 0.443 0.813 0.631

definiton 2 0.368 0.419 0.573 0.796 0.762

definiton 3 0.362 0.507 0.621 0.725 0.772

definiton 4 0.367 0.436 0.576 0.79 0.771

definiton 5 0.322 0.601 0.61 0.688 0.794

Vancouver

definiton 1 0.297 0.232 0.428 0.796 0.71

definiton 2 0.365 0.317 0.491 0.781 0.77

definiton 3 0.377 0.374 0.484 0.744 0.767

definiton 4 0.365 0.331 0.49 0.776 0.775

definiton 5 0.322 0.481 0.44 0.696 0.758

Canadian Index of Multiple Deprivation 2021

% of the population 
potentially 
vulnerable (2021)

Economic dependency Residential instability Situational vulnerability Ethnocultural composition Global score

Calgary

definiton 1 0.404 0.779 0.199 0.560 0.762

definiton 2 0.495 0.754 0.205 0.660 0.844

definiton 3 0.500 0.696 0.212 0.677 0.830

definiton 4 0.498 0.749 0.206 0.657 0.844

definiton 5 0.557 0.659 0.192 0.661 0.832

Montreal

definiton 1 0.604 0.741 0.411 0.522 0.831

definiton 2 0.674 0.739 0.437 0.575 0.857

definiton 3 0.681 0.718 0.385 0.567 0.799

definiton 4 0.685 0.737 0.431 0.571 0.859

definiton 5 0.759 0.688 0.316 0.537 0.795

Toronto

definiton 1 0.231 0.846 0.281 0.503 0.640

definiton 2 0.382 0.826 0.382 0.611 0.772

definiton 3 0.456 0.750 0.404 0.633 0.778

definiton 4 0.388 0.824 0.383 0.609 0.775

definiton 5 0.502 0.733 0.386 0.604 0.782

Vancouver

definiton 1 0.169 0.830 0.336 0.372 0.678

definiton 2 0.254 0.808 0.403 0.447 0.758

definiton 3 0.309 0.742 0.423 0.431 0.756

definiton 4 0.260 0.806 0.403 0.441 0.759

definiton 5 0.361 0.723 0.391 0.366 0.740

Table 6. Correlation at the DA level between each definition and the CIMD.
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since their creation. Despite their limitations documented earlier, they are solid indicators of socio-economic 
vulnerability.

Table 3 shows the different percentiles of our goodness-of-fit indicators at DA level for the synthetic popu-
lation obtained before weighting. We also report the scaled TAE (the error divided by the population in a DA: 
TAE/N) and the Mean Relative Error (the mean of the relative errors: MRE). The MRE consists of the mean 
absolute error of each category divided by the total size of the category.

We can see that for each region, the genetic algorithm selects samples that reconstruct efficiently the tar-
geted margins. For 99% of the DAs, the scaled TAE represents less than 9.7% of their total population and the 
RWMSRE is less than 0.1. The genetic algorithm reached the convergence criterion for all the DAs (median of 
the number of iterations = 60; 95th percentile = 110). Our observations indicate that, on average, an increase 
in the population size of a DA of 1000 people requires 17 additional iterations to reach convergence, although 
this relationship is not strictly linear. The Pearson correlation coefficient between the DA population and the 
number of iterations required to reach convergence is 0.54 (p < 0.001). The average computation time for a 
600-person DA was 9 seconds and increased by 20 seconds for each 1000 inhabitants (using a 2.44 GHz proces-
sor). The calculation speed can be an issue in genetic algorithms, but the proposed algorithm produces results 
in a time-efficient manner and is easy to parallelize, enhancing computational speed and resource utilization.

As indicated in Table 4, when the weighting is applied, a notable reduction in errors within the samples gen-
erated by the genetic algorithm is observed. Remarkably, for 99.9% of the DAs, the scaled TAE values are less 
than 2% of their total population. The fit is very satisfactory and indicates that the proposed method can accu-
rately reconstruct the target margins at DA level. The distributions of weights obtained are almost identical for 
all metropolitan areas in 2016 and 2021, with the 1st percentile of all weights being 0.79 and the 99th percentile 
being 1.20. These low weights underline the quality of the sample produced by the genetic algorithm and the 
marginal adjustment role of the weighting.

The spatial autocorrelation of the errors, measured with Moran’s I statistic with a Queen contiguity matrix, 
is less than 0.01 for all four regions for the scaled TAE, MRE and RWMSRE, indicating that the errors are 
randomly distributed in space in both 2016 and 2021. The TAE was not tested considering that it is a counting 
variable.

Using the synthetic populations obtained, we calculated the total number of people in a potential situation of 
vulnerability for each DA. We tested five definitions:

 1) Individuals falling into at least one of the specified categories, encompassing those aged 65 and above, 
low-income households, single-person households, single-parent households, unemployed adults, recent 
immigrants, visible minorities, aboriginal, low level of education.

% of the population potentially vulnerable

INSPQ index of social and material deprivation

grouping 1 R2 grouping 2 R2

Calgary 2016

Definition 1 0.350 0.359

Definition 2 0.407 0.487

Definition 3 0.417 0.533

Definition 4 0.409 0.496

Definition 5 0.415 0.557

Montreal 2016

Definition 1 0.440 0.516

Definition 2 0.505 0.616

Definition 3 0.510 0.626

Definition 4 0.510 0.623

Definition 5 0.524 0.634

Toronto 2016

Definition 1 0.412 0.299

Definition 2 0.438 0.449

Definition 3 0.420 0.508

Definition 4 0.436 0.458

Definition 5 0.405 0.526

Vancouver 2016

Definition 1 0.389 0.307

Definition 2 0.417 0.394

Definition 3 0.408 0.420

Definition 4 0.412 0.396

Definition 5 0.365 0.413

Montreal 2021

Definition 1 0.301 0.368

Definition 2 0.332 0.433

Definition 3 0.298 0.415

Definition 4 0.331 0.433

Definition 5 0.289 0.407

Table 7. R2 between the five definitions and the IMSD.
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 2) Individuals falling into at least two of the aforementioned categories.
 3) Individuals falling into at least three of the aforementioned categories.
 4) Individuals living in a low-income household or in at least two of the aforementioned categories.
 5) Individuals falling into a low-income household or into at least three of the aforementioned categories.

The first definition appears to reflect an overly broad scope of socio-economic vulnerability. Indeed, it is 
quite possible to belong to one of these groups without being in a situation of potential vulnerability. Rather, 
socio-economic vulnerability arises from the nuanced interplay of various factors, a concept encapsulated by 
the notion of intersectionality. The second and third definitions acknowledge this complexity by stipulating the 
necessity of possessing two or three distinct characteristics. The last two definitions assign a higher importance 
to the low-income parameter acknowledging that belonging to a low-income household is sufficient to place its 
members in a situation of vulnerability.

Table 5 shows the percentages of the total population considered as potentially vulnerable, according to these 
five definitions, for the four metropolitan areas in 2016 and 2021.

Definitions 1, 2 and 4 lead to a potentially vulnerable population that may encompass an excessively large 
proportion of individuals. To determine the best fitting definition, we calculated the Pearson correlation coeffi-
cient between these percentages and results obtained by the 2016 and 2021 CIMD (Canadian Index of Multiple 
Deprivation) indicator (see Table 6). This indicator is built from four distinct dimensions that can be aggregated 
into a global indicator by calculating the average of the quantiles of the 4 sub-dimensions.

With the exception of the first definition, the correlation values with the overall indicator are very strong 
(between 0.76 and 0.87). This underlines that the proposed method measures a concept equivalent to that of the 
CIMD and is valid for both censuses. The strongest correlation values are obtained for Montreal and Calgary, 
and are slightly weaker in Toronto and Vancouver. This result could be explained by their very different ethn-
ocultural compositions or by the contribution of other variables to the socio-economic vulnerability. It high-
lights the need to adapt the definition of vulnerable population by metropolitan area. Also, the correlations vary 
greatly among the sub dimensions of the CIMD. In 2016, ethnocultural composition has the highest correlation 
with our measure. In 2021, we observe a significant increase in the correlations with economic dependency 
and residential instability, while the correlation with ethnocultural composition decreases. Situational vulner-
ability tends to be the dimension with the lowest correlation with our measure of the potentially vulnerable 
population. This result highlights the complementary role of our measure as a quantitative tool for assessing 
the number of potentially vulnerable people. Existing indicators provide more detail on the sub-components of 
socio-economic vulnerability.

We then compared the percentages of the vulnerable population obtained by DA with the Institut National 
de Santé Publique du Québec’s (INSPQ) Index of Material and Social Deprivation (IMSD), published in 2016. 
This indicator comprises two dimensions, each categorized into five quintiles. These two dimensions are com-
bined to produce a classification of DAs. Two different groupings of five classes are proposed by the INSPQ. The 
first distinguishes DAs with high social and material deprivation, DAs with high social or material deprivation, 
privileged DAs and DAs in between. The second can be understood as a gradient going from the very privileged 
DAs to the DAs summing both material and social deprivation.

Table 7 shows the R-squared obtained by crossing our percentage of vulnerable populations and the cat-
egories of the two groupings. For each metropolitan area, a Wilcoxon test established that the means of the 
percentages of vulnerable populations were different between the groupings of the INSPQ at the 0.01 threshold. 
Moreover, the DAs in the most disadvantaged categories were well associated with the highest rates of vulnerable 
populations, indicating a great correlation between the two methods to measure social vulnerability.

It is worth noting that definitions 5 and 3 systematically have higher R-squared values. Similarly, the R-squared 
values are always higher when we compare the percentage of potentially vulnerable populations with the second 
grouping. This can probably be explained by the fact that the second grouping is of a more quantitative nature than 
the first grouping and is therefore closer to our own assessment of the concentration of vulnerable populations. 
For information purposes, we were also able to calculate the R-squared for the Montreal CMA in 2021 because the 
IMSD data is already available for Quebec. However, the indicator was not standardized for the same geographical 
scale in 2016 (Canadian regions) and in 2021 (health and social regions), which limits the direct comparison. 
Excluding 2021, the R-squared obtained for the definition 5 and grouping 2 range from 0.63 in Montreal to 0.41 
in Vancouver. These values can be considered as a strong indicator of association between our measure of poten-
tially vulnerable populations and the categories of the IMSD indicator. Indeed, it is not straightforward to propose 
a correlation measure between a qualitative variable and a percentage variable. The R-squared is used here as a 
crude measure of association, since the categories of the IMSD do not have a direct directionality like the CIMD.

Once again, the measured association is weaker for Toronto and Vancouver, confirming the conclusions 
drawn from the results in Table 6 and the need to adapt the definition of vulnerability locally.

Results imply that the final definition of the population in a potential situation of vulnerability can benefit 
from a local adjustment. Depending on the specific subject and objectives of the study, some definitions may 
prove more adequate than others.

In this study, the fifth definition offers very satisfactory results when compared with both the CIMD and the 
IMSD, suggesting potential as a reference point. Figure 2 shows the percentages of the population in a situation 
of potential vulnerability obtained in 2016 and 2021 for the four regions according to definition five.

We also tested the difference in the composition of populations identified as potentially vulnerable between 
the PUMF data and the weighted synthetic populations. This was carried out by comparing two beta generalized 
linear models. We first modelled the share of each possible profile of potentially vulnerable population as a func-
tion of the different binary vulnerability variables. The second model incorporated an interaction term between 
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each binary variable and a separate binary variable distinguishing between PUMF data and data from synthetic 
populations. The two models were then compared using a likelihood ratio test. The null hypothesis, implying no 
disparity in the proportion of potentially vulnerable population profiles, was retained if the difference between 
the models was not statistically significant at the 0.01 threshold. In other terms, the distinction of coefficients 
between PUMF and synthetic data did not improve the model in any way. Table 8 shows the p-values for these 
various tests. All the tests are non-significant, even when the p-values are not adjusted for multiple testing and 
thus higher than what they should be. In other words, the composition of the synthetic populations does not 
differ significantly from the composition of the original PUMF data.

Fig. 2 Maps of potentially vulnerable population.
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Finally, we look at the composition of the population determined as potentially vulnerable according to the 
criteria outlined in definition 5. For brevity, we present only the results for 2021.

In 2021, in Calgary (Fig. 3), the most common profile group in our potentially vulnerable population 
includes people who are 65 or older, have a lower level of education and belong to a visible minority. This group 
accounts for 10% of the potentially vulnerable population. The top five group, covering 37% of the potentially 
vulnerable population, all share the characteristics of lower education levels and mostly belong to visible minor-
ities. Interestingly, it’s only in the sixth group that the variable of low income becomes noticeable.

In the Montreal context in 2021 (Fig. 4), the demographic group most prominently featured within the 
potentially vulnerable population comprises individuals aged 65 and above, residing in solitary conditions, and 
possessing a limited educational background. This specific demographic segment constitutes 14% of the overall 
potentially vulnerable population. Notably, the top five demographic groups collectively contribute to 37% of 
the entire vulnerable population. Furthermore, these groups exhibit a greater degree of heterogeneity (i.e. a more 
diverse set of characteristics) compared to their counterparts in the city of Calgary.

In the demographic context of Toronto in 2021 (Fig. 5), similar to the situation observed in Calgary, the 
predominant groups within the potentially vulnerable population are found to be associated with specific demo-
graphic characteristics. Notably, individuals characterized by a low level of education, those identifying as a 
visible minority, and those aged over 65 or belonging to a single-parent household constitute the most predom-
inant groups of the potentially vulnerable population. Specifically, these two groups contribute 14% and 11%, 
respectively, to the overall potentially vulnerable population. Among the identified variables, the attributes of 
being visible minorities and possessing a low level of education are the most influential. They play a pivotal role 

p-value 2016 p-value 2021

Calgary 0.687 0.997

Montreal 0.791 0.955

Toronto 0.809 0.999

Vancouver 0.947 0.999

Table 8. P-values of likelihood ratio tests comparing the composition of the original and synthetic population.

Fig. 3 Composition of Calgary’s potentially vulnerable population.
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in defining four out of the five initial groups, which, in turn, collectively represent a substantial 43% of the entire 
potentially vulnerable population.

In Vancouver, in 2021 (Fig. 6), the first 2 groups are identical to those found in Calgary and Toronto, consti-
tuting 17% and 8% of the total vulnerable population, respectively. It is interesting to note a certain similarity 
in the composition of the potentially vulnerable populations for these four metropolitan areas. The defining 
characteristics of the primary groups predominantly revolve around variables such as visible minority status, 
lower educational attainment, and seniors. It should be noted that the weak presence of groups representing 
indigenous populations in the graphs may be attributed to their minimal representation within the overall vul-
nerable population. This absence is due solely to the method of representation (upset plot) in this section. A 
study focusing on this specific group of people could extract the relevant part of the data and map their presence 
and analyze their characteristics. However, we would not advocate analyzing a tiny subset of data because the 
uncertainty is higher when considering very specific and rare profiles.

For every Metropolitan Area, the two characteristics that are the most present within the vulnerable popu-
lations are the low level of education and the belonging to a visible minority (as shown by the left histograms). 
They are then followed by the low income and age (65 years or older). Montreal is slightly different than the 
other Metropolitan Areas, indeed the gap between the two main groups and the following is much lower for 
Montreal. This indicates a more diverse vulnerable population in the Montreal Metropolitan Area. The analysis 
of these charts suggests that the proposed method in this article could be extended by creating groups of similar 
profiles within the potentially vulnerable people. Such segmentation could help to identify different dimensions 
of socio-economic vulnerability and reveal their geography.

Usage Notes
The synthetic population methodology introduced in this article primarily aims to estimate the total count of 
potentially vulnerable individuals per DA. These estimates are provided at the individual level, offering users the 
flexibility to adjust the definition of vulnerability based on specific requirements. It is important to note that the 
absence of a hierarchical household structure in the data may constrain their applicability in certain contexts, 
such as multi-agent models or multi-level statistical analyses. Nevertheless, the individual-level data hold signif-
icant value for examining the demographic composition of the potentially vulnerable population and may also 
facilitate longitudinal analyses.

Fig. 4 Composition of Montreal’s potentially vulnerable population.
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In this study, we showcased findings for four Canadian metropolitan areas. Our internal and external validation 
analysis demonstrated the high quality of the synthetic population adjustment and the strong association of the 
estimated proportions of potentially vulnerable people and well-known indicators of socio-economic vulnerability.

With the open access code and freely accessible data provided with this publication, there is the opportunity 
to broaden the application of our methodology to encompass all DAs across Canada. However, if the method 
is applied in DAs outside a Census metropolitan area or a Census agglomeration covered by the PUMF data, 
then the results might be less accurate. In such cases, it will be necessary to use individuals located at the provin-
cial level. Although encouraging, the results suggest that the proposed methodology should be adapted locally 
(weaker correlations were observed for Vancouver). However, the proposed methodology is flexible enough to 
allow adjustment of the variables used to define the potentially vulnerable population. The proposed definition 
can also be used as a benchmark for studies analyzing multiple cities.

The choice of a genetic algorithm in our method implies that the obtained results are stochastic. In this study, we 
present a single version of the produced synthetic population, although we ran the analysis several times with different 
random starts and obtained similar results. Nonetheless, the supplementary material (the supporting code and data) 
enables users to generate multiple iterations of the presented results, facilitating sensitivity and uncertainty analyses.

This measure should not be seen as a replacement for indicators such as CIMD or IMSD, which offer an 
understanding of vulnerability from a multivariate perspective. Rather, we propose it as a complementary quan-
titative indicator. The inclusion of an indicator that quantifies the number of potentially vulnerable individuals 
within a DA holds significant utility for land-use planning and assessing the impact of public policies.

Our proposal departs from conventional methods that rely on composite indices. It offers a new perspective on 
how to construct meaningful measures of socio-economic vulnerability that focus on the people’s intersectional 
situations. We have outlined its advantages several times, but in this article, we have only scratched the surface 
of its possibilities. By intersecting this measure with other variables measuring urban amenities or nuisances, it 
is possible to easily quantify a potential situation of inequity. For instance, one could compare the proportion of 
individuals exposed to air pollution levels exceeding recommended thresholds with the proportion of vulnera-
ble populations facing the same exposure. Similarly, the average exposure levels in DAs, weighted by both total 
population and vulnerable population, could be calculated. The ratio between these two values could serve as 
an indicator of equity in exposure. Also, one could use segmentation techniques to identify the main profiles of 
vulnerable people and analyze their geographic distribution. In terms of urban planning, public transit agencies 
could use such data to establish planning targets like reducing the proportion of the vulnerable population with 

Fig. 5 Composition of Toronto’s potentially vulnerable population.

https://doi.org/10.1038/s41597-024-03771-6


17Scientific Data |          (2024) 11:954  | https://doi.org/10.1038/s41597-024-03771-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

low levels of accessibility to public transit. Such analyses could be readily conducted using any variables measuring 
urban nuisances or resources. Similarly, the impact of a public policy or urban project could be directly expressed 
in terms of total population and vulnerable population affected. Thus, the proposed indicator holds significant 
potential and serves as a robust foundation for conducting equity analyses, assessments, and policy evaluations.

Code availability
The R scripts (4.2.1) developed for this project are freely available in the same repository on Zenodo10, 
accompanied by the generated synthetic data. A comprehensive list of the required packages is provided in the 
requirement.txt file, all of which can be downloaded directly from CRAN, the main package depository for R.
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