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Abstract

Interest in understanding the organization of the brain has led to the application of graph theory 

methods across a wide array of functional connectivity studies. The fundamental basis of a graph 

is the node. Recent work has shown that functional nodes reconfigure with brain state. To date, 

all graph theory studies of functional connectivity in the brain have used fixed nodes. Here, using 

fixed-, group-, state-specific, and individualized- parcellations for defining nodes, we demonstrate 

that functional connectivity changes within the nodes significantly influence the findings at the 

network level. In some cases, state- or group-dependent changes of the sort typically reported do 

not persist, while in others, changes are only observed when node reconfigurations are considered. 

The findings suggest that graph theory investigations into connectivity contrasts between brain 

states and/or groups should consider the influence of voxel-level changes that lead to node 

reconfigurations; the fundamental building block of a graph.
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1. Introduction

With the explosion of interest in fMRI studies of functional connectivity and the application 

of network science to understand brain function, there have been a number of studies using 

graph theory measures to quantify state-based changes or group differences in brain network 

properties. Brain networks can be represented by graphs, describing a set of regions called 

“nodes” and the connections between them called “edges”. Such networks largely resemble 

other complex physical, biological or social networks in the sense of meaningful structure, 

especially small worldness. Complex network analysis, originally developed for the study of 

other systems, has been applied to brain networks. With approaches rooted in graph theory, 

it is possible to quantify and summarize complex brain networks with a minimal set of 

measures, that then can be meaningfully compared under different conditions. (Bassett and 

Sporns, 2017; Bullmore and Bassett, 2011; Rubinov and Sporns, 2010)

Brain network graphs can be constructed at different scales. When building a graph from 

functional MRI, voxels can be taken as nodes, but in practice, the dimensionality is reduced 

often by applying an atlas that serves to group tens to hundreds of voxels into nodes. 

(Rubinov and Sporns, 2010) A representative fMRI signal time course for each node is 

obtained by averaging the voxel-level time courses within the node. The Pearson correlation 

of the time courses for each pair of nodes, or some variant of it, then is used to represent the 

edge strength connecting two nodes. Meaningful node definitions are a critical component 

of brain network analysis.(Eickhoff et al., 2018) There is evidence that the constructed 

graph has a strong dependence on the node definition; that is the atlas applied (de Reus 

and Van den Heuvel, 2013; Wang et al., 2009). Various atlases have been used in previous 

studies such as the AAL-atlas (Tian et al., 2011; Tzourio-Mazoyer et al., 2002; Wang et al., 

2012b), the Gordon atlas (Gordon et al., 2016; Shine et al., 2016), the Power atlas (Hearne 

et al., 2017; Power et al., 2011; Rudie et al., 2013), the Harvard-Oxford probabilistic atlas 

(Alexander-Bloch et al., 2010; Cohen and D’Esposito, 2016; Desikan et al., 2006), and the 

Shen atlas (Garrison et al., 2015; Pedersen et al., 2015; Shen et al., 2013). A common 

feature of all of the atlases used to date is that have all been fixed atlases with the underlying 

assumption that the node definitions are unaffected by the group or state-based connectivity 

edge changes of interest.

In the brain, connectivity does not only change between edges, and indeed changes at the 

voxel level are readily apparent. A simple test with any fixed node atlas will illustrate 

this point. If only changes in edges occur between brain states, then the homogeneity 

of voxel time-courses within a node should be constant across conditions (because the 

assumption is that the node isn’t changing). However, a node-homogeneity vector, reflecting 

the homogeneity of time-courses within each node of a fixed atlas, provides sufficient 

information to predict the task under which the data were collected. This suggests that 

functional connectivity between voxels within a fixed node varies with changes in brain 

state, and varies in a reproducible manner.

Recently, individualized parcellation methods have been developed to generate functional 

parcellations specific to each subject group, or each individual within a group (Chong et 

al., 2017; Kong et al., 2019; Salehi et al., 2018; Wang et al., 2015a). Such atlases can 
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account for inter-subject variability in parcellation topography. Individualized parcellations 

have been shown to provide better within-parcel homogeneity of time-courses and the spatial 

topography of the parcels have informed predictions of features such as sex and cognitive 

measures (Kong et al., 2019; Salehi et al., 2018). Even more importantly for the graph 

theory methods considered here, is that previous work has shown that nodes, defined via 

parcellation of functional MRI data, reconfigure with task-induced brain states in a reliable 

manner (Salehi et al., 2020). It is not clear, however, to what extent and in what manner 

such node reconfigurations may influence graph theory measures obtained across subjects 

and brain states.

A large number of previously published studies using fixed atlases have shown group- or 

state-dependent differences in graph theory measures derived from fMRI data. In these 

studies, only changes in edge strength were considered. Here we show that many of these 

studies could come to different conclusions if they considered the changes in functional 

connectivity at the voxel level detectable either through fixed-node homogeneity measures, 

or through state- or group- dependent node reconfigurations. A sampling of several such 

studies covers a range of disorders including autism(Chaitra et al., 2020; Henry et al., 2018; 

Itahashi et al., 2014; Rudie et al., 2013), Alzheimer’s disease (Brier et al., 2014; Khazaee et 

al., 2015, 2016; Liu et al., 2014; Pereira et al., 2016; Sanz-Arigita et al., 2010; Supekar et 

al., 2008; Zhao et al., 2012), schizophrenia (Alexander-Bloch et al., 2010; Karbasforoushan 

and Woodward, 2012; Liu et al., 2008; Lynall et al., 2010; Su et al., 2015; van den Heuvel 

et al., 2013), posttraumatic stress disorder (Lei et al., 2015; Suo et al., 2015), Parkinson’s 

disease (Göttlich et al., 2013; Luo et al., 2015), and many other disorders (Agosta et al., 

2013; Jiang et al., 2013; Lord et al., 2012; Rocca et al., 2016; Serra et al., 2020; Wang et 

al., 2014; Xu et al., 2013; Ye et al., 2015). Other studies that examined changes in graph 

measures with age (Achard and Bullmore, 2007; Chan et al., 2014; Geerligs et al., 2015; 

Iordan et al., 2018; Meunier et al., 2009; Onoda and Yamaguchi, 2013; Sala-Llonch et al., 

2014; Stanley et al., 2015; Wu et al., 2013), sex (Satterthwaite et al., 2015; Tian et al., 2011; 

Wu et al., 2013; Zhang et al., 2016), cognitive states (Cohen and D’Esposito, 2016; Hearne 

et al., 2017; Shine et al., 2016; Wang et al., 2012b; Wen et al., 2015), and other conditions 

(Bruno et al., 2012; Gard et al., 2014) also did not consider connectivity changes at the node 

level. These studies cover a wide range of topics in psychiatry and neuroscience, and many 

have been high-impact, highly cited publications.

In this work, we quantify the influence of node definition and reconfiguration on a range 

of graph theory measures, including both node- and network-based measures. We examine 

fixed parcellations, individualized parcellations, state-specific group-level parcellations, and 

sex-specific group-level parcellations to determine the sensitivity of graph theory measures 

to changes in connectivity within the fundamental building block of the graph. We show 

that whether or not connectivity changes at the voxel level are considered can significantly 

influence findings. We show that when contrasting groups or conditions using graph theory 

measures, variance may be associated not only with changes in edges but also with changes 

in node configurations. Together, these results demonstrate the importance of considering 

not just edge-level connectivity changes but also those that influence the organization of the 

brain at the node level.

Luo et al. Page 3

Neuroimage. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Material and methods

2.1. Data

A subset of the Human Connectome Project (HCP) S900 release was used. Only subjects 

who had voxel-level fMRI data for all nine functional sessions (two resting-states and 

seven tasks) were included. To alleviate artifacts caused by head motion, subjects with 

mean frame-to-frame displacement > 0.1 mm or maximum frame-to-frame displacement > 

0.15 mm were excluded. The resulting dataset contains 494 subjects (266 females, age = 

22–36+). The preprocessing procedures were the same as described in (Salehi et al., 2020). 

We applied the HCP minimal preprocessing pipeline (Glasser et al., 2013) which includes 

artifact removal, motion correction and registration to MNI space. All further preprocessing 

steps used BioimageSuite(Joshi et al., 2011), including regressing 24 motion parameters, 

regressing the mean time courses of the white matter and cerebrospinal fluid, and the global 

signal, removing the linear trend and low pass filtering. For comparison between sex groups, 

16 male and 11 female subjects were excluded, in order to balance fluid intelligence and 

head motion, leaving 212 males and 255 females. There was no significant between-group 

difference in age, fluid intelligence, or head motion.

2.2. Atlases

Four types of atlases were tested in this work. A fixed atlas, applied to all subjects but 

derived from a group-level parcellation of an independent set of subjects, brain-state specific 

atlases, brain-state specific group-specific atlases, and individualized atlases customized for 

the individual and the task condition (state). Each is described below.

Fixed parcellation-based functional connectivity matrices were obtained based on a 268­

parcel atlas determined with a spectral clustering algorithm on resting-state data of a healthy 

population (Shen et al., 2013). We also obtained the individualized parcellations using 

AALv3 (Rolls et al., 2020) as the initial atlas and report these results in the supplementary 

material.

We employed the exemplar-based approach previously introduced in (Salehi et al., 2020) to 

define an individualized parcellation for each condition for each subject. The algorithm has 

three steps: 1) Registration to a group-level parcellation. Here we used the Shen 268 atlas 

as the initial group-level parcellation. 2) Identification of an exemplar from each node by 

maximizing a submodular function. 3) Assignment of each voxel to the functionally closest 

exemplar while maintaining spatial contiguity to an exemplar. (Fig. 1)

State-specific parcellations were obtained by taking the majority vote over the individualized 

parcellations of the same acquisition condition across all the subjects. For example, in the 

working memory condition, a voxel is assigned to the parcellation to which the voxel is 

mostly frequently assigned across all 494 subject-specific working memory individualized 

parcellations. Similar to state-specific parcellations, sex-specific parcellations were obtained 

by taking the majority vote over the individualized parcellations of the same acquisition 

condition across all the subjects within each sex group. (Fig. 2)
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For each of these atlas types, the time course of each node was computed by averaging 

the voxel-level time courses within the node. The Pearson correlation coefficients of the 

time course of each pair of nodes were then computed and normalized using the Fisher 

transformation, yielding a node-by-node matrix of functional connectivity for each subject 

and condition.

2.3. Network construction

The 268 × 268 correlation matrices were converted into a set of binary adjacency matrices. 

We first excluded the negative correlations. Three levels of absolute threshold, τr = 0.1, 

0.3, and 0.5, were applied, as well as three levels of proportional threshold, τp = 0.05, 

0.1, and 0.3. Although negative correlations can be real, they are often ignored as they can 

also originate from global signal regression (Murphy and Fox, 2017). To verify that the 

results we obtained were not driven by elimination of negative correlations we also took the 

absolute values of the correlation matrices and applied the same absolute and proportional 

thresholds to account for potential meaningful negative connections. Some of the network 

measures implemented are compatible with weighted networks (Rubinov and Sporns, 2011), 

and thus where possible we generated weighted positive networks by keeping the positive 

edges of the connectivity matrices and setting all the negative edges to 0, and absolute 

networks by taking the absolute values of all the edges. Connection lengths are required 

for computation of weighted distance-based measures, so here reciprocal-based connection 

length matrices and negative log-based connection length matrices were obtained for both 

positive connectivity matrices and absolute connectivity matrices. The connection length 

between nodes with similar time series is shorter, and vice versa.

2.4. Network measures

A set of commonly reported network measures were calculated with MATLAB functions 

from the Brain Connectivity Toolbox (Rubinov and Sporns, 2010) (https://sites.google.com/

site/bctnet). Network-level measures, including characteristic path length, global efficiency, 

transitivity, and modularity, summarize the properties of the whole network with one value. 

Node-level measures, including clustering coefficient, degree, betweenness centrality, local 

efficiency, and participation coefficient, delineate local properties for each node. Brief 

introductions to these measures are provided in Table 1 (details can be found in (Rubinov 

and Sporns, 2010)) and the features tested are presented in Table 2.

Results based on Pos Abs L and Pos Pro-M are presented in this work for the network 

measures outlined in Table 1. The binary graphs are constructed by applying an absolute 

threshold τr = 0.1 or a proportional threshold τp = 0.1 to the functional connectivity 

matrix. Results based on other methods are summarized in the supplement. Results based 

on aggregated metrics across proportional and absolute threshold are also included in the 

supplementary material.

2.5. Statistical testing

The network measures listed above were obtained for fixed parcellations, state-specific 

parcellations, individualized parcellations, and finally sex-specific parcellations, the latter 

to test the impact of local connectivity changes associated with node reconfigurations on 
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group differences in graph metrics. The corresponding network measures are referred to 

as “fixed network measures”, “state-specific network measures”, “individualized network 

measures”, and “group-specific network measures”, respectively. To evaluate the direct 

effect of node reconfiguration on network measures, we first performed a Wilcoxon signed 

rank test on fixed network measures vs. each of the other three sets of measures for each 

of the nine states. For node-level measures, the Wilcoxon signed rank test was performed 

for each node. The exemplar-based individualized parcellation method preserves the node 

correspondence among distinct parcellations allowing meaningful comparison of node-level 

network measures. (Fig. 3a)

To test the effect of node reconfiguration on state-dependent changes in graph metrics, 

Wilcoxon signed rank test was used to compare meaures for each pair of states (36 pairs 

in total) for each of the three cases, fixed parcellation, individualized parcellation, and 

state-specific parcellation. The statistical results were compared among the three cases. 

The results for node-level measures were summarized by the number of nodes that show 

significant state contrasts for one of the parcellation approaches but not the other, and the 

number of nodes that show reversals in the direction of significant state contrast. (Fig. 3b) 

To test the stability of state contrasts, we also performed a bootstrapping test by randomly 

subsampling 300 subjects out of 494 subjects for 100 times and repeated the analyses for 

each of the 300-subject subsamples. The mean and standard deviation of z scores (network­

level measures) and number of nodes showing substantial changes (node-level measures) are 

reported.

Similar analyses were performed for comparing groups defined by sex, with two differences: 

1) Wilcoxon sum rank test was used instead of Wilcoxon signed rank test because there 

was no direct correspondence between groups, and 2) group-specific network measures were 

contrasted separately for each of the state-specific measures.

Statistical analyses were performed with MATLAB. All primary findings are reported at a 

significance level of p<0.05. Wilcoxon signed rank test and Wilcoxon sum rank test were 

primarily applied because not all the network measures strictly follow normal distributions, 

but we also performed the same analyses with paired t-test and two-sample t-test and 

observed similar results.

Results with Bonferroni correction are included in supplementary material. We performed 

multiple comparison correction for changes in network-level measures and changes in group 

contrasts in network-level measures, multiple task states and multiple graph-construction 

methods. We also performed multiple comparison correction for changes in state contrasts 

in network-level measures, multiple task state pairs and multiple graph-construction methods 

and for node-level measures, we also took into account multiple nodes.

3. Results

In this work we computed a number of graph theory measures using HCP data. These 

measures were computed using a series of brain parcellation approaches to define nodes, that 

differed in the extent to which functional node reconfiguration was taken into account. These 
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methods ranged from not considering functional changes at the node level (using a fixed 

atlas – the most common approach employed currently), to group or task specific functional 

node definitions, and finally individualized node definitions that were customized for each 

task and individual. Standard approaches to calculating graphs were used and basic node and 

network summary scores were compared across atlases. In addition, contrasts of these graph 

theory measures were generated comparing tasks or groups. The results reveal that graph 

theory summary scores reflecting both node and network properties changed significantly 

according to the extent to which regional functional changes were considered, but these 

changes did not occur in any particularly systematic manner.

3.1. Accounting for node reconfiguration leads to changes in graph theory measures

In the application of graph theory to fMRI connectivity matrices decisions have to be 

made as to whether or not nodes are connected in order to form a graph. Since both 

absolute threshold and proportional thresholding methods are commonly used we tested both 

methods and considered a range of decision thresholds in calculating graphs.

With an absolute threshold of τr = 0.1, all four network-level measures show significant 

differences between fixed parcellation and individualized parcellation, and fixed parcellation 

and state-specific parcellation at p = 0.05 (Fig. 4a, 4b, 4c, and 4d). The differences in 

characteristic path length and global efficiency are especially large (Fig. 4a and 4b). 

Graphs based on individualized parcellations and state-specific parcellations have shorter 

characteristic path length, higher global efficiency, higher transitivity, and lower modularity. 

The differences between fixed and individualized parcellations are more significant for most 

measures except for modularity (Fig. 4a, 4b, 4c, and 4d).

With a proportional threshold of τp = 0.1, the differences between parcellations are 

less significant. There are still significant differences between fixed parcellation and 

individualized parcellation in all four measures at p = 0.001. (Fig. 4e, 4f, 4g, and 4h) Graphs 

based on individualized parcellations have longer characteristic path length, lower global 

efficiency, higher transitivity, and higher modularity. There are no significant differences 

between fixed parcellation and state-specific parcellation results except for the transitivity 

measure.

A large fraction of the 268 nodes show significant differences in the five node-level 

measures between fixed parcellation and individualized parcellation (Fig. 5a). Fewer, but 

still more than half of the nodes, show significant differences between fixed parcellation 

and state-specific parcellation (Fig. 5b). More nodes have significant changes in their graph 

theory measures with absolute threshold than with proportional threshold, consistent with 

the larger differences observed in the network-level measures with absolute threshold. 

With absolute threshold τr = 0.1, most of the nodes have higher clustering coefficients, 

higher local efficiency, higher degree, lower betweenness centrality, and lower participation 

coefficient when individualized parcellations and state-specific parcellations are applied 

instead of fixed parcellation. With proportional threshold τp = 0.1, most of the nodes have 

higher clustering coefficient, higher local efficiency, and lower participation coefficient. 

Degree and betweenness centrality show both increases and decreases among the significant 

changes.
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After a conservative multiple comparison correction for multiple task states, multiple graph­

constructing methods, and multiple nodes, the number of nodes showing significant changes 

in node-level measures decreases, especially for Fixed vs. State with proportional threshold. 

However, the principal finding still holds that the graph theory measures change when 

underlying connectivity changes at the node level are considered. (Figure S13, S14)

The network measures derived from data acquired during the working memory task are 

presented here as an example. The same analysis was performed for other task-based scans 

and resting-state scans (see Supplementary Table 1).

3.2. Accounting for node reconfiguration changes state contrasts in graph theory 
measures

Figs. 6 show how graph theory measures change between pairs of states, as a function 

of whether, and how, node definitions take into account the underlying reconfiguration of 

the brain with task-elicited brain states. Two pairs of states are contrasted: resting-state 

and motor; and resting-state2 and working memory. The results based on a proportional 

threshold τp = 0.1 are presented in Fig. 6 and the results based on an absolute threshold τr = 

0.1 are reported in Figure S1.

With a proportional threshold τp = 0.1, graphs based on fixed parcellation and state-specific 

parcellations have significantly shorter characteristic path length, higher global efficiency, 

higher transitivity, and higher modularity when contrasting the motor task with rest. (Fig. 6a) 

The contrasts are reversed with individualized parcellation. The graphs have significantly 

longer characteristic path length, lower global efficiency, and higher modularity. There 

is no significant difference in transitivity. Contrasting the rest2 and working memory 

conditions, significant changes are observed in characteristic path length, global efficiency 

and transitivity moving from fixed parcellation to the individualized parcellation approach. 

(Fig. 6b) The graphs have longer characteristic path length, lower global efficiency, and 

higher transitivity during the working memory task than rest2. There are no significant 

contrasts with state-specific parcellation. Modularity is significantly lower during the 

working memory task with all three parcellations.

For both state pairs (resting state versus the motor task, resting state2 versus the working 

memory task), there are nodes that show significant state contrast in the five node-level 

measures with fixed parcellation but have no significant state contrast with individualized 

or state-specific parcellation. (Fig. 6c, 3d) Similarly, some nodes have no significant state 

contrast in the node-level measures with fixed parcellation but show significant state contrast 

with the parcellation approaches that account for connectivity changes at the node level. 

A small number of nodes show significant contrast with both fixed and individualized 

parcellations but there are reversals in the direction of the differences. There are almost no 

sign reversals between the fixed parcellation and state-specific parcellations. In most cases, 

the state contrasts in node-level measures are more inconsistent comparing the fixed and 

individualized parcellation approaches, than when comparing the fixed and state-specific 

parcellation approaches.
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We performed the same analysis on 100 random subsamples of 300 subjects from the full 

sample of 494 subjects. The significance of the state contrasts in network-level measures 

decreases due to the reduced sample size, but the directions of differences and relative 

significance levels are consistent with the results derived from the entire sample. The 

standard deviations of the z scores are relatively small indicating that the results are stable 

across these random subgroups. Compared to the results obtained for the entire sample, 

fewer, but still a significant number of, nodes show changes in state contrasts in the node 

measures when node reconfiguration is taken into consideration. The standard deviations for 

the number of nodes showing changes are also relatively low. (Figure S2, S3)

After multiple comparison correction, most observations hold true for network-level 

measures. For node-level measures, the number of nodes showing changes in state contrasts 

decreases, but significant changes are still present. (Figure S15)

3.3. Accounting for node reconfigurations changes group contrasts in graph theory 
measures

Fig. 7a shows that with a proportional threshold τp = 0.1, there are significant sex 

differences in characteristic path length, global efficiency, and transitivity during the 

emotion task only with sex-specific parcellation at p<0.05. The female group has longer 

characteristic path length, lower global efficiency, and higher transitivity during the emotion 

task. There is no significant group contrast in modularity with any parcellation. The 

differences between groups are more prominent during the working memory task. (Fig. 7b). 

The female group demonstrates shorter characteristic path length, higher global efficiency, 

and lower transitivity with all three parcellations. With individualized parcellation and 

sex-specific parcellation, the female group has lower modularity, but the difference is not 

significant with fixed parcellation.

Consistent with less significant sex contrasts compared to the state contrasts in network-level 

measures, fewer nodes showed changes (significant to non-significant or non-significant to 

significant) in the node-level measures with the different parcellation strategies. Very few 

nodes showed sign reversals. (Fig. 7c and 7d). Nevertheless, the group contrasts in node­

level graph theory measures are clearly sensitive to whether or not connectivity changes at 

the node level are considered. Results based on an absolute threshold τr = 0.1 are reported in 

Figure S4.

Most group contrasts in network-level measures don’t survive multiple comparison for any 

parcellation method. Very few nodes show changes in state contrasts after correction. The 

extremely low number of nodes with significant changes in node-level network measures 

group contrasts don’t indicate that the group contrasts are insensitive. They are due to 

the fact that group contrasts in network measures are weaker than state contrasts and few 

significant group contrasts survive after the multiple comparison correction for 15 network 

constructing methods, 9 tasks and 268 nodes. The number of nodes showing significant 

group contrasts is below 5 for any condition and metric (mean <1), so the numbers of nodes 

showing substantial changes (non-significant to significant, significant to non-significant, or 

sign reversal in significant contrasts) apparently cannot be higher than 5. (Figure S16)
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Results based on individualized parcellations using AALv3 (Rolls et al., 2020) as the initial 

atlas (Figure S5, S6, S7, S8) and results based on aggregated metrics (Figure S9, S10, S11, 

S12) further show that the general conclusions of this work hold independent of the specific 

approach used. Results after Bonferroni correction (Figure S13, S14, S15, S16) show that 

most of the significant changes in network measures and substantial changes in contrasts of 

network measures are preserved even after conservative corrections.

4. Discussion

Graph theory metrics have already been widely used to examined changes in functional 

organization at the network level. The basic building block of a graph is the underlying 

node. This work demonstrates that if the functional connectivity changes that occur as a 

function of brain state or group are considered in the node definitions, the results of graph 

theory measures may change. We also demonstrate that such changes are not simply a shift 

up or down in terms of significance of a finding. Instead, taking into account the changes 

in node definitions, influences the graph theory measures in an unpredictable manner 

with some results unchanged, enhanced, suppressed or inverted. Previous studies have 

investigated differences in node-level functional connectivity between task-elicited brain 

states (Cole et al., 2014; Krienen et al., 2014) and groups (Satterthwaite et al., 2015; Wang 

et al., 2012a) . This work suggests that if one is interested in how functional connectivity 

changes between tasks or groups, as measured by graph metrics, then one should investigate 

the underlying impact of changes in connectivity at the voxel level and not assume that 

voxel level changes do not occur. The results of many network-level and node-level brain 

network measures change significantly when individualized or state-specific parcellations, 

approaches that take into account voxel level connectivity changes, are applied instead of 

a fixed parcellation. The direction of change, the significance of the change, and the effect 

sizes vary across brain states and graph construction methods.

Although previous studies have investigated the effects of different parcellation strategies on 

functional network properties (Park et al., 2013), potential node reconfiguration across states 

and different topography across subjects have not been considered. To date, most studies 

have used fixed atlases across all conditions. Fixed group atlases, derived from functional 

MRI data or a combination of functional and anatomical information, are commonly used 

to reduce the dimensionality of neuroimaging data prior to functional connectivity analyses 

(Arslan et al., 2018). Recent studies have shown that the spatial arrangement of cortical 

regions can vary across subjects (Gratton et al., 2018) and even within the same subject 

across different tasks or brain states (Salehi et al., 2020). A previous study showed that node 

reconfiguration occurs in a reliable and meaningful way such that node size can be used to 

predict the task condition during which the data were obtained (Salehi et al., 2020). Both 

node and network reconfigurations have been shown as a function of sex and behavioral 

phenotypes (Kong et al., 2019; Salehi et al., 2018).

Using a fixed group atlas imposes the underlying assumption that functional connectivity 

does not influence node definitions, and that differences in graph theory measures are all 

attributable to differences in edge strength. Previous work has shown that the particular 

spatial arrangement of cortical regions in individuals strongly influences functional 
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connectivity. (Bijsterbosch et al., 2018) Several methods have been proposed to account 

for inter-subject variability and establish individualized parcellations(Chong et al., 2017; 

Kong et al., 2019; Salehi et al., 2018; Wang et al., 2015a). The work presented here, extends 

the above studies by demonstrating that not only do individual variations in node definitions 

influence results, but that the flexible functional organization of nodes even within an 

individual can influence the results. The findings here also demonstrate that group specific 

functional node variations may also influence our interpretation of group differences in 

graph theory measures of connectivity.

There are many studies in the literature reporting differences in graph properties without 

consideration of the possibility of voxel level connectivity differences. For example, 

functional brain networks were found to have reduced clustering and small-worldness, 

reduced probability of high-degree hubs, and increased robustness in patients with 

schizophrenia relative to healthy controls. (Lynall et al., 2010) Another study revealed 

functional brain networks in Alzheimer’s disease have a significantly lower clustering 

coefficient and longer characteristic path length compared to healthy controls, indicating 

loss of small-world properties. (Supekar et al., 2008) A recent study showed that network 

measures can be used as features in a machine learning framework to make diagnostic 

predictions of Autism Spectrum Disorder. (Chaitra et al., 2020) These studies however 

all used a fixed atlas approach and did not investigate the possibility that some of the 

differences observed in the graph theory measures were due to voxel level connectivity 

changes and not simply due to changes in edges.

Some network-level measures show significant contrasts across different task-elicited brain 

states. In general, these contrasts are stronger for absolute threshold than proportional 

threshold possibly because the proportional threshold removes the effect of baseline 

connectivity differences while maintaining the same graph sparsity for all brain networks. 

The strength of contrast also varies across state pairs. For example, the contrasts in CPL, 

Eglob, and M are stronger in the resting-state versus motor-task contrast, compared to 

the contrast between the resting-state2 and working memory conditions. Such contrasts 

can change in various ways across measures and graph construction methods when 

individualized parcellations are applied. Overall, there is no systematic increase of decrease 

in these network measures when accounting for voxel-level connectivity changes. For 

example, the contrast in characteristic path length between resting-state2 and working 

memory is significant with both fixed and individualized parcellations, but the significance 

level increases (Fig. 6b). In some cases, there were significant differences only with 

fixed parcellation but not state-specific parcellations (Fig. 6b), or only with individualized 

parcellations (Figure S1a). In a few cases, there were sign reversals in the direction of 

state contrasts (Fig. 6a). The contrasts based on state-specific parcellations are usually 

more similar to those based on fixed parcellation likely because there is only one uniform 

state-specific parcellation for all the subjects for each state and such a parcellation may 

be more robust to noise. However, there are cases where state-specific parcellations yield 

contrasts that are distinct from fixed parcellation (Fig. 6b). For most node-level measures 

and state pairs, a considerable number of nodes show significant state contrast with either 

the fixed parcellation or individualized parcellation, but the number of nodes exhibiting 

significant differences changed with parcellation approach. For some cases, however, such 
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as the contrast in degree between resting-state and motor with absolute threshold (Figure 

S1c), the number of nodes that changed was small. Furthermore, there can even be sign 

reversals in the direction of contrast for a small fraction of nodes. In most cases, fewer 

nodes exhibit inconsistent results moving from the fixed to state-specific parcellations, 

compared to graph theory node measures changing between the fixed and individualized 

parcellations. Importantly, while the effect of applying individualized parcellations and 

state-specific parcellations varied across measures and state contrasts, it was stable across 

different subsamples, suggesting that the impact of node reconfiguration on state contrasts is 

reliable.

The choice of atlas can also change the results when contrasting network measures between 

subject groups, as shown by the case where the groups were defined by sex. The strength 

of the group contrast varied across brain states. For example, as shown in Fig. 7, differences 

between groups are more prominent for data collected during the working memory task 

compared to the emotion task. Consistent with a previous study, network measures are 

found to be unstable across different thresholding methods (Fig. 7 and S3) (Garrison 

et al., 2015). In addition to these factors, group contrasts in network measures are also 

sensitive to whether or not node reconfigurations are considered. There are significant 

differences in characteristic path length, global efficiency, and transitivity between groups 

for the emotion task with τp = 0.1 only based on sex-specific parcellations, but not for the 

other two parcellations (Fig. 7a). Likewise, the difference in modularity between groups 

during the working memory task is not significant with fixed parcellation, but significant 

when individualized or sex-specific parcellations are used (Fig. 7b). The group contrast of 

node-level measures is highly variable for the different atlas definitions for some nodes. 

The number of nodes that exhibit changes in graph theory node property measures also 

varies considerably for different cases. Interestingly, in most cases, group differences in 

node properties changed from significant to non-significant when applying individualized 

parcellation compared to a group-specific parcellation. Yet, more nodes changed from non­

significant to significant in the group contrast when applying the group-specific parcellation 

compared to individualized parcellation.

Taken together these results suggest that the conclusions of brain-state or group-specific 

contrasts, for either node-level or network-level graph theory measures, may change if the 

possibility of node reconfiguration is taken into consideration. Studies in the literature that 

used similar task contrasts to those shown here include work by Cohen et al. (Cohen and 

D’Esposito, 2016), where they showed that compared to rest, modularity was lower and 

global efficiency was higher during an N-back task. They applied both an anatomical atlas 

and a functional atlas and concluded that the results are generally consistent, but differences 

were observed. Here, using the HCP data for the same contrasts we demonstrate that the 

significance level of these contrasts changes if node reconfigurations that are known to 

take place as a function of task (Salehi et al., 2020) are considered. The same work found 

that there was no significant difference in modularity and global efficiency during rest and 

finger tapping. However, it is possible that significant contrasts can only be observed when 

individualized or state-specific parcellations are used. Another study similar to the group 

contrast shown here, is that of Tian et al. (Tian et al., 2011). In that study they showed 

that there is no significant difference in characteristic path length, clustering coefficient, 
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local efficiency and global efficiency between genders.(Tian et al., 2011) However, as 

we demonstrate above significant differences in some of these measures do appear if 

the underlying functional organization differences at the node level are considered by 

incorporating individualized or group-specific parcellations. The conclusions in a range of 

other studies of network measure changes with cognitive states (Cohen and D’Esposito, 

2016; Hearne et al., 2017; Shine et al., 2016; Wang et al., 2012b; Wen et al., 2015) and 

groups (Satterthwaite et al., 2015; Tian et al., 2011; Wu et al., 2013; Zhang et al., 2016) 

could exhibit similar changes if functional connectivity changes at the voxel level are taken 

into consideration. This is not to say that any of those studies are wrong – but to point out 

that the conclusions may change if the underlying connectivity changes at the voxel level 

are considered. It should also be noted that there are consistencies in the parcellations across 

subjects and states. In each case, the 268-node atlas only varies slightly between subjects 

and conditions. What we show here is that if we look closely, there are meaningful but subtle 

changes in the local connectivity (even within a node) that influence the results of graph 

theory measures.

In patient studies of functional connectivity, a common overarching working hypothesis is 

that there will be functional connectivity differences between patients and healthy controls. 

Yet the majority of such studies do not investigate whether the underlying functional 

connectivity changes lead to node reconfigurations. While no patient group contrast was 

tested here, the groups defined by sex demonstrated changes in graph theory measures 

contrasts dependent upon whether or not voxel level changes were considered. Therefore, 

future graph theory investigations using functional connectivity should also include the 

possibility of node reconfigurations.

There are many plausible explanations for the changes in network measures and the 

contrasts in network measures. As revealed by previous studies, functional nodes may 

reconfigure across subjects, brain states, and groups. If fixed atlases are used, such 

differences may be misinterpreted as differences in edge connectivity driving differences 

in graphs of brain networks. Although the reliability of individualized parcellations has 

been shown in previous studies, it is possible that individualized parcellations may be 

more sensitive to noise in a single scan or single session, thus introducing noise into the 

graph theory measures. A substantial amount of data, i.e. long scans, is required to ensure 

the reliability of individualized parcellations. However, this is not the case for group-state 

specific parcellations which take the majority vote across large numbers of subjects and thus 

require fewer data per subject.

The changes in network measures, and contrasts in network measures, revealed here suggest 

that the assumptions made when applying network analysis, that the nodes are fixed 

and uniform, may be inappropriate. Using individualized or state-specific parcellations 

represents one potential approach to account for the within-node connectivity changes. 

Individualized parcellation methods (Chong et al., 2017; Kong et al., 2019; Salehi et 

al., 2018; Wang et al., 2015a) generally yield higher within-node homogeneity, and thus 

potentially higher stability in network analyses. Admittedly, to what extent individualized 

parcellations can deviate from the fixed parcellation is restricted by the exemplar-based 

algorithm because the number of parcels is held constant to match the fixed parcellation, 
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the exemplar is usually near the geometric center of each node, and the voxel-to-parcel 

assignment has a spatial contiguity constraint. It is plausible that the individualized 

parcellation, state-specific parcellation, and group-specific parcellation we apply here don’t 

fully account for flexibility in voxel-level architecture. Methods need to be developed that 

co-vary for changes in node-homogeneity as a function of group or condition to account 

for the within-node changes in connectivity. For example, when building a predictive model 

based on functional connectivity relating brain to behavior, in addition to edge connectivity, 

metrics for within-node connectivity (such as homogeneity) could be incorporated as a 

predictor. Further work is warranted to explore how within-node connectivity can be 

incorporated into network analysis in ways other than deriving individualized parcellations. 

We hypothesize that with higher resolution atlases (smaller nodes) at some point the within 

node connectivity should stabilize such that only edge changes are apparent between states, 

but this is currently a subject of further investigation. Stability of within-node connectivity 

across tasks for example, could in fact be part of a parcellation approach potentially 

providing stopping criteria for determining optimal node size for each node. The extreme 

of this potential strategy is to analyze voxel-level rather than node-level connectivity and 

networks to avoid the node definition problem. In fact, voxel-based network analyses have 

been investigated (Hayasaka and Laurienti, 2010; Scheinost et al., 2012, 2014; Wang et al., 

2015b), but the high computational cost is a major limitation.

In this study, tasks are used as a proxy for changes in brain state with the assumption 

of a particular node configuration across the state (task). While the methods to parcellate 

the brain into functional nodes are too noisy to consider dynamic changes that occur on 

a moment-to-moment basis, it is likely that nodes reconfigure in a much more dynamic 

manner. As stimuli and responses change rapidly within a fMRI experiment, different 

subsets of the millions of neurons within a region may be engaged leading to dynamic 

reconfiguration of node boundaries. It is not clear at this point how such dynamics can 

be incorporated into graph theory-based brain network models. However, it is clear that 

there are reliable average state-based node reconfigurations that are distinct and stable 

enough to be able to identify the task during which the data was collected simply from 

the parcellation (Salehi et al., 2020). Further work is needed to identify and incorporate 

continuous reconfigurations into brain network analyses.

5. Conclusion

In summary, we empirically demonstrate that network measures, and more importantly, 

contrasts in network measures between brain states and subject groups, are sensitive to 

functional connectivity changes at the voxel level within a node. As graph theory-based 

network measures are widely applied in many fMRI studies, it is worth noting that the 

results may change dramatically when the underlying basis for the measures, the node 

definitions, may be part of the functional changes that are under investigation. While there is 

no consensus as to which atlas to use to define nodes, all publications to date have assumed 

a fixed atlas across subjects, brain states and groups. There has been widespread acceptance 

that connectivity between regions can change under a wide array of conditions, yet little 

consideration has been given to the impact of local connectivity changes within the node, 

one manifestation of which leads to nodal reconfiguration. This work shows that when graph 
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theory is applied in fMRI, consideration must be given to how connectivity changes at the 

voxel level influence the node, which is the fundamental building block of any graph.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Obtaining individualized parcellation and state-specific parcellation.
For each acquisition condition (state 1 to 9), we start with the same group-level fixed 

parcellation (Shen 268), select one exemplar from each parcel based on the time series 

and assign every voxel to the functionally closest exemplar while maintaining the spatial 

contiguity of each parcel. This yields an individualized atlas for each state for each subject. 

The state-specific group parcellations are obtained by taking the majority vote across the 

individualized parcellations for all the subjects within a state.
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Fig. 2. Obtaining state-specific and group-specific parcellation with majority vote.
After obtaining an individualized atlas for each state for each subject, the state-specific 

parcellations are obtained by taking the majority vote across the individualized parcellations 

for all the subjects within a state. The group-specific parcellations are obtained by taking 

the majority vote across the individualized parcellations for the subjects within each group 

within the same state. There are in total 9 state-specific parcellations and 18 group-specific 

parcellations (9 state x 2 sex-specific parcellations).
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Fig. 3. Statistical evaluation of the effect of different parcellation approaches on network 
measures and state-dependent changes in network measures.
(a) The direct effect that different parcellations have on network-level measures is evaluated 

by performing Wilcoxon signed rank test between the networks measures computed based 

on the two different parcellations. For node-level measures, Wilcoxon signed rank test is 

performed for every node. The results are summarized by the number of nodes showing a 

significant difference in the node-level network measures between the fixed atlas approach 

and the approaches that take into consideration changes in functional node organization. 

(b) The state contrast for each parcellation is first obtained by performing a Wilcoxon 

signed rank test between network measures across two different tasks. The significance level 
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of state contrasts based on different parcellations are then presented and compared. For 

node-level measures, the state contrasts are computed for each node. The effect of different 

parcellations is quantified by counting the number of nodes that show a significant state 

contrast with one parcellation but not the other and the number of nodes showing reversal 

in the direction of the difference. The sex contrasts are computed and compared similarly 

except that Wilcoxon sum rank test is applied instead of Wilcoxon signed rank test because 

there is no correspondence between subjects in the two groups. For normally distributed 

network measures, the paired t-test and t-test can be applied instead of Wilcoxon signed rank 

test and Wilcoxon sum rank test.
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Fig. 4. Histograms of network-level measures, showing the distribution of scores as a function 
of parcellation scheme (applied to working memory task data), for absolute threshold (a-d) and 
proportional threshold (e-h).
The measures are characteristic path length (CPL), global efficiency (Eglob), transitivity 

(T), and modularity (M). The inset bar graphs on the right show the z score estimated by 

Wilcoxon signed rank test for fixed network measures – individualized network measures 

and fixed network measures – state-specific network measures. The two pairs of dotted lines 

indicate p = 0.05 and p = 0.001. Significant differences are observed between fixed network 

measures and individualized network measures at p = 0.001 for seven cases, except for (d) 
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where the difference is significant at p = 0.05. There are significant differences between 

fixed network measures and state-specific network measures at p = 0.001 in cases (a), (b), 

(c), (g) and p = 0.05 in case (d).
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Fig. 5. Node-level graph metrics show substantial differences according to the extent to which the 
parcellation approach considers underlying changes in the brain’s functional organization.
The number of nodes showing significant increases or decreases in node-level measures for 

the different atlas approaches including: fixed vs. individualized and fixed vs. state-specific 

with absolute threshold (a) and proportional threshold (b) during the working memory 

task. Measures based on fixed parcellation are used as base-lines for both comparisons. 

The numbers of significant increases and significant decreases are presented in the figure. 

The total heights of the stacked bars represent the numbers of nodes that show significant 

changes. (c) Maps representing the nodes showing significant increases or decreases in 
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node-level network measures for Fixed vs. Individualized and Fixed vs. State-specific 

parcellations for each task state. The total numbers of significant increases and decreases 

for each network measure are corresponding to the numbers in (b).
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Fig. 6. Top panel: Graph theory network-level contrasts between conditions show sensitivity to 
the underlying connectivity changes.
Z scores estimated by Wilcoxon signed rank test of state contrast in network-level measures 

for resting-state - motor (left) and resting-state2 - working memory (right) with proportional 

threshold τp = 0.1 based on three different parcellations: fixed parcellation, individualized 

parcellations, and state-specific parcellations. The three pairs of dotted lines indicate p = 

0.05, p = 0.01, and p = 0.001, respectively. In some cases, the contrast between conditions 

is significant for some parcellations but not the others (e.g., b: significant REST2-WM 

CPL, Eglob, and T differences with fixed and individualized parcellation, but not with state­

specific parcellation). In other cases, there can be reversal in direction of significant contrast 

(e.g. a: CPL is significantly longer during rest compared to motor with fixed parcellation 

but is significantly shorter during rest compared to motor with individualized parcellation). 

Bottom panel: The number of nodes showing changes in state contrasts in node-level 

measures for different parcellation approaches, including significant to non-significant 

changes, non-significant to significant changes, and reversal in direction of significant 

contrasts. Two pairs of parcellations are compared, fixed - individualized and fixed - state­

specific. The bars for the two pairs are overlaid. A considerable number of nodes exhibit 

a change from significant to non-significant, or the reverse non-significant to significant, 
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with different parcellation approaches. A few nodes show reversals in the direction of the 

significant state contrasts. In most cases, the state contrasts in node-level measures change 

more between fixed and individualized than between fixed and state-specific.
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Fig. 7. Top panel: Graph theory network level group contrasts show sensitivity to the underlying 
functional organization of the brain.
Z scores estimated by Wilcoxon sum rank test of sex contrast in network-level measures for 

emotion (left) and working memory (right) with proportional threshold τp = 0.1 based on 

three different parcellations, fixed parcellation, individualized parcellations, and sex-specific 

parcellations, each taking into account to a differing extent the underlying functional 

reconfiguration of the brain at the node level. The three pairs of dotted lines indicate 

p = 0.05, p = 0.01, and p = 0.001, respectively. In some cases, the significant contrast 

between groups can only be found when differences in functional node configuration are 

considered (e.g., a: significant CPL, Eglob, and T differences with sex-specific parcellation; 

b: significant differences in M with individualized and sex-specific parcellation). Bottom 

panel: Number of nodes showing changes in graph theory node-level measures contrasting 

groups defined by sex showing many nodal properties change dependent upon whether 

or not different node configurations between subject groups are accounted for. Changes 

include significant to non-significant, non-significant to significant, and reversal in direction 

of significant contrasts. Two pairs of parcellations are compared, fixed – individualized and 

fixed – sex-specific for two tasks, emotion (left) and working memory (right).
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