
Dimensionality and Dynamics in the Behavior of C.
elegans
Greg J. Stephens1,2,3*, Bethany Johnson-Kerner1, William Bialek1,2, William S. Ryu1*

1 Lewis–Sigler Institute for Integrative Genomics, Princeton, New Jersey, United States of America, 2 Joseph Henry Laboratories of Physics, Princeton, New Jersey, United

States of America, 3 Center for the Study of Brain, Mind and Behavior, Princeton University, Princeton, New Jersey, United States of America

Abstract

A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here,
we show that the space of shapes adopted by the nematode Caenorhabditis elegans is low dimensional, with just four
dimensions accounting for 95% of the shape variance. These dimensions provide a quantitative description of worm
behavior, and we partially reconstruct ‘‘equations of motion’’ for the dynamics in this space. These dynamics have multiple
attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal
stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors
by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively ‘‘steering’’ the
worm in real time.
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Introduction

The study of animal behavior is rooted in two divergent

traditions. One approach creates well-controlled situations, in

which animals are forced to choose among a small discrete set of

behaviors, as in psychophysical experiments [1]. The other, taken

by ethologists [2], describes the richness of the behaviors seen in

more natural contexts. One might hope that simpler organisms

provide model systems in which the tension between these

approaches can be resolved, leading to a fully quantitative

description of complex, naturalistic behavior.

Here we explore the motor behavior of the nematode,

Caenorhabditis elegans, moving freely on an agar plate [3–9].

Though lacking the full richness of a natural environment, this

unconstrained motion allows for complex patterns of spontane-

ous motor behaviors [10], which are modulated in response to

chemical, thermal and mechanical stimuli [11–13]. Using video

microscopy of the worm’s movements, we find a low

dimensional but essentially complete description of the macro-

scopic motor behavior. Within this low dimensional space we

reconstruct equations of motion which reveal multiple attrac-

tors—candidates for a rigorous definition of behavioral states.

We show that these states are visited as part of a surprisingly

reproducible response of C. elegans to small temperature changes.

Correlations among fluctuations along the different behavioral

dimensions suggest that some of the randomness in the

behavioral responses could be removed if sensory stimuli are

delivered only when the worm is at a well defined initial state.

We present experimental evidence in favor of this idea, showing

that worms can be ‘‘steered’’ in real time by appropriately

synchronized stimuli.

Results

Eigenworms
We use tracking microscopy with high spatial and temporal

resolution to extract the two-dimensional shape of individual C.

elegans from images of freely moving worms over long periods of

time (Figure 1A; see Materials and Methods). Variations in the

thickness of the worm are small, so we describe the shape by a

curve that passes through the center of the body (Figure 1B). We

measure position along this curve (arc length) by the variable s,

normalized so that s = 0 is the head and s = 1 is the tail. The

position of the body element at s is denoted by x(s), and we sample

this function at N = 100 equally spaced points along the body.

These variables provide an essentially complete description of the

motor output.

We analyze the worm’s shapes in a way intrinsic to its own

behavior, not to our arbitrary choice of coordinates (Figure 1). The

intrinsic geometry of a curve in the plane is defined by the Frenet

equations [14,15],

dx(s)

ds
~t̂t(s) ð1Þ

dx(s)

ds
~k(s)n̂n(s) ð2Þ

where t̂t(s) is the unit tangent vector to the curve, n̂(s) is the unit

normal to the curve, and k(s) is the scalar curvature. If the tangent

vector points in a direction k(s), then k(s) = dh(s)/ds. Curvature as a
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function of arc length, h(s), thus provides a ‘‘worm–centered’’

description, but in practice this involves taking two derivatives and

thus is noisy. As an alternative, we describe the curve by h(s), but

remove the dependence on our choice of coordinates by rotating

each image so that the mean value of h along the body always is

zero; this rotated version of h(s) contains exactly the same

information as k(s).

Although the worm has no discrete joints, we expect that the

combination of elasticity in the worm’s body wall and a limited

number of muscles will lead to a limited effective dimensionality of

the shape and motion. In the simplest case, the relevant low

dimensional space will be a Euclidean projection of the original

high dimensional space. If this is true, then the covariance matrix

of angles, C(s, s9) = Æ(h(s)–Æhæ)(h(s9)–Æhæ)æ will have only a small

number of nonzero eigenvalues. Figure 2A shows the covariance

matrix, and its smooth structure is a strong hint that there will be

only a small number of significant eigenvalues; this is shown

explicitly in Figure 2B. Quantitatively, over 95% of the total

variance in angle along the body is accounted for by just four

eigenvalues. Note that the contribution of the variance is

inhomogeneous along the body curve. For example the fourth

eigenworm makes a small contribution to the variance overall, but

captures a large percentage of the variance within 5% of the head

and tail region (Figure 2D).

Associated with each of the eigenvalues lm is an eigenvector

um(s), sometimes referred to as a ‘principal component’ of the

function h(s). If only K = 4 eigenvalues are significant, then we can

write the shape of the worm as a superposition of ‘eigenworm’

shapes,

h(s)&
Xk

m~1

amum(s), ð3Þ

where the four variables {am} are the amplitudes of motion along

the different principal components, am~
X

s
um(s)h(s). We see in

Figure 2C that these modes are highly reproducible from

individual to individual.

Thus far we have considered only worms moving in the absence

of deliberate sensory stimuli. Do the worms continue to move in

just a four dimensional shape space when they respond to strong

inputs? To test this, we delivered intense pulses of heat (see

Materials and Methods), which are known to trigger escape

responses [16]. We see in Figure 2D that we still account for

<95% of the shape variance using just four modes, even though

the distribution of shapes during the thermal response is very

different from that seen in spontaneous crawling. We conclude

that our four eigenworms provide an effective, low dimensional

coordinate system within which to describe C. elegans motor

behavior.

What Do the Modes Mean?
The projection of worm shapes onto the low-dimensional space

of eigenworms provides a new and quantitative foundation for the

classical, qualitative descriptions of C. elegans behavior [10]. The

first two modes are sinuous (although not exactly sinusoidal)

oscillations of the body shape (Figure 2C); they form a quadrature

pair, so that different mixtures of the two modes correspond to

different phases of a wave along the body. Indeed, the probability

distribution of the mode amplitudes, r(a1, a2), shows a ring of

nearly constant amplitude (Figure 3A). Sampling images around

this ring reveals a traveling wave along the body (Figure 3B).

There are relatively long periods of time where the shape changes

by a continuous accumulation of the phase angle (Figure 3C), and

the speed of this rotation predicts the speed at which the worm

crawls (Figure 3D).

In contrast to the first two modes, the third mode u3(s)

contributes to a nearly constant curvature throughout the middle

half of the body (Figure 2C). The distribution of the mode

Figure 1. Describing the shapes of worms. (A) Raw image in the
tracking microscope. (B) The curve through the center of the body. The
black circle marks the head. (C) Distances along the curve (arclength s)
are measured in normalized units, and we define the tangent t̂(s) and
normal n̂(s) to the curve at each point. The tangent points in a direction
h(s), and variations in this angle correspond to the curvature k(s) = dh(s)/
ds. (D) All images are rotated so that Æhæ = 0; therefore h (s) provides a
description of the worm’s shape that is independent of our coordinate
system, and intrinsic to the worm itself.
doi:10.1371/journal.pcbi.1000028.g001

Author Summary

A great deal of work has been done in characterizing the
genes, proteins, neurons, and circuits that are involved in
the biology of behavior, but the techniques used to
quantify behavior have lagged behind the advancements
made in these areas. Here, we address this imbalance in a
domain rich enough to allow complex, natural behavior
yet simple enough so that movements can be explored
exhaustively: the motions of Caenorhabditis elegans freely
crawling on an agar plate. From measurements of the
worm’s curvature, we show that the space of natural worm
postures is low dimensional and can be almost completely
described by their projections along four principal ‘‘eigen-
worms.’’ The dynamics along these eigenworms offer both
a quantitative characterization of classical worm move-
ment such as forward crawling, reversals, and Omega-
turns, and evidence of more subtle behaviors such as
pause states at particular postures. We can partially
construct equations of motion for this shape space, and
within these dynamics we find a set of attractors that can
be used as a rigorous definition of behavioral state. Our
observations of C. elegans reveal a precise and complete
language of motion and new aspects of worm behavior.
We believe this is a lesson with promise for other
organisms.

C. elegans Motor Behavior
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amplitude a3 has a long tail (Figure 4A), and body shapes chosen

from these tails (Figure 4B) exhibit the V configuration classically

identified with large-angle turning behavior [10]. Large ampli-

tudes of a3 also correspond to gradual turns in the worm trajectory

along the agar (Figure 4C).

The fourth mode u4(s) contributes to the shape of the head and

tail region of the worm. Figure 2D shows that u4(s) captures a large

amount of the shape variance in those regions. Head movements

of the worm are likely important in foraging [17] and navigation

[18]. The emergence of a separate mode is likely due to the fact

that head of C. elegans can move independently of the body and is

controlled by a separate set of neck muscles.

The connections between mode amplitudes and the motion of

the worm along the agar—as in Figures 3D and 4C—are genuine

tests of the functional meaning of our low dimensional description.

Quite explicitly, our analysis of worm shapes is independent of the

extrinsic coordinates and hence our definition of modes and

amplitudes is blind to the actual position and orientation of the

worm. Of course, in order to move the worm must change shape,

and our description of the shape in terms of mode amplitudes

captures this connection to movement. Thus, to crawl smoothly

forward or backward the worm changes its shape by rotating

clockwise or counterclockwise in the plane formed by the mode

amplitudes a1 and a2; the speed of crawling is set by the speed of

the rotation. Similarly, to change direction the worm changes

shape toward larger magnitudes of the mode amplitude a3, and we

see this connection even without defining discrete turning events.

Attractors and Behavioral States
The eigenworms provide a coordinate system for the postures

adopted by C. elegans as it moves; to describe the dynamics of

movement we need to find equations of motion in this low

Figure 2. Covariance of shape fluctuations and eigenworms. (A) The covariance matrix of fluctuations in angle C(s, s9). The inhomogeneity
along the diagonal shows that the normal modes of the motion are not sinusoidal but the smooth structure of C(s, s9) means that a small number of
modes are significant. (B) We find the eigenvalues of C(s, s9) and compute s2

K, the fraction of the total variance (integrated along the body of the
worm) captured by keeping K modes (see Materials and Methods). (C) Associated with each dominant mode is an eigenvector and we refer to these
as eigenworms um(s). The population-mean eigenworms (red) are highly reproducible across individual worms (black). (D) The fraction of variance, s̃2

K,
at each point along the body curve captured by keeping K modes (K = 1 to 4, from bottom to top curve). The overall error in reconstruction of the
worm body curve decreases as the number of modes increases, but does so inhomogeneously. (E) In response to strong thermal stimuli,
reconstructions using the eigenworms of spontaneous crawling continue to account for most of the shape variance. Worm images are recorded at
times synchronized to a heat pulse and we display s2

K aligned with this pulse (red line). (K = 1 to 4, from bottom to top curve).
doi:10.1371/journal.pcbi.1000028.g002
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dimensional space. We start by focusing on the plane formed by

the first two mode amplitudes a1 and a2. Figure 3 suggests that

within this plane the system stays at nearly constant values of the

radius, so that the relevant dynamics involves just the phase angle

w(t). To account for unobserved and random influences these

equations need to be stochastic, and to support both forward and

backward motion they need to form a system of at least second

order. Such a system of equations would be analogous to the

description of Brownian motion using the Langevin equation

[19,20]. Thus we search for equations of the form

dw(t)

dt
~v(t)

dv(t)

dt
~F w(t),v(t)½ �zs w(t),v(t)½ �g(t):

ð4Þ

Here F[w(t),v(t)] defines the average acceleration as a function of

the phase and phase velocity, by analogy to the force on a

Brownian particle. The noise is characterized by a random

function g(t) which we hope will have a short correlation time, and

we allow the strength of the noise F[w(t),v(t)] to depend on the state

of the system, by analogy to a temperature that depends on the

position of the Brownian particle.

In Figure 5A we show our best estimate of the mean

acceleration F[w,v] (see Materials and Methods for details). Once

we know F, we subtract this mean acceleration from the

instantaneous acceleration to recover trajectories of the noise,

and the correlation function of this noise is shown in Figure 5B.

The correlation time of the noise is short, which means that we

have successfully separated the dynamics into two parts: a

deterministic part, described by the function F[w,v], which

captures the average motion in the {a1,a2} plane and hence the

relatively long periods of constant oscillation, and a rapidly

fluctuating part g(t) that describes ‘‘jittering’’ around this simple

oscillation as well as the random forces that lead to jumps from

one type of motion to another.

We can imagine a hypothetical worm which has the same

deterministic dynamics as we have found for real worms, but no

noise. We can start such a noiseless worm at any combination of

phase and phase velocity, and follow the dynamics predicted by

Equation 4, but with s = 0. These dynamics are diverse on short

time scales, depending in detail on the initial conditions, but

eventually all initial conditions lead to one of a small number of

possibilities (Figure 5C): either the phase velocity is always positive,

always negative, or decays to zero as the system pauses at one of

two stationary phases. Thus, underneath the continuous, stochas-

tic dynamics we find four discrete attractors which correspond to

well defined classes of behavior.

We can compare the predicted behavioral states with the

motion of real worms that include transitions between these states.

Figure 5D is the joint probability density, r(v,w), of worms

sampled at 32 Hz; the trajectory of a single worm visiting all three

predicted behavioral states is indicated by the overlay. The

forward (v.0) and backward (v,0) motions match well with

previously calculated attractor states, and pauses in the trajectory

of real worms correspond to the calculated pause basins (v= 0).

Surprisingly, the transition between forward and backward motion

is not arbitrary, but occurs most often along specific phase

dependent trajectories.

Pause States and Reproducibility
The behavior of C. elegans, particularly in response to sensory

stimuli, traditionally has been characterized in probabilistic terms:

worms respond by changing the probability of turning or reversing

[17,21,22]. This randomness could reflect an active strategy on the

part of the organism, or it could reflect the inability of the nervous

system to distinguish reliably between genuine sensory inputs and

the inevitable background of noise. Our description of motor

behavior measured with high time resolution offers us the

opportunity to revisit the ‘‘psychophysics’’ of C. elegans.

We consider the response to brief (75 ms), small (DT<0.1uC)

changes in temperature, induced by pulses from an infrared laser

(see Materials and Methods). These stimuli are large enough to

elicit responses [12] but well below the threshold for pain

avoidance [16]. In Figure 6 we show the distribution rt(v) of

phase velocities as a function of time relative to the thermal pulse.

All of the worms were crawling forward at the moment of

stimulation, so the initial phase velocities are distributed over a

wide range of positive values. Within one second, the distribution

narrows dramatically, concentrating near zero phase velocity. This

behavior is consistent with the worm visiting the pause states

described above in the deterministic dynamics, and may be similar

Figure 3. Motions along the first two eigenworms. (A) The joint
probability density of the first two amplitudes, r(a1, a2), with units such
that Sa2

1T~Sa2
2T~1. The ring structure suggests that these modes form

an oscillator with approximately fixed amplitude and varying phase
w = tan-1(-a2/a1). (B) Images of worms with different values of w show
that variation in phase corresponds to propagating a wave of bending
along the worm’s body. (C) Dynamics of the phase w(t) shows long
periods of linear growth, corresponding to a steady rotation in the {a1,
a2} plane, with occasional, abrupt reversals. (D) The joint density
r(|n|,|v|). The phase velocity v= dw/dt in shape space predicts worm’s
crawling speed.
doi:10.1371/journal.pcbi.1000028.g003
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to the pausing response seen when worms are subjected to

mechanical stimuli [23].

Arrival in the pause state is stereotyped both across trials and

across worms. By analogy with conventional psychophysical

methods [1], we can ask how reliably an observer could infer

the presence of the heat pulse using the worm’s response. We find

that just measuring the phase velocity v at single moment in time

after the pulse is sufficient to provide <75% correct detection of

this small temperature change in single trials.

Coupling the Modes and Steering the Worm
Our discussion thus far has separated the dynamics of the worm

into two very different components: the {a1, a2} plane with its

phase dynamics, responsible for crawling motions, and the mode

a3, which is connected with large curvature turns. Because these

modes are eigenvectors of a covariance matrix their instantaneous

amplitudes are not linearly correlated, but this does not mean that

the dynamics of the different motions are completely uncoupled.

We found the clearest indications of mode coupling between the

phase in the {a1, a2} plane and the amplitude a3 at later times,

which is illustrated by the correlation function in Figure 6B. The

diagonal band of positive correlation reflects the phase dependent

bending motions of normal crawling. This pattern of correlations

is perturbed strongly by thermal stimuli (t, t9.0). The fact that the

correlations between phase and the turning mode are stimulus

dependent implies that the response of the turning mode to

thermal stimuli depends on the phase which the worm finds itself

at the time of the stimulus. Perhaps some of the apparent

randomness of turning responses thus is related to the fact that

repeated thermal stimuli catch the worm at different initial phases.

To test this idea, Figure 6C shows the average response of a3 when

worms are thermally stimulated with their head turned to either

the dorsal or ventral side. Worms stimulated when making a

ventral head swing (22#w#21) make bends in the dorsal

direction (a3,0), and vice versa. Note that the thermal pulse itself

does not have a handedness, so that if the pulses are not

synchronized to the state of the worm there should be no

systematic preference for dorsal vs. ventral handed turns. As a

further test of this idea, we implemented our analysis online,

allowing an estimate of the phase with a delay of less than 125 ms.

We then deliver an infrared pulse when the phase falls within a

phase window that corresponds to either dorsal– or ventral–

directed head swings. The predicted consequence is that the worm

should turn in the opposite direction to the laser stimulation, and is

confirmed in Figure 6D.

Discussion

Our central result is a new, quantitative, and low-dimensional

description of C. elegans motor behavior. Conceptually similar

results have been obtained for aspects of motor control in humans

Figure 4. Motions along the third eigenworm. (A) The distribution of amplitudes r(a3), shown on a logarithmic scale. Units are such that
Sa2

3T~1, and for comparison we show the Gaussian distribution; note the longer tails in r(a3). (B) Images of worms with values of a3 in the negative
tail (left), the middle (center) and positive tail (right). Large negative and positive amplitudes of a3 correspond to bends in the dorsal and ventral
direction, respectively. (C) A two minute trajectory of the center of mass sampled at 4 Hz. Periods where |a3|.1 are colored red, illustrating the
association between turning and large displacements along this mode.
doi:10.1371/journal.pcbi.1000028.g004
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and other primates, where postures or trajectories of limbs, hands

or eyes are confined to spaces of low dimensionality despite the

potential for more complex motions [24–27]. For C. elegans itself,

recent quantitative work has focused on simplifying behavior by

matching to a discrete set of template behaviors, such as forward

and backward motion of the center of mass [5], sinusoidal

undulations of the body [6], or V bends [7]. Our results combine

and generalize these ideas. Motor behaviors are described by

projection of the body shape onto a small set of templates (the

eigenworms), but the strengths of these projections vary contin-

uously. The templates are sinuous, but not sinusoidal, because the

fluctuations in posture are not homogeneous along the length of

the worm. Our description of shape is intrinsic to the worm and

invariant to the center of mass position, but motion in shape space

predicts the center of mass motion. There are discrete behavioral

states, but these emerge as attractors of the underlying dynamics.

Most importantly, our choice of four eigenworms is driven not by

hypotheses about the relevant components of behavior, but by the

data itself.

The construction of the eigenworms guarantees that the

instantaneous amplitudes along the different dimensions of shape

space are not correlated linearly, but the dynamics of the different

amplitudes are nonlinear and coupled; what we think of as a single

motor action always involves coordinating multiple degrees of

freedom. Thus, forward and backward motion correspond to

positive and negative phase velocity in Figure 3, but transitions

between these behavioral states occur preferentially at particular

phases. Similarly, turns involve large amplitude excursions along

a3, but motion along this mode is correlated with phase in the ({a1,

a2}) plane, and this correlation itself has structure in time

(Figure 6B). The problems of C. elegans motor control are simpler

than for higher animals, but these nonlinear, coupled dynamics

give a glimpse of the more general case.

Perhaps because of the strong coupling between the turning

mode a3 and the wriggling modes a1, a2, we have not found an

equation of motion for a3 alone which would be analogous to

Equation 4 for the phase. Further work is required to construct a

fully three dimensional dynamics which could predict the more

complex correlations such as those in Figure 6B. Turning should

emerge from these equations not as another attractor, but as an

‘excitable’ orbit analogous to the action potential in the Hodgkin–

Huxley equations or to recent ideas about transient differentiation

in genetic circuits [28]. A major challenge would be to show that

the stochastic dynamics of these equations can generate longer

sequences of stereotyped events, such as pirouettes [29].

We have shown that a meaningful set of behavioral coordinates

can uncover deterministic responses. A response might seem

stochastic or noisy because it depends on one or more behavioral

variables that are not being considered. In our experiments,

nonlinear correlations among the behavioral variables suggest that

Figure 5. Reconstructing the phase dynamics. (A) The mean acceleration of the phase F(v,w) in Equation 4. (B) The correlation function of the
noise Æg (t)g(t+t)æ. The noise correlations are confined to short times relative to the phase velocity itself. (C) Trajectories in the deterministic dynamics.
A selection of early-time trajectories is shown in black. At late times these same trajectories collapse to one of four attractors (red): forward and
backward crawling and two pause states. (D) Joint density r(v,w) for worms sampled at 32 Hz. A sample trajectory of a single worm moving forwards,
backwards, and pausing, is denoted by black arrows.
doi:10.1371/journal.pcbi.1000028.g005
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some of the randomness in behavioral responses could be removed

if sensory stimuli are delivered only when the worm is at a well

defined initial state, and we confirmed this prediction by showing

that phase–aligned thermal stimuli can ‘steer’ the worm into

trajectories with a definite chirality. A crucial aspect of these

experiments is that the stimulus is scalar—a temperature change in

time has no spatial direction or handedness—but the response, by

virtue of the correlation between stimulus and body shape, does

have a definite spatial structure. The alignment of thermal stimuli

with the phase of the worm’s movement in these experiments

mimics the correlation between body shape and sensory input that

occurs as the worm crawls in a thermal gradient, so the enhanced

determinism of responses under these conditions may be

connected to the computations which generate nearly determin-

istic isothermal tracking [22,30].

More generally, all behavioral responses have some mixture of

deterministic and stochastic components. In humans and other

primates, it seems straightforward to create conditions that result

in highly reproducible, stereotyped behaviors, such as reaching

movements [31]. At the opposite extreme, bacterial motility is

modulated in response to sensory inputs, but these responses seem

fundamentally probabilistic [32]. Some of these differences may

result from the physical nature of sensory stimuli in organisms of

vastly different size [33,34], but some of the differences may also

result from differences of strategy or available computational

power. The more stochastic the response, the more challenging it

is to characterize behavior quantitatively and to link behavior with

underlying molecular and neural components, as is clear from

recent work on Drosophila olfaction (see, for example, [35]). We

hope that our approach to the analysis of behavior may help to

uncover more deterministic components of the sensory–motor

responses in other model organisms.

More than forty years of work on C. elegans has led to a fully

sequenced genome [36] and to the complete wiring diagram of the

nervous system [37]. Significant steps have been made toward the

original dream [38] of connecting genes, neurons, and behavior

Figure 6. Thermal responses, mode coupling and active steering. (A) The distribution of phase velocities rt(v) in response to a brief thermal
stimulus. Within one second, the distribution becomes highly concentrated near v= 0, corresponding to the pause states identified in Figure 5. (B)
Correlations between phase in the {a1,a2} plane and a3, C(t,t0)~S sin w(t)ð Þ a3(t0)ð ÞT. Shortly after the thermal impulse (t, t9.0) the modes develop a
strong anti-correlation which is distinct from normal crawling. (C) Phase dependent thermal response. Worms stimulated during ventral head swings
(22#w#21) turn dorsally (red) while worms stimulated during dorsal head swings (2#w#p) turn ventrally (blue). When phase is ignored there is no
discernible response (grey). Solid lines denote averages while colored bands display standard deviation of the mean. (D) Worm ‘‘steering.’’ A thermal
impulse conditioned on the instantaneous phase was delivered automatically and repeatedly, causing an orientation change _HH in the worm’s
trajectory. In this example lasting 4 minutes, asynchronous impulses produced a time-averaged orientation change Æ _HHæ = 0.01 rad/s (black), impulses
at positive phase produced a trajectory with Æ _HHæ = 0.10 rad/s (blue), and impulses at negative phase produced Æ _HHæ = –0.12 rad/s (red). This trajectory
response is consistent with the mode correlations seen in Figure 6C. We found 13 out of 20 worms produced statistically different orientation
changes under stimulated and non-simulated conditions while only 1 out of 20 worms responded in the same fashion when the phase was
randomized (p,0.01, Fisher exact test).
doi:10.1371/journal.pcbi.1000028.g006
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[11,39,40]. Nonetheless, with the advances in molecular, cellular,

and circuit analyses, our ability to probe the mechanisms which

generate behavior substantially exceeds our ability to characterize

the behavior itself. Perhaps our work provides a step toward

addressing this imbalance.

Materials and Methods

Tracking Microscopy
The imaging system consists of a Basler firewire CMOS

camera (A601f, Basler, Ahrensburg, Germany) with 4x lens (55–

901, Edmund Optics, Barrington, NJ) and a fiber optic trans-

illuminator (DC-950, Dolan-Jenner, Boxborough, MA) mounted

to an optical rail (Thorlabs, Newton, NJ). The rail is attached to a

XY translation stage (Deltron, Bethel, CT) which is driven by

stepper motors (US Digital, Vancouver, Washington). The stage

driver is a homemade unit utilizing a SimpleStep board

(SimpleStep, Newton, NJ) and Gecko stepper motor drivers

(Geckodrive, Santa Ana, CA). Image acquisition, processing, and

stage driver control was done using LabVIEW (National

Instruments, Austin, TX). Images of worms were isolated and

identified using the image particle filter. A raw unprocessed JPEG

image and a filtered process binary PNG image were written to

the hard drive at rates up to 32 Hz. Concurrently at 4 Hz, the

center of mass of the worm was calculated and the distance from

the center of the field of view in pixels was computed. An error

signal was then calculated via a coordinate transformation

between the camera reference frame and the translational stage

reference frame and the XY stage was moved to center the worm

in the field of view.

Worm Preparation
The C. elegans strain, N2, was grown at 20uC and maintained

under standard conditions [41]. Before each experiment, excess

moisture from NGM assay plates (1.7% Bacto Agar, 0.25% Bacto-

Peptone, 0.3% NaCl, 1 mM CaCl2, 1 mM MgSO4, 25 mM

potassium phosphate buffer, 5 mg/mL cholesterol) was removed

by leaving them partially uncovered for 1 hr. A copper ring (5.1-

cm inner diameter) pressed into the agar surface prevented worms

from crawling to the side of the plate. Young adults were rinsed of

E. coli by transferring them with a worm pick from OP50 bacterial

food plates into NGM buffer (same inorganic ion concentration as

NGM assay plates) and letting them swim for 1 minute. Worms

were transferred from the NGM buffer to the center of the assay

plate (9-cm Petri dish). The location of the dorsal side of the worm

was noted via a stereomicroscope. The plates were covered and

tracking began after 1 minute and lasted no longer than

60 minutes. In the rare cases where worms stopped moving

before the completion of the run, the data were excluded.

Eigenworms
Images of worms captured by the worm tracker were processed

using MATLAB (Mathworks, Natick, MA). Cases of self-

intersection were excluded from processing. Images of worms

were thinned to a single-pixel-thick backbone, and aligned so that

the dorsal/ventral directions were consistent. A spline was fit

through these points and then discretized into 101 segments,

evenly spaced in units of the backbone arclength. The N = 100

angles between these segments were calculated and an overall

rotation mode was removed by subtracting gh(s(i))/N from each

angle. The shape covariance matrix C(s, s9) = Æ(h(s)–Æhæ)(h(s9)–Æhæ)æ
was constructed from 9 freely crawling worms sampled at 4 Hz,

for a period of 30 minutes (a total of 60,000 images). Each

eigenworm um(s) is an eigenvector of the covariance matrix gs9 C(s,

s9)um(s9) =lmum(s). The fractional variance captured by K eigenvec-

tors is thus s2
k~

XK

m~1
lm=s2, where s2 =Smlm is the total

variance of the measurements. The same eigenworms shown in

Figure 2 were used throughout the various analysis reported in the

paper. The worm’s phase was defined as w = tan21(2a2/a1) where

a1 and a2 were both normalized to unit variance. The crawling

speed was defined as the time derivative of the worm’s center of

mass.

Equations of Motion
For the analysis of phase dynamics we sampled the worm shape

at 32 Hz. Data for the construction of the equations of motion

came from 12 worms, 5 trials per worm, with 4000 frames per

trial. We also filtered each mode time series through a low-pass

polynomial filter so that for each frame (26#m#3974),
~a(m)~

X25

n~{25

X4

j~0
pj(m{n)j where {pj} are the best-fit

polynomial coefficients. Mode time derivatives were calculated

using derivatives of the polynomial filter. None of our results

depend critically on the properties of the filter. The Langevin

equations governing the phase dynamics are shown Eq. (4) and we

learn the functions {F(w,v),s(w,v)} directly from the time series

[42,43]. By construction Æs[w(t),v(t)]g(t)æ = 0 and therefore the

optimal rms estimate of F(w,v) is the conditional mean S _vvjv,wT.

We estimate F by assuming a functional expansion

F (v,w)~
X5

m~{5

X5

p~0
ap

mvke{imw, where the model para-

meters {ap
m} were determined by minimizing the rms error

E2~
X

t
( _vv(t){F ½v(t),w(t)�)2 on training data (90%) and the

hyperparameters {mmax = 5, pmax = 5} were chosen to minimize

error on held-out data (10%). Once F is known we can determine

the noise in the system; we normalize Æg2æ so that

s2(v,w)~S _vv{F (v,w)ð Þ2jv,wT. The attractors contained within

our derived dynamics were obtained by evolving initial

conditions spanning the sampled {v, w} plane for long times

(93.75 s<47 cycles). In the deterministic dynamics all trajectories

evolve to one of four asymptotic states and we observed no

switching.

Thermal Impulse Response (Experiment)
Worms were prepared as described earlier but raised at a

lower temperature (17uC) leading to a lower average v before

the thermal stimulus. A collimated beam with a 1/e diameter of

5.6 mm (standard stimulus) or 1.5 mm (painful) from a 1440 nm

diode laser (FOL1404QQM, Fitel, Peachtree City, GA) was

positioned to heat the area covering the worm. The diode laser

was driven with a commercial power supply and controller

(Thorlabs, Newton, NJ). Power and duration of the beam was

controlled through software using LabVIEW. For each worm,

1000 seconds of data was collected in cycles of 50 seconds. 12.5

seconds into each cycle the laser was turned on for a duration of

75 ms at 150 mW (standard) or 250 ms at 100 mW (painful).

The temperature increase caused by the laser pulses was

measured using a 0.075mm T-type thermocouple (coco-003,

Omega, Stamford, CT) placed on the surface of the agar and

sampled with a thermocouple data acquisition device (USB-

9211, National Instruments). For each measurement, 60 trials of

30 s cycles were averaged. The temperature increase was

calculated by subtracting the maximum temperature (recorded

immediately after the laser pulse) from the baseline temperature

(recorded 9 s after the laser pulse). The temperature increase for

the standard pulse was 0.12uC and the increase of the painful

pulse was 0.73uC.
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Thermal Impulse Response (Analysis)
Data were taken from a collection of 13 worms, each stimulated

with 20 repetitions of a DT = 0.1uC pulse. In Figure 6A, the time-

dependent probability density rt(v) was smoothed before the onset

of the impulse with a gaussian low-pass filter of size 0.19 s in the t

direction and 0.17 cycles/s in the v direction. In Figure 6B the

correlation function C(t,t0)~S sin w(t)ð Þ a3(t0)ð ÞT was calculated as

follows. Far from the time of the impulse (frames 800 to 1574,

impulse on frame 400), we expect time-translation invariance

Cpost(t, t9) = g(t–t9)+jpost(t, t9) where g(D) = ÆC(i,j)æi–j =D is the true

correlation function and jpost(t,t9) characterizes statistical error.

Similarly in a time window around the impulse (frames 24 to 800),

Cstim(t, t9) = g(t–t9)+jstim(t, t9). However, the thermal impulse breaks

this invariance and jstim(t, t9) contains both sampling fluctuations

and stimulus-dependent correlation dynamics. To separate these

effects we use singular value decomposition to compare jpost

and jstim. We write each matrix jpost/stim(t, t9) =gt0Upost/stim(t,

t0)Spost/stim(t0, t0)Vpost/stim(t0, t9) and find that only two singular

values of jstim are significantly larger than jpost. We then

reconstruct the two-point function around the stimulus as

eCCstim(t,t0)~g(t{t0)z
X2

t00~1
Ustim(t,t00)Sstim(t00,t00)Vstim(t00,t0).

Thermal Steering
Preparation of worms and instrumentation were the same as

described for the thermal impulse response. However, instead of

processing worm images off-line, real-time calculation of the

eigenworms and shape phase w was done using custom dynamic-

linked image processing libraries written in C along with

supporting LabVIEW code. The modes were computed as

previously described except that the spline interpolation algorithm

was replaced with a Hermitian interpolation algorithm to reduce

the processing time. The processing time was short enough to

simultaneously track and calculate modes at 8 Hz. For phase

dependent measurements, the laser was fired when the worm was

moving forward and w fell within a prescribed interval (width 1

radian). The laser pulse (150 mW) lasted for 75 ms and caused a

temperature increase of 0.12uC. For each run a pair of triggering

phase windows (0 to 21, and 2.1 to 3.1 radians) corresponding to

the dorsal- and ventral-directed head swing was used. The

sequence of each run started with a 5 minute period of no

stimulus followed by the pair of phase dependent stimuli. The

order of each pair of stimulus conditions was switched for each

successive run. For the randomized pulse control experiments, the

laser was fired with a uniform phase probability, but with

conditions that restricted the firing interval to be longer than 2

seconds.

Steering and Turn Identification
The time-average change in orientation of the worm’s path, Æ _HHæ

(rad/s), was calculated from the angular changes between the

positions of the center of mass of the worm during forward runs of

at least 4 s in length. Given positions (r1, r2, r3,…, rN), the angles

between connecting segments (r2– r1, r3– r2, r4– r3,…, r(N-1)) were

calculated. Æ _HHæ was calculated in intervals of 10 s. Since the

distributions were Gaussian (data not shown) with similar variance,

we used the Student’s t-test to determine if the values of _HH under

thermal stimulation were significantly different than the control

(p,0.05). Since we were interested in the change in orientation

during forward motion we excluded trajectory data that contained

large turns or reversals along with angular changes greater than p/

4 radians. These events were automatically detected by measuring

the compactness of the worm shape. Compactness was calculated

by measuring the longest distance between two points in the worm

shape (also known as the max feret distance) and normalizing this

with the maximum value for the entire data run. Turns were

flagged when the compactness fell below 0.6.
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