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Abstract: In animal studies, vitamin D supplementation has been shown to improve gut microbiota and
intestinal inflammation. However, limited evidence exists on the effect of vitamin D supplementation
on the human gut microbiota. We examined the effect of vitamin D supplementation on faecal
microbiota in 26 vitamin D-deficient (25-hydroxyvitamin D (25(OH)D) ≤50 nmol/L), overweight or
obese (BMI ≥25 kg/m2) otherwise healthy adults. Our study was ancillary to a community based
double-blind randomised clinical trial, conducted between 2014 and 2016. The participants provided
stool samples at baseline and after 100,000 international units (IU) loading dose of cholecalciferol
followed by 4000 IU daily or matching placebo for 16 weeks. Faecal microbiota was analysed using 16S
rRNA sequencing; V6–8 region. There was no significant difference in microbiomeα-diversity between
vitamin D and placebo groups at baseline and follow-up (all p > 0.05). In addition, no clustering was
found based on vitamin D supplementation at follow-up (p = 0.3). However, there was a significant
association between community composition and vitamin D supplementation at the genus level
(p = 0.04). The vitamin D group had a higher abundance of genus Lachnospira, and lower abundance
of genus Blautia (linear discriminate analysis >3.0). Moreover, individuals with 25(OH)D >75 nmol/L
had a higher abundance of genus Coprococcus and lower abundance of genus Ruminococcus compared
to those with 25(OH)D <50 nmol/L. Our findings suggest that vitamin D supplementation has some
distinct effects on faecal microbiota. Future studies need to explore whether these effects would
translate into improved clinical outcomes.
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1. Introduction

Vitamin D deficiency is common worldwide mainly as a result of increased time spent indoors
and increased use of sun protection to reduce the risk of skin cancer [1]. A growing body of
evidence suggests extra-skeletal roles for vitamin D including insulin resistance, immune modulation,
and inflammation [2]. The anti-inflammatory effects of vitamin D have been studied extensively
in different conditions of acute and chronic subacute inflammation such as obesity, diabetes, and
inflammatory bowel disease [3–5]. Faecal calprotectin, a marker of intestinal inflammation, has been
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shown to be inversely related to serum vitamin D concentration in Crohn’s disease [6]. However,
findings from randomised clinical trials (RCTs) and observational studies on the effect of vitamin D
on inflammation are inconsistent [3,5,7–9] and the underlying mechanisms are not fully understood.
The effect of vitamin D on the gut microbiota has been proposed as a potential mechanism through
which vitamin D may exert its role in insulin resistance and inflammation. The gut microbiota
associations with chronic and inflammatory diseases have recently been recognised [10–12]. Limited
evidence from animal and in vitro studies supports a bidirectional relationship between vitamin D
and the gut microbiota [2,13–15]. Vitamin D has been shown to reduce bacterial infiltration into the
colonic epithelium as well as bacterial-induced inflammation in animal models [2,16]. The absence of
the vitamin D receptor (VDR) in VDR-knockout mice resulted in gut microbiota dysbiosis compared to
the wild-type mice [17,18] and treatment with vitamin D in a different study ameliorated inflammatory
lesions and symptoms in mouse models of colitis [15]. Vitamin D receptor stimulation in vitro and
vitamin D supplementation in patients with Crohn’s disease has been shown to increase the secretion
of antibacterial peptides such as cathelicidin and β-defensin 4A [5,19]. On the other hand, the gut
microbiota has been reported to affect vitamin D metabolism and expression of the vitamin D receptor
in the colonic epithelium [2,15]. However, very few observational and mechanistic studies have
investigated the interactions between vitamin D and the gut microbiota and to our knowledge,
there has been no previous RCT examining the effect of vitamin D supplementation on human
faecal microbiota.

We hypothesized that vitamin D supplementation alters the composition of the gut microbiota
and may influence systemic and intestinal inflammation. Therefore, we aimed to compare the effects
of vitamin D supplementation versus placebo on faecal microbiota, high sensitivity C-reactive protein
(hs-CRP), and faecal calprotectin in vitamin D-deficient and overweight or obese individuals who are
likely to be affected by subacute chronic inflammation.

2. Materials and Methods

2.1. Study Design and Participants

This study was ancillary to a parallel-group, double-blind, randomised, placebo-controlled trial
which was registered at clinicaltrials.gov as NCT02112721 [20]. The main outcomes of the study
have been published [21]. In summary, we recruited volunteers from the community in Melbourne,
Australia through advertisement. Inclusion criteria were as follows: aged 18 to 60 years, serum
25-hydroxyvitamin D (25(OH)D) concentration ≤50 nmol/L, body mass index (BMI) ≥25 kg/m2,
and stable weight for the last 12 months prior to participation (<5 kg weight change) with no intention
to lose weight. Exclusion criteria included any co-morbidities particularly diabetes, hypercalcaemia,
and cancer within the preceding 5 years as well as taking any medications or supplements, smoking,
alcohol intake >4 standard drinks (SD)/week for males and >2 SD/week for females, being pregnant,
post-menopausal, or lactating, or the presence of acute inflammation based on history or blood test.
Participants who were taking vitamin D supplements underwent a wash out period of three months
prior to participating in the study. Ethics approval was granted by the Monash University Human
Research Ethics Committee and Monash Health (ID: CF13/3874–2013001988). The study was conducted
at a single centre and all participants provided written informed consent.

At initial screening, participants underwent a physical examination including measurement of
blood pressure, weight and height, and routine blood and oral glucose tolerance tests (75 g OGTT) to rule
out any evidence of co-morbidities, diabetes, and acute inflammation. Two independent researchers
randomised the participants using a computerized random-sequence-generation program in blocks of
four by sex and season to receive a 100,000 international units (IU) loading dose of cholecalciferol orally
followed by 4000 IU/day (four capsules) for 16 weeks or matching placebo. Participants were instructed
to maintain their usual diet and exercise for the study duration. All participants as well as researchers
who conducted the study and analysed the data were blinded until after the data were analysed.
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2.2. Outcome Measures

Body mass index (BMI) was calculated as weight (kg)/height squared (m2). Dual energy x-ray
absorptiometry (DXA) (Lunar Radiation Corp., Madison, WI, USA) was used to assess body composition.
Fasting venous blood samples were collected for 25(OH)D (direct competitive chemiluminescent
immunoassays (DiaSorin Inc., Stillwater, MN, USA), inter- and intra-assay CVs of <10% and <4%,
respectively), full blood counts (Beckman coulter LH750, Lane Cove, Australia), liver and kidney
function tests (all using commercial enzymatic immunoassays, Beckman Coulter, Australia) and
hs-CRP (sensitive near-infrared particle immunoassay rate methodology on a Synchron LX System
Chemistry Analyser, Beckman Coulter, Australia). Faecal calprotectin was measured by sandwich
immunoassay (Buhlmann, Switzerland). Dietary assessment at baseline and follow up was performed
using the 3-day food diary and Foodworks 8.0 Professional; Xyris Software. Validated questionnaires
were used to obtain data on physical activity (International Physical Activity Questionnaire [22]),
and sun exposure [23] at baseline and follow up. Detailed description of the two questionnaires and
calculation of physical activity and sun exposure index scores are published in our protocol [20]. Briefly,
in the physical activity questionnaire, participants were asked to report the number of days, hours,
and minutes engaged in vigorous and moderate activity, walking, and sitting during the previous
seven days. Regarding the sun exposure, participants reported the average number of hours spent
outdoors on a working and non-working day in summer and winter. In addition, they described
clothing worn outdoors to help determine the fraction of body surface area (BSA) exposed to sunlight.
A sun exposure index score was calculated as hours exposed to sunlight per week multiplied by the
fraction of BSA exposed during that time [23].

2.3. Microbiome Profiling

Stool samples were collected at baseline and follow-up. Participants were instructed to keep the
samples in the fridge if not delivered within four hours of collection. All samples were stored at –80 ◦C
before the microbiota analysis.

DNA extraction from 0.25 g of thawed stool sample was performed using repeated bead beating and
column (RBB+C) method using sterile zirconia beads (0.1 and 0.5 mm diameter) with a 3 min mechanical
disruption in 300 µL lysis buffer (NaCl 0.5 mol/L, Tris-HCL 50 mmol/L, pH 8.0, EDTA 50 mmol/L and
SDS 4% w/v). Genomic DNA was further isolated using the Maxwell 16 Blood DNA purification kit
following the manufacturer’s recommendations. A NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies) was used to measure DNA concentration. The V6–V8 region was amplified and barcoded
using the universal primers 926F (5’-TCG TCG GCA GCG TCA GAT GTG TAT AAG CAG AAA CTY
AAA KGA ATT GRC GG – 3’) and 1392R (5’ GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA
GAC GGG CGG TGW GTR C -3’) amplifying 500 bps of the 16S rRNA gene. PCR products were further
purified, quantified, normalised, and pooled at The University of Queensland Australian Centre for
Ecogenomics. The produced library was sequenced using Illumina MiSeq platform, according to the
manufacturer’s instructions.

Quantitative Insights into Microbial Ecology (QIIME) [24] version 1.9.1 software (www.qiime.org)
was used to join, demultiplex, and quality filter the generated sequences. The operational taxonomic
units (OTU) were picked using an open reference OTU picking method using 97% identity to the
Greengenes 13_8 database. OTUs with a relative frequency below 0.01 were excluded. The resultant
OTU table was normalised using the cumulative sum scaling (CSS) normalisation method. OTU tables
at different taxonomic levels (phylum, class, order, family, and genus) were obtained.

2.4. Statistical Analysis

Statistical analyses were performed per protocol using SPSS (IBM version 24, Armonk, NY:
IBM Corp) and the QIIME and Calypso software tools for microbiota analyses. Histograms and
Shapiro–Wilk tests were used to assess whether variables were normally distributed. Data are reported

www.qiime.org


Nutrients 2019, 11, 2888 4 of 13

as mean (standard deviation) for normally distributed variables or median (interquartile range) for
variables with skewed distributions. Alpha-diversity, defined as the total number of OTUs within
one sample, was assessed using the paired Chao-1 index and Shannon index, which also evaluates
the relative abundance of the various OTUs within the sample. Unsupervised ordination method
(principal component analysis (PCA)) and supervised multivariate analysis (canonical correspondence
analysis (CCA)) were used to identify significant differences in the microbiome composition between
vitamin D and placebo groups (β-diversity). Differences in taxa at various levels were evaluated by
Wilcoxon rank testing and linear discriminant analysis (LDA) effect size (LEfSe), where a higher LDA
score reflected a more prominent difference in abundance between the vitamin D and placebo groups.
The value of three was set as the significant differential threshold for the logarithmic LDA score [25].

The associations between the taxa abundance and anthropometric and inflammatory
parameters were examined by bootstrapped Spearman rank correlation analysis. For all analyses,
the Benjamini–Hochberg correction was performed in QIIME to adjust for false discovery rate (FDR)
and to correct for multiple testing.

In addition, a subgroup analysis was conducted to compare the faecal microbiome from individuals
with vitamin D deficiency (25(OH)D <50 nmol/L) with those who achieved a 25(OH)D concentration
higher than 75 nmol/L at follow-up as there is evidence suggesting that vitamin D supplementation
has more beneficial effects at serum concentrations higher than 75 nmol/L [5,26].

For variables other than microbiota, differences between vitamin D and placebo groups were
examined using independent Student’s t-tests or Mann–Whitney U tests (for non-normally distributed
variables). A two-tailed p-value <0.05 was considered statistically significant.

3. Results

Figure 1 presents the CONSORT (Consolidated Standards of Reporting Trials) diagram of the
participants’ flow. This sub-study included 38 individuals (22 males and 16 females), aged 18 to 57
years who provided stool samples at baseline. Six participants withdrew or had to be excluded prior
to randomisation. Thirty-two participants were randomly assigned to receive vitamin D (n = 17) or
placebo (n = 15) between September 2014 and July 2016. At follow-up, stool samples were received
from 26 participants, 14 in the vitamin D and 12 in the placebo group (Figure 1). The participants’
characteristics at baseline and follow-up are presented in Table 1. There were no significant differences
in baseline characteristics including serum 25(OH)D concentration, physical activity, sun exposure,
total daily energy intake and dietary intake of carbohydrates, fat and proteins between the two groups.
Baseline faecal calprotectin and hs-CRP were higher in the vitamin D group when compared to the
placebo group. However, these were not statistically significant (Table 1).
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Table 1. Baseline characteristics of the participants.

Variable Vitamin D (n = 14) Placebo (n = 12)

Baseline Follow up Change Baseline Follow up Change * p-Value

Male/Female 5/9 5/7
Age (years) 34.36 (9.07) 32.75 (10.3)

BMI (Kg/m2) 31.54 (4.4) 31.73 (4.1) 0.20 (0.5) 31.07 (4.1) 31.28 (5.3) 0.21 (1.4) 0.9
% body fat 40.26 (9.1) 37.4 (17.8) −0.53 (1.4) 41.79 (10.0) 41.2 (18.2) −0.37 (2.01) 0.8

Daily energy intake (KJ) 8076.61 (1910.1) 7641.19 (1769.5) 325.63 (2253.84) 8298.33 (4038.3) 7987.06 (2427.3) −565.71 (2805.57) 0.5
Daily carbohydrate intake (g) 213.85 (54.9) 203.87 (77.4) −18.88 (52.40) 230.20 (106.3) 193.80 (45.5) −41.10 (64.58) 0.5

Daily fat intake (g) 74.53 (24.2) 68.99 (17.3) 0.47 (27.60) 73.93 (46.1) 77.88 (38.5) −2.13 (30.86) 0.8
Daily protein intake (g) 92.31 (28.8) 84.52 (19.8) 1.10 (33.77) 60.54 (48.5) 99.32 (52.1) 1.15 (61.47) 0.9

Sun exposure index score 3.05 (2.2) 4.53 (2.8) 3.54 (6.12) 4.08 (3.4) 4.96 (6.3) −2.18 (11.31) 0.1
Daily physical activity (IPAQ

MET score) 2340.58 (1600.0) 1638.00 (1086.0) −789.77 (1245.62) 3506.45 (2029.1) 3761.41 (3951.0) −249.55 (4690.11) 0.7

Faecal calprotectin (µg/g) 12.00 (40.0) 6.50 (48.9) 0.00 (11.16) 5.95 (10.6] 11.50 (48.0) 4.10 (40.1) 0.5
hs-CRP (mg/L) 2.2 (3.6) 1.85 (4.8) 0.05 (1.00) 1.05 (3.1) 1.60 (2.3) 0.15 (1.30) 0.9

25(OH)D (nmol/L) 31.93 (12.7) 91.14 (25.8) 59.21 (26.67) 30.25 (11.2) 31.58 (14.11) 1.33 (8.50) <0.001

Data are presented at mean (standard deviation) and median (interquartile range) for normally and not-normally distributed variables, respectively. BMI: body mass index, hs-CRP:
high-sensitivity C-reactive protein, IPAQ MET Score: international physical activity questionnaire- multiples of the resting metabolic rate score. Sun exposure index score: Average sun
exposure index for winter and summer calculated as hours sun exposure per week x fraction body surface area exposed. * p-value: for the differences in change scores at follow-up between
vitamin D and placebo groups.
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Figure 1. Consort flow chart for the microbiome study.

After 16 weeks of intervention, serum 25(OH)D concentrations were significantly higher in the
vitamin D group when compared with the placebo (mean ± SD: 91.14 ± 25.8 vs. 31.58 ± 14.11 nmol/L)
(Table 1). The vitamin D and placebo groups were not different in changes in BMI, % body fat,
hs-CRP, or faecal calprotectin as well as in diet, physical activity, and sun exposure at follow-up
(Table 1). There were no relationships between 25(OH)D and hs-CRP or faecal calprotectin at baseline
or follow-up (p > 0.1 for all).

3.1. Effect of Vitamin D Supplementation on Faecal Microbiota

The alpha diversity of the microbiota profile at baseline was not different between the vitamin D
and placebo groups (p = 0.9). Similarly, at follow-up, there were no significant differences in microbiota
richness and evenness between the vitamin D and placebo groups (Chao 1 index p = 0.06, Shannon
index p = 0.59, Figure 2). However, the vitamin D-supplemented group showed a reduction in bacterial
richness at follow-up compared to the baseline (p = 0.050), whereas no significant differences were
observed in the placebo group. Unsupervised hierarchical clustering analysis showed no significant
clustering of the follow-up samples based on treatment allocation (p = 0.25, Figure 3A); however, there
was a significant association between community composition and vitamin D

Regarding supplementation at the genus level in the supervised hierarchical clustering analysis
(p = 0.04, Figure 3B), the vitamin D group had a significantly higher abundance of genus Lachnospira
and lower abundance of genus Blautia compared to the placebo group after adjusting for multiple
testing (linear discriminate analysis >3.0, Figure 4). There were no significant correlations between
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genus Lachnospira or Blautia and anthropometric measures (BMI, % body fat) or inflammatory markers
(hs-CRP, faecal calprotectin) in the vitamin D or placebo group at follow-up (all p > 0.3).
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3.2. Subgroup Analysis

We compared the participants who had a serum 25(OH)D concentration lower than 50 nmol/L
(n = 12) with those who achieved a 25(OH)D concentration higher than 75 nmol/L (n = 10) at
follow-up. Only one participant from the vitamin D group had a 25(OH)D <50 nmol/L and none of the
participants from the placebo group had a 25(OH)D >75 nmol/L. Figure 5 illustrates a network analysis
of correlations of different genera with the two subgroups. There were no significant differences in
α-diversity (individual samples diversity). Furthermore, the unsupervised analysis did not show any
significant difference in β-diversity between the two groups. However, supervised analysis revealed
a positive clustering of the samples based on 25(OH)D concentrations at the genus level (p = 0.04).
Low vitamin D was associated with family Clostridiaceae (р = −0.54, P = 0.001), genus Ruminococcus
(р = −0.51, P = 0.004). High vitamin D was associated with genus Coprococcus (р = 0.50, P = 0.01),
and species Coproccous eutactus (р = 0.67, P = 0.02). We did not adjust for multiple testing due to the
small population size.
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4. Discussion

We performed a randomised, placebo-controlled, double-blind study in a cohort of vitamin
D-deficient overweight or obese otherwise healthy individuals and demonstrated the effects of vitamin
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D supplementation on faecal microbiota composition. We found that vitamin D supplementation
was associated with higher abundance of genus Lachnospira and lower abundance of genus Blautia.
Participants who achieved a 25(OH)D concentration above 75 nmol/L at follow-up had a higher
abundance of genus Coprococcus and lower abundance of genus Ruminococcus compared to those with
25(OH)D concentrations lower than 50 nmol/L.

Serum 25(OH)D concentration has been shown in observational studies to be related to the
abundance of specific bacterial genera. In a study of 3188 patients with inflammatory bowel
disease, higher serum 25(OH)D concentrations were associated with lower risk of Clostridium difficile
infection [27]. Another study by Luthold et al. involving 150 young healthy adults showed higher
abundance of Prevotella and lower abundance of Haemophilus and Veillonella in those with highest tertile
of vitamin D intake compared to others [9]. Vitamin D intake (through diet and supplements) was
associated with serum 25(OH)D concentration in their study. They also reported inverse associations
between 25(OH)D and Coprococcus and Bifidobacterium, which were attenuated after adjusting for
inflammatory markers [9]. The effect of vitamin D supplementation on human gut microbiota has been
examined in two previous open label pilot studies [28,29]. The first study examined the effect of vitamin
D supplementation (5000 IU daily) for 90 days in seven females with multiple sclerosis (MS) and eight
healthy controls. In agreement with our findings, faecal microbiota analysis at follow-up showed
decreased abundance of genus Ruminococcus and additionally, increased abundance of Akkermansia and
Faecalibacterium in this cohort [29]. In the subgroup analysis, MS patients who were not on glatiramer
treatment showed an increase in abundance of Coprococcus, Akkermansia, and Faecalibacterium after
vitamin D supplementation [29]. The second pilot study included 16 healthy volunteers (nine males
and seven females) who received cholecalciferol for a total of eight weeks (140 IU/kg/day, maximum
68,600 IU/week for four weeks followed by 70 IU/kg/day, maximum 34,300 IU/week for the remainder
of the study). The participants underwent endoscopies to examine biopsies from seven sites in the
gastrointestinal (GI) tract and also provided stool samples for microbiota analysis [28]. This study
reported a significant change in the gut microbiota in the upper GI tract (stomach and duodenum)
with a decreased abundance of Gammaproteobacteria including Pseudomonas spp. and Escherichia/Shigella
spp. as well as increased bacterial richness. However, no significant change was found in lower GI
and faecal microbiome, which may be explained by the majority of vitamin D uptake occurring in the
small intestine, particularly the jejunum and ileum [30]. Both studies had smaller samples sizes than
our RCT and were not randomised or placebo-controlled.

Mechanistically, evidence from in vitro and in vivo studies also supports a role for vitamin D
in gut microbiota composition and function as well as microbiota-induced inflammation and innate
immune response [31]. All components of the vitamin D system including the VDR, vitamin D response
elements (VDREs) and enzymes involved in the metabolism of active vitamin D (1,25 dihydroxyvitamin
D3 (1,25(OH)2D3)) are present in colon epithelial cells [32–34]. VDR knock-out mice or mice that
cannot produce 1,25(OH)2D3 have significantly different faecal microbiome composition compared to
wild-type mice [18,35], suggesting a role for VDR and vitamin D in microbiota modification. Vitamin
D3 supplementation to naked mole rats, which are naturally vitamin D-deficient, was shown to enhance
microbial-controlled fermentation and production of short chain fatty acids in caecum [36]. In addition,
vitamin D controls inflammatory responses to gut bacteria by modulating the antigenic signalling traffic
between the gut microbiome and dendritic cells in the colon epithelium [18,37]. Cross-sectional studies
of patients with inflammatory bowel disease have shown an inverse relationship between serum
25(OH) concentration and gut inflammation as measured by faecal calprotectin [6,38]. However, similar
to our study, a pilot RCT involving 27 patients with Crohn’s disease in remission found no significant
difference in faecal calprotectin after vitamin D supplementation compared to the placebo [5].

We found an increased abundance of Lachnospira and Coprococcus and a decreased abundance of
Blautia and Ruminococcus with higher serum 25(OH)D concentrations. Some evidence from previous
studies indicates a potentially beneficial effect for our observations. For instance, the abundance of
Lachnospira has been reported to be lower in obese versus lean adults [39] and infants with lower
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abundance of Lanchnospira are at increased risk of developing asthma when compared to the controls [40].
These may suggest a beneficial effect of Lachnospira on BMI and immune response. Genus Coprococcus
was shown to be increased in abundance in children living with pets [41] and in community-dwelling
elderly when compared to aged care residents [42]. Additionally, its abundance is decreased in
autistic children [43] and HIV patients [44]. Taken together, these findings indicate that Coprococcus
abundance may be related to better health status. Furthermore, both Blautia and Ruminococcus genera
have been reported to be associated with insulin resistance, higher HbA1c, and inflammation in other
studies [45–47]. As such, our findings of reduced abundance of Balutia and Ruminococus after vitamin
D supplementation in overweight or obese individuals may have a favourable impact on glycaemic
control in this population. However, the significance of our results needs to be further assessed in
future longitudinal studies.

In our RCT, vitamin D-induced alterations in faecal microbiota were not associated with any of the
anthropometric outcomes or inflammatory markers. This is likely attributable to the small sample size and
limited number of participants who achieved a serum 25(OH)D concentration above 75 nmol/L (n = 10).

To our knowledge, this is the first RCT to examine the effect of vitamin D supplementation on
human faecal microbiota. The study had strict inclusion criteria that eliminated the confounding effects
of co-morbidities, medications, alcohol, and smoking. Furthermore, the vitamin D and placebo groups
were well-matched for sun exposure, physical activity, and diet composition at the baseline and there
were no significant differences in these parameters at follow-up between the two groups.

However, the effect of vitamin D on faecal microbiota was a secondary outcome of this RCT
and the sample size might not have been sufficiently powered to identify other potential differences
between the vitamin D and placebo groups. Additionally, we only studied faecal microbiota, which
may not fully represent the tissue microbiota or the microbiota residing in the upper GI tract. We did
not analyse fresh samples and this may have impacted our results. However, all samples were stored
in −80 ◦C within four hours of collection, otherwise were kept in the fridge and frozen in less than
24 h. Finally, our findings may not be generalizable to different populations such as lean individuals
or those with an underlying inflammatory disease. To conclude, our study demonstrated a distinct
impact of vitamin D supplementation on faecal microbiota in vitamin D-deficient overweight or obese
adults, which may have favourable effects on BMI, insulin resistance, and inflammation in this group.
This is the first RCT examining the effect of vitamin D on human faecal microbiota and our results as
well as clinical significance of these outcomes need to be further demonstrated by additional RCTs.
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