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ABSTRACT

Biomedical literature provides a rich but unstruc-
tured source of associations between chromosomal
regions and biomedical concepts. By mining
MEDLINE abstracts, we annotate the human
genome at the level of cytogenetic bands. Our
method creates a set of chromosomal aberration
maps that associate cytogenetic bands to biomedi-
cal concepts from a variety of controlled vocabul-
aries, including disease, dysmorphology, anatomy,
development and Gene Ontology branches. The
association between a band (e.g. 4p16.3) and a
concept (e.g. microcephaly) is assessed by the
statistical overrepresentation of this concept in
the abstracts relating to this band. Our method
is validated using existing genome annotation
resources and known chromosomal aberration
maps and is further illustrated through a case
study on heart disease. Our chromosomal aberra-
tion maps provide diagnostics support to clinical
geneticists, aid cytogeneticists to interpret and
report cytogenetic findings and support research-
ers interested in human gene function. The method
is available as a web application, aBandApart,
at http://www.esat.kuleuven.be/abandapart/.

INTRODUCTION

Forward genetics, i.e. identification of gene mutations
that underlie a phenotype of interest in a particular
individual, is a key strategy to characterize gene function.
In humans, where mutagenesis screens are impossible,
genomic information from patients with developmental
disorders can serve as the basis for disease gene discovery.

Different positional cloning strategies, such as cytogenetic
studies and linkage and association studies, can subse-
quently identify the chromosomal region where the
disease gene is located.
To speed up the process of gene discovery, some

attempts have been made to associate genomic rearrange-
ments (such as subchromosomal deletions and duplica-
tions) to congenital malformations based on clinical and
cytogenetic information from patients. Brewer et al.
analyzed detailed clinical and cytogenetic information
associated to a large number of autosomal deletions
(1) and duplications (2) to construct a chromosome map
showing associations of congenital malformations and
chromosomal regions. Notably, these maps have not been
updated since their publication.
Research groups with an interest in the etiology of,

for example, congenital malformations often lack an
extensive pool of patients to conduct large and infor-
mative association studies. Several public and private
databases are being constructed to support such efforts by
aggregating case reports and encouraging the exchange of
patient information to complement private patient pools.
Examples are the Catalogue of Unbalanced Chromosome
Aberration in Man (3), the Human Cytogenetics
Database and ECARUCA (www.ecaruca.net),
DECIPHER (decipher.sanger.ac.uk), the Chromosome
Anomaly Collection (www.som.soton.ac.uk/research/
geneticsdiv/), the Mitelman Database of Chromosome
Aberrations in Cancer (cgap.nci.nih.gov/Chromosomes/
Mitelman), the Mendelian Cytogenetics Network
DataBase (www.mcndb.org), Orphanet (www.orpha.net),
etc. These efforts differ in setup but aim at aggregating
chromosomal aberration information and charting phe-
notypes and case reports. Some catalogs are available only
in print or at a licence fee, other databases require
registration. Others are open and searchable by the public,
but include no specific means for data mining.
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The information available in the public corpus of
biomedical literature is a powerful alternative resource
for patient reports and cytogenetic findings to conduct
association studies. This corpus can be seen as a de facto
genotype–phenotype association database. Moreover, it is
not limited to case reports listing congenital malforma-
tions. Apart from disease related concepts, it is a rich
source of information with regard to anatomy and
development, systems and tissues and molecular functions
and biological processes as well.
We have developed a method to automatically create

chromosomal aberration maps fromMEDLINE abstracts
that mention (ranges of ) cytogenetic bands. Through
the use of multiple structured vocabularies, association
with a band is not limited to a disease or syndrome, but
also covers dysmorphology, human development and
cell biology. The online application built on this method
forms a bridge to the relevant and most current literature
for further analysis by the researcher, rather than merely
providing a catalog of genotype–phenotype associations.
It thereby facilitates studies in the etiology of disease and
the identification of disease genes. This resource is freely
accessible and will stay up-to-date through regular
automatic updates.

Related literature-mining methods

A number of tools and methods are currently available
and offer capabilities for mining associations from
literature between disease and genomic locations,
although none have a scope identical to our method.
G2D (4) is a method for the prioritization of genes

according to their relation to inherited disease. It allows
a user to enter an OMIM disease identifier and a genomic
region of interest. Through sequence and biomedical
database analysis, G2D then identifies genes potentially
associated with the disease.
HCAD (5) (Human Chromosome Aberration Data-

base) is a web-based text-mining tool supporting analysis
of human breakpoint data by mining the scientific
literature to generate information on all human
breakpoints.
Korbel et al. mine MEDLINE to identify clusters

of gene-phenotype associations based on information on
prokaryotic genomes (6). The results are not available
through a web interface.
Tiffin et al. use an anatomical ontology to integrate

text mining of biomedical literature and data mining of
available human gene expression data (7). Their method
prioritizes candidate genes according to their expression
in disease-affected tissues.
iHOP (8) (information Hyperlinked Over Proteins) uses

genes and proteins from multiple organisms as hyperlinks
between sentences and abstracts to access and navigate
PubMed.
MimMiner (9) is restricted to mining the OMIM

database and ranks related phenotypes for a given
phenotype or OMIM identifier. GeneSeeker (10) is

a related tool that aims at the identification of genes
underlying human genetic disorders by combining data on
cytogenetic locus, phenotypes and expression patterns,
to generate a list of candidate genes.

GFINDer (11) mines text data present in OMIM to
annotate genes with gene ontology concepts and statisti-
cally selects relevant annotation categories. Phenotype
descriptions are normalized to handle synonymy and
are hierarchically structured.

Our method relates to these approaches but differs
in several aspects. First, instead of extracting MEDLINE
references linked to OMIM entries, or mining only text
present in OMIM, MEDLINE abstracts are directly
mined for cytogenetic bands and biomedical concepts.
While curated databases offer high quality annotations
and hence reduce noise, the use of abstracts allows
mining to be more complete and up to date. Second,
gene prioritization tools like G2D build an internal
representation for the disease or phenotype under study
through the intermediate association of MeSH and GO
terms. This allows relating genes to phenotypes by means
of chemicals, molecules, etc. In our method, this internal
association process is rendered explicit through the choice
of controlled vocabularies that allow the user to elucidate
overrepresented associations between loci and concepts.
Third, most of these tools offer only a disease-specific
approach (in some cases using other annotations inter-
nally) while aBandApart explicitly allows for additional
perspectives or user interests, such as dysmorphology,
anatomy, development, molecular function, etc.

ABandApart is a novel analysis method based on
abstracts present in MEDLINE for cataloguing biomedi-
cal concepts according to their association with chromo-
somal bands, which can be considered as a cytogenetic
approach to genotype–phenotype correlation. Rather
than prioritizing candidate genes, it focuses on cytogenetic
bands and offers a portal into relevant literature. Through
its different approach and goal, it can be considered
complimentary to tools that already exist.

MATERIALS AND METHODS

Three elements are necessary to automatically
build a chromosomal aberration map from MEDLINE
abstracts: (1) identification of cytogenetic bands,
(2) identification of concepts from multiple vocabularies
and (3) assessment of the statistical overrepresentation
of a concept among the abstracts relating to a band.

To discover overrepresented association between
concepts and cytobands, we must first locate cytogenetic
band identifiers and concepts from the vocabularies
(and their synonyms) in the MEDLINE corpus. We
have extended Lucene (12), a high-performance text-
indexing engine written in Java, to parse all MEDLINE
abstracts and extract cytogenetic bands, ranges of bands
and biomedical concepts that are present in our different
structured vocabularies.
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Identification of cytogenetic bands

The International System for Human Cytogenetic
Nomenclature (ISCN) gives a universal terminology of
the description of chromosomal anomalies based on
cytogenetic staining techniques (13). This nomenclature
guarantees that all chromosomal anomalies are reported
in a standardized way. Hence, reports in literature
typically mention bands to delineate a genomic region
at various levels of cytogenetic resolution. Because of
this specific nomenclature, bands can be unambiguously
extracted from text in the majority of cases. A similar
approach is adopted in HCAD, where the nomenclature
for translocations is used.

Although band patterns delineate chromosomal regions
at a less detailed resolution than markers, base-pair
positions, BAC clone identifiers, or genes, this approach
is advantageous because of its effectiveness. Indeed, in
most cases, chromosomal deletions and duplications have
so far been resolved and reported only if their size was
of the order of a cytogenetic band. Also, more accurate
identifiers of genomic location are not used frequently
or consistently enough in abstracts to construct a large
and reliable mapping between genomic location and
literature.

A range is a delineation of consecutive cytobands,
possibly even spanning a centromere. Whenever such
a range is encountered in an abstract, all the intermediate
cytobands are associated to the abstract as well. A custom
ontology resolves all bands in a range: a document
mentioning 1p21.2-q23.1 will be annotated to all bands in
between. In addition, an association to a certain abstract
is transferred from a certain cytoband upwards through
different levels of cytogenetic resolutions. This implies
documents mentioning 3q26.32 will be annotated to
3q26 as well.

Based on this premise, we constructed a map that links
MEDLINE abstracts to cytogenetic bands. This highly
specific map was then used to characterize individual
cytogenetic bands based on the content of the abstracts
they are linked to. As the contents of the literature indices
underlying aBandApart are updated regularly, the valida-
tion is based on a version of the tool that was frozen
at the state of MEDLINE on 6 September 2005. Within
that MEDLINE corpus, we identified 36092 abstracts
mentioning at least one cytogenetic band or range of
bands. From this set, 293 808 associations between bands
and concepts were extracted. Nearly 60000 publications
are added to the MEDLINE corpus every month. Hence,
the number of abstracts and associations is expected to
grow steadily as the system is continuously brought up to
date.

A potential source of concern for the text-mining
algorithm is that man is not the only organism for which
banding patterns can be discerned through cytogenetic
staining. Band nomenclatures also exist for other organ-
isms. Genome architecture differs among species, which
implies that assertions on human genotype–phenotype

correlations are contaminated by literature dealing with
nonhuman organisms for which a similar band pattern
nomenclature is used. To assess the importance of this
problem, we need to know the prevalence of documents
dealing with nonhuman species in our corpus. We consid-
ered the complete set of documents that mention one
or more cytogenetic bands and indexed this set using a
vocabulary of both common and scientific organism
names based on English animal-related lists (nouns and
adjectives), as well as the NCBI taxonomy (www.ncbi.
nlm.nih.gov/Taxonomy/). From this vocabulary, 489
distinct terms and phrases were detected at least once in
the document set. The most frequently occurring species
are shown in Table 1.
Note that the results from Table 1 do not imply that

14 865 documents discuss human cases and 3664 docu-
ments discuss mouse: on the one hand, the term human
does not necessarily occur in all abstracts on human.
On the other hand, the terms human and mouse can
co-occur, since some abstracts discuss patients as well as
model organisms. Although the mere occurrence of
terms and phrases relating to organisms does not clearly
elucidate the topic of a document, this brief analysis
allows us to estimate how species are distributed as
subjects of documents.
A clear majority of all references to organisms in our

test corpus is human. The second most frequent organism
is mouse and is referenced four times less often in the test
documents. However, it does not add noise to the
cytogenetic band detection because its band-staining
patterns are indicated with capital letters followed by a
number. The third most frequent organism is rat, as rat
occurs in 3.47% of the test document set. As the rat
chromosome nomenclature closely follows the human
cytogenetic nomenclature (14), abstracts dealing with rat
band patterns are a potential source of contamination—
however, they represent only a small fraction of the
abstracts.
The problem is further reduced because of at least

two reasons. First, only a fraction of these rat-related
documents actually contaminate the genome-to-literature
map. We manually verified a random sample of 30

Table 1. The most frequently occurring species in a set of 36 082

cytogenetic MEDLINE abstracts mentioning cytogenetic bands

Rank Phrase Rank Phrase

14 865 Human 126 Pig
3664 Mouse 107 Primates
1252 Rat 98 Papillomavirus
590 Rodent 70 Cat
474 Hamster 70 Bacteria
240 Bovine 68 Zebrafish
214 Melanogaster 67 Sheep
183 Chicken 63 Canine
178 Porcine 63 Troglodytes
135 Rabbit 61 Monkey
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documents containing the term rat. Only a third contained
cytogenetic bands that indeed referred to the rat genome,
the other documents all contained bands that referred only
to the human genome. This suggests that contamination of
the genome-to-literature map by nonhuman band patterns
is smaller still. Second, not all bands stand the risk
of contamination. Human bands at high resolution (e.g.
4q15.32) do not occur in rat. In addition, for chromosome 1
(for example) and at the same cytogenetic resolution for rat
and human, only 12 of 21 rat bands and only 12 of 24
human bands occur in both nomenclatures.
This brief analysis shows that the contamination effect

must be kept in mind, but does not weigh significantly on
the results of our method.

Vocabularies

Geneticists, pediatricians or physicians in general, dys-
morphologists, molecular cell biologists and etiologists
are all interested in making genotype–phenotype correla-
tions. They have however each a different focus—for
example, a different level of emphasis on clinical
practice versus molecular biology research. To retrieve
knowledge that is interesting to a specific researcher at a
given time, we increase the specificity of the text-mining
results by limiting its scope through controlled lists of
concepts derived from biomedical vocabularies and
ontologies.
These lists or sets of linked concepts confine the results

of our information extraction method to the current
interest of the researcher: different domain-specific voca-
bularies define from which perspective to annotate the
genome. The available options include dysmorphology,
anatomy-specific, gene- or protein-centered, gene
ontology and disease-related perspectives on the litera-
ture. An overview is shown in Table 2.
Words as well as phrases are detected as concepts.

In the case of ontologies, no relational information is
kept, except from synonymy, which is taken into account
when applicable (e.g. with LDDB as a vocabulary, the
occurrence of the phrase small head will trigger an
association to microcephaly).

The choice of controlled vocabularies is crucial to the
scope and applicability of this method. The vocabulary
sources were selected with both a research and diagnostics
perspective in mind. For example, options range from a
rather general heritable disease vocabulary (OMIM) to
a specific Dysmorphology concept hierarchy (LDDB).
Also, each vocabulary focuses on a different level of
biological detail, from small (molecular, biochemical)
over intermediate (cellular and tissue level) to large
(organs and anatomy).

The sources for these vocabularies were chosen based
on how authoritative they are in their respective field.
Several of these vocabularies have already proven their
value in previous work on gene profiling and prioritiza-
tion. For example, the GO-derived vocabularies boost
prioritization performance in Endeavour (15), our web-
based method for candidate gene prioritization by
genomic data fusion. Additionally, GO, MeSH and
OMIM vocabularies have proven their merit in
TXTGate, a web tool in support of previous work on
text-based gene and gene group profiling (16). The
dysmorphology vocabulary is also widely used in its
field: first, the Oxford Medical Dictionary dysmorphology
and neurology databases that build on the LDDB
taxonomy are a widely used clinical reference. Second,
LDDB is the elementary dysmorphology taxonomy
within DECIPHER, the Database of Chromosomal
Imbalance and Phenotype in Humans using Ensembl
Resources, developed and hosted at the Wellcome Trust
Sanger Institute (decipher.sanger.ac.uk).

Below, individual aBandApart vocabularies, their size,
construction and origin are discussed in detail. The
vocabularies themselves can be obtained from the authors
upon request.

First, the OMIM- and LDDB-derived vocabularies
provide hereditary disease and dysmorphology pheno-
type-specific views.

Second, a number of vocabularies have been
constructed to mine literature at different levels of
detail. From GO, vocabularies at the molecular
and cellular level are constructed. TDMS offers
tissues, organs and systems. Finally, two anatomical

Table 2. Different controlled vocabularies in aBandApart

Name Function Example Size

MeSH Medical subject headings Chemicals, medical concepts 16.998
GO.B Biological processes ‘Cell growth’, ‘signal transduction’ 1.120
GO.C Cellular components ‘Proteasome’, ‘nucleus’ 402
GO.M Molecular functions ‘ATPase activity’ 701
GO.E Gene ontology All of the above 2.170
LDDB London dysmorphology database ‘Microcephaly’ or ‘small head’ 808
OMIM Genetic disorders ‘Attention deficit hyperactivity disorder’ 1.716
CBIL Human anatomy ‘Heart muscle’ 303
OHDA Embryo development ‘Early stage, fetus’ 380
TDMS.s Systems, tissues and sites ‘Cardiovascular system’ 392
TDMS.l Microscopic lesions ‘Disseminated intravascular coagulation’ 204

A total of 11 vocabularies are present, shown above with an example concept and the number of concepts in each vocabulary.
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vocabularies are provided, one of which is development
specific.

Finally, medical and chemical terms and synonyms
based on MeSH make up a general purpose vocabulary.

OMIM. This database is a catalog of human genes and
genetic disorders that focuses primarily on heritable
genetic diseases. Although OMIM does not contain
direct information on chromosomal aberrations, it is
relevant and useful as a resource of hereditary disease
phenotypes. From its downloadable textual information,
we have extracted a vocabulary of disease-related
concepts out of which 1642 entries occur in our
cytoband-related subset of the PUBMED corpus.

London Dysmorphology Database. Most clinical geneti-
cists are familiar with the Oxford Medical Databases.
LDDB contains information on 3428 dysmorphic syn-
dromes and has a hierarchically structured feature
vocabulary which we have manually annotated with
synonymous phrases to increase recall in our method. In
our band annotated corpus, 796 dysmorphologies are
annotated through 1286 synonyms. This dictionary is an
authoritative source (17) of information about dys-
morphic and neurogenetic syndromes.

Gene Ontology. GO provides consistent descriptions of
gene and gene-product attributes in the form of three
structured controlled vocabularies that each provide
a specific angle of view (biological processes, cellular
components and molecular functions). The GO effort is
deliberately term centered to allow for uniform queries
across different databases. Our method does incorporate
synonymy information from GO. GO is built and
maintained with the explicit goal of applications in text
mining and semantic matching in mind. Hence, the gene
ontology is an ideal source for domain-specific views in
our method and makes up four controlled vocabularies:
(a) the whole set of GO concepts, for general associations
to gene and gene-product attributes; (b) cellular compo-
nents, which may include anatomical structures
(e.g. rough endoplasmic reticulum or nucleus) or a gene-
product group (e.g. ribosome, proteasome or a protein
dimer) (18), (c) biological processes, defined as series of
events accomplished by one or more ordered assemblies
of molecular functions and (d) molecular functions, which
describe activities at the molecular level.

TDMS tissue and lesions vocabularies. At another level
up from the molecular and cellular scale, specific
vocabularies are provided that are geared at organs,
tissues and systems. Two vocabularies have been extracted
from phrase lists used in a laboratory data acquisition
system set up at the USA National Institutes of Health.
The word lists of their toxicology data management
system are subset in a vocabulary with microscopic lesions
on the one hand and a vocabulary with microscopic sites,
systems, tissues and organs on the other hand. This

allowed us to complete the set of vocabularies ranging
from the very small (molecular functions) over spatially
larger concepts (cellular locations) to tissues
and organs, which are part of the TDMS vocabularies.
At the macroscopic end of this spectrum, CBIL offers
anatomical structures.

CBIL anatomy. To focus on structures of larger scale
than cellular and tissue levels, an anatomy-specific
vocabulary was extracted from the hierarchical controlled
vocabulary of anatomy terms from the computational
biology and informatics laboratory at the University of
Pennsylvania. The controlled vocabulary is based on
anatomy terms taken from the mouse gene expression
database at the Jackson Laboratory and was extended to
incorporate human anatomy. It was then further revised
in a number of areas, such as the haematolymphoid
system and the brain.

Ontology of Human Developmental Anatomy. The
Edinburgh Human Developmental Anatomy (19) lists
the tissues present during the first 50 days after concep-
tion. This vocabulary is based on detailed anatomy
information and standard named tissues for analysis of
normal and abnormal human embryos. Space-associated
data is included. Hunter et al. based this anatomical
ontology on literature and on a detailed examination
of histological material. It includes all the basic tissues
recognizable to an experienced histologist and was
designed for describing tissue at a fairly fine resolution
(e.g. in gene expression experiments).

Medical Subject Headings. MeSH is the National Library
of Medicine’s controlled vocabulary thesaurus. From it,
we constructed a vocabulary that takes into account all
phrases up to six terms and maps all narrow and equal
synonyms, leaving out broad synonyms. Apart from the
22 997 descriptors and their synonyms, over 150 000
entries and synonyms from the separate Supplementary
Concept thesaurus are included as well, adding a general
focus of chemical records to the vocabulary. Terms and
phrases range from general to specific and constitute
a general purpose vocabulary with broad coverage of the
biomedical field. We recommend this vocabulary for first
exploration of a genomic region and for when none of
the specific vocabularies described above apply.

Statistical overrepresentation

Cytogenetic bands and concepts can occur together in a
single document just by chance. First, consider an abstract
where one band is mentioned together with one disease
and that this disease is then compared to a second disease.
Merely relying on co-citation within single documents
would have such an abstract cause a spurious association
between the band and the second disease. Second, a
similar situation occurs when a document discusses
several bands and contains multiple, loosely related case
reports. This situation implies that we cannot accept
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a genotype–phenotype association based on the mere
co-occurrence of the genomic location identifier (a cyto-
genetic band) and a concept from one of the vocabularies.
Our method reports all co-occurrences together with
a P-value indicating how much confidence an association
deserves. To quantify this level of overrepresentation,
we assume a hypergeometric distribution as a model.
The hypergeometric distribution is a discrete probabil-

ity distribution that describes the number of successes in a
sequence of C draws from a finite population without
replacement. The population has labeled (success) and
unlabeled items. The hypergeometric distribution
describes P(O), the probability that in a sample of C
distinctive objects drawn from the global population,
exactly O objects are labeled.
In the context of this work, the question is whether

more papers link a cytoband b (e.g. ‘4p16.3’) to a
concept c (e.g. ‘microcephaly’) than one might expect by
chance. If this is the case, the link between the concept and
the cytoband can be thought of as being overrepresented
in the text corpus.
Let A be the total number of abstracts annotated to all

known cytobands and concepts. This is the size of the
PUBMED sub-corpus in our text indices. Let C be the
number of papers containing concept c or its synonyms
and B the number of papers associated to b as described
in the identification of cytogenetic bands section. We want
to qualify the strength of the link between band b and
concept c.
By only inspecting abstracts from the corpus that are

linked to concept c, in fact, a draw is performed with C
abstracts in it where some are and some are not linked to
band b. Let Obc be the observed number of papers that are
associated to band b and mention concept c or one of its
synonyms. To know whether the number of b-linked
papers in that drawn sample is unusually large, we need
to know the probability of drawing Obc papers or
more extreme outcomes. This corresponds to calculating
the cumulative probability PðX � 0Þ and can be calculated
by the cumulative distribution function of a hypergeo-
metric random variable X with parameters as described.
Since the hypergeometric distribution is a discrete

probability distribution, the cumulative probability can
be calculated easily by adding all corresponding single
probability values. This probability constitutes a P-value
since it is the probability of seeing something as extreme
or more extreme than what was observed.
The P-value is then given by the hypergeometric

cumulative distribution function

pbc ¼ 1�HcdfðObc jA;B;CÞ 1

¼ 1�
XObc�1

i¼0

B
i

� �
A�B
C�i

� �

A
C

� � 2

¼
XminðB;CÞ

i¼Obc

B
i

� �
A�B
C�i

� �

A
C

� � 3

The P-value pbc is the probability that we observe
by chance Obc documents or more that associate
band b to concept c. It is the probability of observing
Obc or more documents linked to band b when
drawing C concept-related documents without replace-
ment from a corpus ofA abstracts. Symmetrically, it equals
the probability of observingObc or more documents linked
to concept c when drawing B band-related documents.

It is important to note that for small numbers of
concepts and documents, the P-values possibly provide
a distorted view on the actual relevance of the band–
concept association. Even though P-values for small
counts still correctly represent the probability of obser-
ving this or a higher number of co-citations, it is clear that
the P-value should be regarded with caution. The web
application will show actual counts with each P-value,
to allow the user to assert confidence in the association
at hand. For a detailed discussion of this issue, see the
Discussion section.

Relation to other distributions. When the population size
is large compared to the sample size the hypergeometric
distribution is approximated reasonably well by a
binomial distribution. This approach is computationally
less intensive. Both distributions were compared.
Although a binomial approach proved justifiable, the
hypergeometric distribution was chosen because it did not
prove detrimental to performance. All P-values are
precalculated at indexing time.

The hypergeometric test based on the hypergeometric
distribution is identical to a one-tailed Fisher’s exact test.
This can be verified by writing down the 2� 2
contingency table.

Statistically related tools. Our method uses different
domain vocabularies as concept sources. Gene ontology
as a whole, together with its three sub-branches, constitute
four of our vocabularies. A range of existing tools operate
on gene ontology alone to identify overrepresented
concepts for (groups of ) genes that result from expression
array experiments. In these tools, the hypergeometric
distribution and binomial approximation are prominent
statistical methods. The hypergeometric approach and the
equivalent Fisher’s exact test constitute a standard
approach in the majority of the tools, as discussed by
Khatri et al. (20). In this review paper, they further state
that although different distributions are used in different
tools, it seems that in most cases the differences between
the models are not dramatic.

Gentleman et al. describe the use of a hypergeo-
metric distribution in GOStats and GOHyperG (21) to
find concepts from gene ontology that are overrepresented
for genes. Our work follows a similar philosophy, though
applied to a series of unstructured vocabularies and
literature co-citations of bands and concepts instead of
genes and GO-terms.

FunSpec (funspec.med.utoronto.ca) inputs a list of
yeast gene names and outputs a summary of

2538 Nucleic Acids Research, 2007, Vol. 35, No. 8



overrepresented concepts. The tool calculates P-values
using the hypergeometric distribution.

Other tools use the hypergeometrical distribution or
equivalent Fisher’s exact test for finding overrepresented
concepts from gene ontology, including Fatigo (22),
GObar (23), GoMiner (24), GOToolBox (25),
GeneMerge (26), GOTree Machine (27), Ontology-
Traverser (28), GOCluster (29) and GOHyperGAll in
R BioConductor (30).

In BlastSets, Barriot et al. use the hypergeometric
distribution to calculate the probability of having at least
the observed number of elements in common between two
sets of sequences for which biological relationships are
inferred from different data sources.

Web application

We constructed a web application to illustrate and
publicize our method and to make validation efforts
reproducible. The tool functions in two directions.

On the one hand, users indicate a cytogenetic band on
a genome view. These identifiers can also be entered
manually. The tool will characterize this band with
statistically overrepresented vocabulary concepts found
in the literature. Users indicate which controlled vocabu-
lary is to be used, according to their current research
interest. For example, when aBandApart is queried with
4p16.3 and a disease vocabulary, the most significant
concepts are achondroplasia, Wolf-Hirschhorn syndrome,
Huntington disease, multiple myeloma, cherubism, dwarf-
ism and hypochondroplasia, all of which are disorders
confirmed to be associated to that region.

On the other hand, users can start from a concept and
query the database for statistically overrepresented
chromosomal regions. If the concept is not found, the
application will suggest alternatives with similar spelling.
Overrepresented bands are listed together with their
P-values and the raw counts that were used to calculate
each P-value. The highly overrepresented bands are
highlighted in red on the same genome chart that is
used for input of cytogenetic bands. Links to relevant
literature are provided with the cytoband profile.

RESULTS

To illustrate our approach, we discuss results for searches
related to heart disease. A detailed validation of our
method follows as we discuss the performance on a set of
90 known gene–disease associations. We conclude by
evaluating the correspondence of our results to chromo-
somal aberration maps composed by Brewer et al. (1,2).

Heart disease

We now illustrate the approach by querying the system
for heart while selecting CBIL, the human anatomy
vocabulary. The concept heart has a total of 1324
documents associated to it. The five most relevant hits
are shown in Table 3.

A very strong correlation is found for 22q11
and specifically, 22q11.2. Closer examination of
these first two hits reveals that this association
relates to the well-known DG/VCFS syndrome
(DiGeorge/velocardiofacial syndrome). The zero P-value
occurs because DG/VCFS, known as the 22q11.2 deletion
syndrome, is the most common chromosomal deletion
syndrome found in humans (32). Cardiac defects are
strongly penetrant in those patients. The third best
association, linking heart to 20p12, is corroborated by
literature on the Alagille syndrome (33), a pleiotropic
disorder with involvement of the liver, heart, skeleton, eyes
and facial structures. The fourth, 21q22.2, is identified
through literature analysis as a chromosomal region
critical for heart defects related to Down syndrome (34).
The fifth most relevant result is 7q11.23. When 7q11.23 is
submitted as a query with the CBIL anatomy vocabulary, a
link with the cardiovascular system is apparent. Results
with highly significant P-values (P50:01) are shown in
Table 4.

Table 3. Five most relevant hits for query heart on vocabulary CBIL

Band name BC B P-value

22q11 164 1092 0
22q11.2 83 755 1.28e�26
20p12 19 113 3.03e�10
21q22.2 16 171 5.88e�06
7q11.23 20 301 1.12e�04

The concept heart has a total of 1324 documents associated to it.
The four columns show the hit, the number of documents that are
linked to both band and concept, the number of documents linked to
the band (hit) and the P-value.

Table 4. Highly significant hits (P-value 50.01) for query 7q11.23 on

vocabulary CBIL

Concept BC B P-value

Valve 5 51 8.23e�7
Connective tissue 6 96 2.64e�6
Aorta 5 70 5.43e�6
Metencephalon 1 2 3.92e�5
Heart 20 1324 1.12e�4
Hepatocyte 3 79 1.58e�3
Carotid artery 1 10 1.71e�3
Pons 1 13 2.92e�3
Tonsil 1 14 3.40e�3
Artery 3 120 7.06e�3
Penis 1 22 8.34e�3
Cardiovascular system 1 22 8.34e�3
Brain 23 2267 9.16e�3
Skeletal muscle 9 664 9.78e�3
Midbrain 1 24 9.88e�3

The band 7q11.23 has a total of 301 documents associated to it.
The four columns show the hit, the number of documents that are
linked to both band and concept, the number of documents linked to
the concept (hit), and the P-value.
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As an illustration of how working with different domain
vocabularies can be beneficial, we characterized the same
7q11.23 band through different vocabularies. From
the perspective of dysmorphology, through vocabulary
LDDB, the highest ranking concept is supravalvular
aortic stenosis. Other cardiovascular concepts occur,
together with anxiety and mental retardation, suggesting
involvement of the central nervous system. The latter is
confirmed through use of the disease-related vocabulary,
OMIM, linking the genomic location to the Williams–
Beuren syndrome. To elucidate an underlying molecular
function for this anomaly, the same query was submitted
with the GO molecular function vocabulary. The highest
ranking concept, elastin, is assigned a near zero P-value.
Indeed, the majority of Williams–Beuren syndrome
(WBS) patients have been shown to have a microdeletion
within 7q11.2 including the elastin gene, leading to
disorganized pre-elastic and mature elastic fibers (35).
Through this brief discussion we have illustrated how
different domain vocabularies each provide a specific view
towards a genotype–phenotype association.

NIH data set—Genes and Disease

The online NIH book Genes and Disease (www.ncbi.nlm.
nih.gov/books/), discusses a set of genes and the diseases
that they are known to cause. With each genetic disorder,
the underlying mutations are discussed, along with clinical
features and links to key web sites. Over 80 genetic
disorders have been summarized in this resource, which
we use as positive controls in the validation of our
method.
For chromosome 1, results are shown in Table 5.

The first two columns show the gene name and disease as
they occur in the NIH book. The disease name is the
search term that was used to test our method. In some
cases, spelling variants were used. Further columns
indicate whether (H) the method assigned a highly
significant P-value (P50:01) to the band to which the
disease is actually associated, (S) whether it assigned a
significant P-value (P50:05), (P) whether it delineated the
band precisely; i.e. at the maximum level of karyotype

resolution (4p16.1 is more precise than 4p16) and (T)
whether it rated the band as the most significant candidate
for this disease, ranking higher or as high as all other
bands.

A validation of our method with the disease-related
genes on other chromosomes is provided as supplemen-
tary material.

Our method assigns a significant P-value (P50:05) to
84 out of 93 (over 90%) gene-linked diseases discussed in
the NIH book data set. Of these, 80 (or 86%) are assigned
a highly significant P-value (P50:01). For 57 (or 61%)
of these genetic diseases, the cytogenetic band containing
the causative gene was reported with the most significant
P-value of all reported bands. These results can be verified
through the supplementary material or reproduced
through the aBandApart web application.

Eight diseases were not significantly linked to the band
containing the causative gene. Most of these misses are
explained by the fact that the concept is not in any of the
domain vocabularies (6 of 9 misses). This occurs with
complex or overly detailed concepts (e.g. gyrate atrophy
of the choroid and retina) or chemical compounds
(e.g. steroid 5-alpha reductase, alpha-1-antitrypsin defi-
ciency). Although the concept multiple endocrine neoplasia
does not occur in any of the vocabularies, the NIH band
for this disease does show an relatively high number
of cancer-related concepts.

Second, misses can also be explained by the fact that
there exists no literature in the MEDLINE corpus
associating a concept or any of its synonyms to the
band in question. This is the case for the CKN1 gene,
where no abstracts link the Cockayne syndrome to 5q12
and for the Zellweger syndrome, where no literature
links it to 12p13.3.

Finally, although a band is found, it is sometimes not
assigned a significant P-value. This is the case for diabetes,
which our method only weakly links to 7p13. Diabetes has
putative causative links to many genomic regions.

Congenital malformations

To further validate our methodology, we evaluate its
agreement with chromosome maps of autosomal deletions
and duplications composed by Brewer et al. (1,2). In this
work, clinical and cytogenetic information from the
human cytogenetics database was used to associate
different congenital malformations to nonmosaic single
contiguous autosomal deletions and duplications. We
have assembled a list of 63 malformation-to-band
associations that the authors deemed statistically highly
significant. Brewer et al. classified malformations in seven
categories: cardiac, central nervous system, craniofacial,
gastrointestinal, genitourinary, ocular and skeletal and
limb malformations.

Out of 63 malformation-associated bands deemed
significant by Brewer et al., 44 were assigned a significant
P-value by our method (70%), 35 were given a highly
significant P-value (56%). Five associations were detected

Table 5. NIH book validation for chromosome 1

Gene Disease/concept H S P T NIH Top P-value

UROD Porphyria
cutanea tarda

1 1 0 1 1p34.1 1p34 0.70E�4

GBA Gaucher disease 1 1 1 1 1q21 1q21 2.41E�22
GLC1A Glaucoma 1 1 1 0 1q24.3 1q24 2.21E�26
HPC1 Prostate cancer 1 1 1 0 1q25.3 8p22 0.00E�0
PS2 Alzheimer disease 0 1 1 0 1q42.13 1q42.1 0.24E�2

On this chromosome, five disease genes are annotated. Further columns
indicate whether (H) the method assigned a highly significant P-value
(50.01) to the band to which the disease is actually associated,
(S) whether it assigned a significant P-value (50.05), (P) whether
it delineated the band at the maximum level of karyotype resolution
and (T) whether it rated the band as the most significant candidate for
this disease, ranking higher or as high as all other bands.
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but not given a significant P-value. Of the 14 associations
made by Brewer et al. that were not detected by our
method, one was missed because of different phrasing
of agenesis of corpus callosum in literature and 13 were
missed because no abstracts were found linking band
and malformation. Detailed results for all 13 cardiac
anomalies discussed by Brewer et al. are shown in table 6.
The full validation is provided as supplementary material.

DISCUSSION

aBandApart links phenotype information to genomic
aberrations at the level of cytogenetic bands. We assessed
that significant P-values yielded by the method are
supported by known cytogenetic aberrations and by
published malformations and diseases.

With regard to our text-mining methodology, one point
worth noting is that MEDLINE abstracts are used instead
of the full text of the corresponding article. Although full
text articles are increasingly made available through
centralized repositories and open access initiatives,
harvesting full text is not possible for all publications
because of technical and legal restrictions. Although the
potential difference in information present in full text
must be kept in mind (for example, the surplus of
sequence-related data reported in full text versus abstract
was proved to be significant in an earlier study (36)),
the use of abstracts alone is justified because they
summarize the key information from a paper (for
example, as keywords (37)).

Regarding the statistical methodology, it is again worth
stressing that the hypergeometric approach can yield
small P-values for associations that not necessarily
deserve to be marked as meaningful. This is the case for
very small numbers of concepts and documents. For
example, associations of 4p16.3 to both broad nasal tip
and microcephaly are flagged as significant by this

method; the first based on one co-citation in 2 documents,
the latter on 11 co-citations in 322 documents. Even
though both resulting P-values correctly represent the
probability of observing this or a higher number of co-
citations in a statistical sense, it is clear that the P-value in
the first situation should be regarded with more caution.
One option could be to use a regularized estimator that
penalizes more strongly associations involving few docu-
ments. We decided against this choice because such
associations can be meaningful. In the case of association
through few documents, individual abstracts must be
reviewed to confirm the potential associations and avoid
overreliance on the P-value. To allow an informed
decision on the actual significance of an association
between a band and a concept, the web application also
indicates the actual counts that were used to calculate the
P-value. This raw count information is crucial to the
interpretation of results from the web tool: P-values must
always be evaluated in the light of the counts mentioned
in the ‘Links’ column directly to the left. The caption
of the result table explicitly mentions the meaning of
each field.
Our method for associating biomedical concepts

to cytogenetic bands provides diagnostics support to
clinicians looking to identify chromosomal regions
containing genes involved in disease processes, and to
determine clinical entities linked to genomic aberrations in
patients. It supports genetic counselling and an educated
followup of clinical cases. It also aids cytogeneticists
to generate refined accounts on cytogenetical findings they
interpret and report to medical professionals (such as
gynecologists, pediatricians, psychiatrists or genetic coun-
selors) and to the patient’s family.
For researchers, the generation of a phenotypic genome

map based on text mining will ease the identification of
genes involved in disease processes and could delineate
novel clinically recognizable entities. Through our con-
trolled vocabularies, their research can be focused on
specific knowledge domains. Additionally, the tool
provides non-cytogeneticists an accessible bridge to the
cytogenetic literature.
The databases can support curation of chromosomal

aberration catalogs. They do not render case report
catalogs obsolete, rather, they aim at complementing
these resources by offering a publicly available, free,
online and searchable resource that is kept up to date
through regular automated updates.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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