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Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for
colonisation
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According to MEROPS peptidase database, Campylobacter species encode 64 predicted peptidases.
However, proteolytic properties of only a few of these proteins have been confirmed experimentally.
In this study we identified and characterised a Campylobacter jejuni gene cj0511 encoding a novel
peptidase. The proteolytic activity associated with this enzyme was demonstrated in cell lysates.
Moreover, enzymatic studies conducted with a purified protein confirmed a prediction of it being
a serine peptidase. Furthermore, cj0511 mutant was found to be severely attenuated in chicken col-
onisation model, suggesting a role of the Cj0511 protein in infection.

� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies. This is an open access article under the CC BY-NC-ND license (http://creativecom-

mons.org/licenses/by-nc-nd/3.0/).
1. Introduction of bacteria in Galleria mellonella model of infection [10]. Transpo-
Campylobacter jejuni is the most frequent causative agent of
bacterial gastrointestinal diseases worldwide [1]. In particular, in
England and Wales these bacteria cause the highest number of
food borne infections and hospitalisations than any other bacterial
pathogen, with over 8% annual increase in the number of cases
reported in 2010 [2].

Bacterial peptidases may be involved in a variety of biological
functions, such as degradation of unfolded proteins, protein secre-
tion and processing, etc (reviewed in: [3]). A number of genes
encoding putative peptidases have been identified in the genomes
of C. jejuni. Some of these genes were found to be involved in stress
response contributing to increased survival of bacteria in adverse
conditions [4–7]. For example, a C. jejuni peptidase-related gene
htrA is required for heat-shock resistance, oxygen tolerance and
invasion of INT407 human epithelial cells [6]. Expression of
another peptidase, ClpP, is associated with a biofilm formation
[8]. The most recent review on Campylobacter peptidases was
focused on just four enzymes including Lon, Clp, HtrA and FtsH
[9]. Our previous studies demonstrated that a knock-out of a
putative peptidase-encoding gene cj0511 resulted in attenuation
son inactivation of peptidase-related genes cj1068 and cj1215
resulted in reduction of invasive properties of C. jejuni strain
81-176 [11], and mutation in cj1228 (htrA) gene reduced bacterial
attachment to host epithelial cells [12]. In this report we demon-
strate a novel proteolytic activity associated with protein Cj0511.

2. Materials and methods

2.1. Bacterial strains and growth conditions

C. jejuni 11168H, a hypermotile derivative of strain NCTC 11168
[13], was maintained on blood agar plates. Bacteria were grown for
two days at 37 �C in a VAIN cabinet (Don Whitely) with 85% Nitro-
gen, 5% Oxygen and 10% Carbon Dioxide. The Escherichia coli XL2
Blue MRF’ and XL1 Blue MRF’ strains (Stratagene), used in cloning
experiments, were grown overnight at 37 �C on LB agar plates. The
plates were supplemented with kanamycin (50 lg/ml) and/or
chloramphenicol (10 lg/ml) when required.

2.2. Mutant construction

C. jejuni 11168H mutants were constructed via site-directed
insertional mutagenesis. The BamHI fragment containing the
kanamycin resistance (kanr) cassette from pJMK30 [14] was
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Table 1
Mutants constructed in this study.

Mutant pUC18 construct Insertion site Position of the kanr cassette
(% from gene start)

cj0511 cam88g9 StyI 75
cj1228 cam67e8 PsiI 67
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inserted into unique restriction sites within target gene-containing
fragments from a 2 kb sequencing library [15] (Table 1). Blunt-end
cloning was used where appropriate. The plasmid constructs were
verified using restriction analysis and sequencing, transformed
into C. jejuni via electroporation as described [16] and Kanr clones
were selected. The mutants were verified by PCR using kanr cas-
sette and gene specific primers. The kanr cassette was inserted in
orientation excluding a possible polar effect on the downstream
genes. This cassette does not contain a transcription terminator,
and the lack of a polar effect, when this cassette was inserted in
the same transcription polarity with the downstream genes, was
previously confirmed experimentally using qPCR [17].

2.3. Complementation of mutant 11168H/cj0511::kanr

Complementation of the cj0511 mutant was performed using a
previously developed system for heterogonous gene expression in
Campylobacter [18]. The complementation system is based on inte-
gration of a gene of interest into a bacterial chromosome, and a
constitutative gene expression under the control of the camr pro-
moter. A previously described plasmid pRED [18] was used for
the introduction of an intact copy of gene cj0511 into C. jejuni
11168H/cj0511:kanr mutant. Gene cj0511 was PCR amplified using
the following primers

ak358 (ctcaatttaaatATGATGGAGCTTATTTTGAAAACAAAA) and
ak359 (gtcatttctagaTTATTGTCCTTGTTTGATATTTAAA).
The priming regions are shown in upper case, whilst lower case

letters denote additional sequences containing SwaI and XbaI
restriction sites used for cloning. The 1358 nt PCR product gener-
ated with these primers was inserted between SwaI and XbaI sites
of the delivery vector pRED . The derived recombinant plasmids
was used for transformation of 11168H/cj0511::kanr mutant via
electroporation. Integration of the cj0511 gene into the bacterial
chromosome was confirmed by PCR with primer pairs ak233/
ak237, ak234/ak237 and ak235/ak237 as described previously
[18].

2.4. Expression of a 6x His tagged protein Cj0511 (Cj0511His) of C.
jejuni in E. coli

Gene cj0511 was PCR amplified using Hi-fidelity Taq polymerase
Pwo (Roche) and the following primers:

cj0511F AGTCGGATCCAAGTTGATCAAAAAGAAGAGCAGGTTC
cj0511R CATTCTGCAGTTATTGTCCTTGTTTGATATTTAAAATTTTA

ATA.
The PCR product was inserted into PstI/BamHI site of pQE-32

plasmid (Qiagen). The recombinant plasmids were verified by
restriction analysis and sequencing.

2.5. Protein expression and purification

Overnight E. coli cultures grown at 37 �C were diluted 1:50 with
LB medium, grown to OD600 of 0.5–0.8, induced by adding isopro-
pyl-b-D-thiogalactoside (IPTG) to 1 mM and incubated for further
2 h. Large scale preparation was carried out using 100 ml of
induced cultures. Bacteria were pelleted by centrifugation and
resuspended in CellLytic B reagent (Sigma). After centrifugation
the soluble fraction of the lysate was used for protein purification
using HisSelect™ Spin Columns (Sigma) according to manufac-
turer’s protocol. The fractions were analyzed on 12 % NuPAGE™
Novex Bis-Tris SDS–PAGE gels.

The gels were run using NuPAGE™ MOPS running buffer (Invit-
rogen) at 200 V for 1 h and stained with Coomassie Blue.

2.6. Protease assay

Concentration of the purified protein was determined using the
BCA™ Protein Assay Kit (Pierce). Proteolytic activity was moni-
tored on a 96-well microtiter plate using Protease Screening™ kit
(Geno-Technolgy Inc) according to manufacturer’s protocol. Each
well contained 50 ll of reaction containing 0.25 lg of purified pro-
tein and 2.5 ll peptidase substrate. Where appropriate, the reac-
tion mixtures contained 0.5 ll of protease inhibitors (Geno
Technology Inc) supplied at 100x concentrations. The final concen-
trations of the inhibitors were as follows: Antipain, 74 lM; Aproti-
nin, 0.3 lM; Bestatin, 130 lM; AEBSF, 1 mM; Phosphoramidon,
10 lg/ml; PMSF, 100 mM. The plate was incubated for 3 hours at
37 �C followed by addition of 50 ll of precipitation agent and incu-
bated for further 10 min. The plate was then centrifuged at 4000g
for 15 min, supernatant (80 ll) was transferred to a clean plate and
120 ll of assay buffer was added and absorbance was read at
550 nm. Statistical data analysis (P–value estimation) was per-
formed using GraphPad Prism version 4.02 statistical analysis soft-
ware package.

2.7. Zymography

Proteolytic activity testing of bacterial lysates and protein sam-
ples by zymography was conducted as previously described [19].
One loopful of bacteria from two-day 37 �C blood agar culture
was suspended in 500 ll of PBS. The cells were spun down at
13,000 rpm for 5 min and washed twice in the PBS. The bacterial
pellet was resuspended in 200 ll of 4% SDS and mixed with a pip-
ette tip and stored at �80 �C until required. Samples diluted 1:1
with loading buffer were run on a 12% SDS casein gels for 30–
45 minutes at 125 V. The gel was washed in 2.5% Triton X100 in
water for 30 min with gentle agitation, followed by incubation in
developing buffer (50 mM Tris-HCl pH 7.6, 0.2 M NaCl, 5 mM CaCl2,
0.2 % (v/v) Brij 35) for 3–5 h or overnight at 37 �C. The gel was
stained with Coomassie Blue and visualized for zones of clearing.
Inhibitor screening was performed as previously described [20].

2.8. Chicken colonization studies

Chicken colonisation studies were performed as described pre-
viously [21]. The animal work was conducted under the license
approved by the UK Home Office within the Animal Scientific Pro-
cedures Act (ASPA). The work was reviewed by the local Ethical
Committee of the Institute of Animal Health, Compton, United
Kingdom, and meets UK legal requirements for studies involving
animals. The work was done following ASPA guidelines and ani-
mals were condition scored to ensure no adverse effects were
observed during the study. This work was classed as mild with
no expected observable health effects, none were observed. All ani-
mals were euthanized using Schedule-1 procedures as outlined in
Home Office Guidance.

The Campylobacter strains were grown individually for 48 h at
37 �C in Mueller Hinton broth under microaerophilic conditions.
Specific-pathogen-free (SPF) Light Sussex chickens were inoculated
orally on the day of hatch with 0.1 ml of Campylobacter-free adult
gut-flora preparations. For this, one gram of cecal contents were
taken from a 50-week-old SPF chicken, immediately after the bird
had been killed and used to inoculate 10 ml of Luria-Bertani broth
which was incubated for 24 h at 37 �C. Birds were housed in sepa-
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rate rooms in high-biosecurity accommodation until two weeks of
age when they were used in colonization trials. Birds were fed a
vegetable-based diet (Special Diet Services, Manea, Cambridge-
shire, UK) ad libitum. Colonization trails were done in groups of
three birds. Birds were orally inoculated with 0.1 ml of Mueller-
Hinton broth culture containing 108 c.f.u. of the desired Campylo-
bacter strain. Seven days post-infection birds were euthanized.
Decimal dilutions of cecal contents were made in phosphate buf-
fered saline (PBS) and plated onto Campylobacter blood-free agar
for colony counting. Plates were incubated microaerobically for
48 h at 37 �C.

3. Results

3.1. Peptidases in C. jejuni NCTC 11168

According to the annotation of C. jejuni NCTC 11168 genome at
Sanger Institute (www.sanger.ac.uk/Projects/C_jejuni/) and a com-
prehensive peptidase database MEROPS (merops.sanger.ac.uk/),
the genome of this strain contains at least 45 putative peptidase-
related genes. As predicted by PSORT (psort.nibb.ac.jp/form.html),
most of these enzymes are either cytoplasmic or inner-membrane
located (data not shown), with only six of them predicted to be
periplasmic or outer membrane located, with none predicted to
be extracellular (Table 1S).

Using zymography and casein as a substrate and a total cell
lysate of C. jejuni 11168H we detected several bands associated
with peptidase activities (Fig. 1A, lane 2), namely 42 kDa, 49 kDa
and 51 kDa, as well as some high molecular weight bands in the
range of 170 kDa.

As expected, the most prominent lower molecular weight band
at 51 kDa corresponded to HtrA peptidase, since it was affected by
a cj1228 (htrA) mutation (Fig. 1B, lanes 1–3). The results confirm
proteolytic activity of a native form of protein Cj1228 (HtrA),
which was previously detected with a fusion HtrA-His protein after
expression and purification from E. coli [22]. The cj1228 mutation
also resulted in disappearance of high molecular weight bands in
the range of 170 kDa (Fig. 1B, lanes 1–3), representing oligomeric
forms of HtrA [22,23]. Inactivation of gene cj0511 resulted in disap-
pearance of a 49 kDa band corresponding to a predicted size of this
protein (Fig. 1C, lane 2). This result was confirmed by the restora-
tion of activity after complementation of this mutation in cis
(Fig. 1C, lane 3). The intensity of the band in complementation
derivative was lower than in the wild type strain, which was not
unexpected as full restoration of activity requires fine tuning of
gene expression, whilst the complementation system we were
using employs a constitutative (unregulated) promoter.
Fig. 1. Identification of peptidase activities of C. jejuni strain 11168H using zymography
mutant (three clonal isolates). (C) 1, 11168H; 2, 11168H/cj0511::kanr; 3, 11168H/cj0511
3.2. Expression in E. coli, purification, stability and enzymatic activity
of 6x His-tagged derivative of protein Cj0511 (Cj0511His)

Expression of protein Cj0511His in E. coli using a tightly regu-
lated expression system pQE-32 allowed its purification as a highly
stable protein (Fig. 1S). Using zymography assay and casein as a
substrate we were able to detect proteolytic activity of the purified
Cj0511His (Fig. 1D).

Proteolytic activity of Cj0511His in the presence of various
inhibitors was tested using a peptidase assay kit (Fig. 2 A, B).
Whilst statistically valid reduction in activity in the presence of
antipain, aprotin, AEBSF and PMSF inhibitors specific for serine
peptidases was detected, no effect on activity in the presence of
metallo-peptidase-specific inhibitors bestatin and phosphorami-
don was found. The results confirmed a prediction that Cj0511 is
a serine peptidase.

3.3. Peptidase Cj0511 is required for colonisation

Inactivation of gene cj0511 in C. jejuni strain 11168H resulted in
severe attenuation of colonisation in chickens (Fig. 3). The cj0511
mutation affected the ability of C. jejuni to colonise chickens reduc-
ing c.f.u. per gram of cecal content by over six logs. Importantly,
the cj0511 mutant retained full motility of the wild type strain
(Fig. 2S) suggesting that attenuation in chicken model of infection
was not a result of changes in flagella expression, which can occur
in C. jejuni due to phase variation [13].

4. Discussion

In this study we used mutagenesis, complementation, zymogra-
phy and enzymatic studies to confirm that cj0511 gene encodes a
serine peptidase. Cj0511 was found to be glycosylated [24]. Our
findings, demonstrating enzymatic activity of this protein after
expression in E. coli, lacking protein glycosylation apparatus, sug-
gests that glycosylation of Cj0511 is dispensable for its proteolytic
activity.

The role of Cj0511 protein in Campylobacter lifestyle remains to
be elucidated. According to MEROPS database (merops.san-
ger.ac.uk/), Cj0511 belongs to S41 family of C-terminal processing
peptidases, which recognize a C-terminal tripeptide, Xaa-Yaa-Zaa,
in which Xaa is preferably Ala or Leu, Yaa is preferably Ala or Tyr
and Zaa is preferably Ala. In other bacteria (e.g. in E. coli) these pep-
tidases may be involved in degradation of incorrectly synthesized
proteins, which, after being tagged with Leu-Ala-Ala tripeptide,
become a target for the recognition and degradation by these
enzymes (merops.sanger.ac.uk/).
. (A) 1, size markers (Mark 12, Invitrogen); 2, 11168H. (B) 1–3, 11168H/cj1228::kanr

::kanr/cj0511+ (complement). (D) 1, 11168H; 2, purified Cj0511His protein.
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Fig. 2. Cj0511His activity is affected by serine and serine/cystein but not metallo peptidase specific inhibitors. (A) Effect of various inhibitors on enzymatic activity of
Cj0511His. The error bars denote standard deviations. (B) Statistical analysis of changes using one-way Anova. The experiments were repeated three times, with three
technical replicates in each test. Text in bold denotes statically valid difference (P < 0.01) compared to control (no inhibitors). (C) Conservation of amino acid residues required
for enzymatic activity of serine peptidase D1P (highlighted in bold) in Cj0511 and related proteins (see text). The identical amino acid residues are denoted by asterisks. The
Swissprot amino acid sequence database accession numbers are: spO04073.1 (D1P), spP23865 (TspA) and spQ4L6D0.2 (CtpA).

Fig. 3. Attenuation of mutant 11168H/cj0511::kanr in chicken colonisation model of
infection. Post-mortem cecal contents counts of Campylobacter strains used in this
study. Counts were determined at 7 days post-infection and are displayed as the
Log 10 of the cfu/g. Values of 0 represent undetectable levels of Campylobacter
<100 cfu/g. Open circles indicate each individual bird. The bars represent average
values. Cj0511 denotes 11168H/cj0511::kanr mutant.
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In other bacteria, extracytoplasmic peptidases were shown to
play a role in pathogenesis. For example, Chlamydial peptidase
CPAF is translocated into the host cell cytosol and degrades tran-
scription factors RFX5 and USF-1 impairing host cell immune
response [25]. Interestingly, C. jejuni was found to be able to dis-
rupt tight junctions in colonic epithelial cells [26]. Subsequently,
a role of Campylobacter HtrA peptidase in degradation of E-cad-
herin junctions between epithelial cells was demonstrated [27].
It would be interesting to explore a possible role of other cell sur-
face and/or secreted peptidases in this process. Along with MOMP,
PEB2 and PEB3, both Cj1228 and Cj0511 peptidases have recently
been identified as cell surface proteins with a potential as vaccine
candidates [28]. Such cell-surface located proteins often play a role
as virulence factors and are involved in direct interaction of path-
ogenic bacteria with host cells [29]. The number of secreted, outer-
membrane located and periplasmic enzymes is likely to be under-
estimated when using common bioinformatics software such as
PSORT. In particular, Cj0511 protein is predicted to be inner mem-
brane located due to the presence of ‘uncleavable leader peptide’
despite being found on the cell surface [28].

Some peptidases with sequence similarity to Cj0511 were found
to play a role in virulence. For example, a CPAF peptidase homo-
logue from Chlamydia is involved in degradation of host transcrip-
tion factors [25]. The amino acid sequence of Cj0511 has the
highest level of similarity to Bartonella bacilliformis peptidase CtpA.
A similar protein, Prc of E. coli, is involved in processing of penicil-
lin-binding protein 3 [30]. Another homologue of Cj0511 is a CtpA
protein of Rhizobium leguminosarum, which is important for bacte-
rial viability on complex semi-solid media and for resistance to
desiccation and detergents, indicating a role in cell envelope for-
mation [31]. A Ser-Asp-Lys triad in the active site of Tsp peptidase
similar to Cj0511 was found to be essential for peptidase activity
[32]. The respective residues are conserved in Cj0511 and other
members of the Tsp family of peptidases, even including a distantly
related D1P peptidase from Scenedesmus obliquus (algae) required
for processing of photosystem II D1 protein (Fig. 2C) [33].

Our results confirm prediction that Cj0511 is a serine peptidase.
However, the active centre for this peptidase is unusual due to the
lack of inhibitory effect by chymostatin, which is specific for chy-
motripsin-like Ser peptidases. Concordant with our data is a find-
ing that another member of this family of enzymes, CtpA, despite
belonging to Ser peptidases and the presence of Ser/Lys catalytic
diad, is insensitive to certain serine peptidase inhibitors [34].

The investigation of bacterial peptidases as potential drug tar-
gets is an emerging area of research. The mechanism of action of
an anti-ulcer drug ebrotidine used for the treatment of Helicobacter
pylori (closely related to C. jejuni) infection was in part attributed to
its strong inhibitory action of Helicobacter peptidases degrading
gastric mucin [35]. Furthermore, the studies of peptidases in Por-
phyromonas gingivalis, allowed the development of specific bacte-
rial peptidase inhibitors with potential therapeutic applications
against periodontal disease [36]. More recently, inhibitors of a pep-
tidase toxin produced by B. anthracis [37] were found to have a
protective effect against mice infection with this pathogen
[38,39]. A new class of antibiotics, acyldepsipeptides, which targets
ClpP, is known to reduce S. aureus and Enterococcus faecalis load in
liver, spleen and lung upon infection in mice [40].
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Our data on the identification and characterisation of C. jejuni
Cj0511 peptidase are important for better understanding of biology
of this major bacterial pathogen. Further investigation of Campylo-
bacter peptidases and their inhibitors may assist in the develop-
ment of novel antibacterial strategies.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.fob.2014.04.012.
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