
O R I G I N A L  R E S E A R C H

Identification of an Innate Immune-Related 
Prognostic Signature in Early-Stage Lung Squamous 
Cell Carcinoma

Liang Li1 

Xue Yu2 

Guanqiang Ma1 

Zhiqi Ji1 

Shihao Bao1 

Xiaopeng He1,3 

Liang Song1,3 

Yang Yu1,3 

Mo Shi1,3 

Xiangyan Liu 1,3

1Department of Thoracic Surgery, 
Shandong Provincial Hospital, Cheeloo 
College of Medicine, Shandong 
University, Jinan, Shandong, 250021, 
People’s Republic of China; 2Department 
of Pediatrics, Wuhan Children’s Hospital, 
Tongji Medical College, Huazhong 
University of Science and Technology, 
Wuhan, Hubei, 420100, People’s Republic 
of China; 3Department of Thoracic 
Surgery, Shandong Provincial Hospital 
Affiliated to Shandong First Medical 
University, Jinan, Shandong, 250021, 
People’s Republic of China 

Background: Early-stage lung squamous cell carcinoma (LUSC) progression is accompa-
nied by changes in immune microenvironments and the expression of immune-related genes 
(IRGs). Identifying innate IRGs associated with prognosis may improve treatment and reveal 
new immunotherapeutic targets.
Methods: Gene expression profiles and clinical data of early-stage LUSC patients were 
obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases and 
IRGs from the InnateDB database. Univariate and multivariate Cox regression and LASSO 
regression analyses were performed to identify an innate IRG signature model prognostic in 
patients with early-stage LUSC. The predictive ability of this model was assessed by time- 
dependent receiver operator characteristic curve analysis, with the independence of the 
model-determined risk score assessed by univariate and multivariate Cox regression ana-
lyses. Overall survival (OS) in early-stage LUSC patients was assessed using a nomogram 
and decision curve analysis (DCA). Functional and biological pathways were determined by 
gene set enrichment analysis, and differences in biological functions and immune micro-
environments between the high- and low-risk groups were assessed by ESTIMATE and the 
CIBERSORT algorithm.
Results: A signature involving six IRGs (SREBF2, GP2, BMX, NR1H4, DDX41, and 
GOPC) was prognostic of OS. Samples were divided into high- and low-risk groups based 
on median risk scores. OS was significantly shorter in the high-risk than in the low-risk 
group in the training (P < 0.001), GEO validation (P = 0.00021) and TCGA validation (P = 
0.034) cohorts. Multivariate Cox regression analysis showed that risk score was an indepen-
dent risk factor for OS, with the combination of risk score and T stage being optimally 
predictive of clinical benefit. GSEA, ESTIMATE, and the CIBERSORT algorithm showed 
that immune cell infiltration was higher and immune-related pathways were more strongly 
expressed in the low-risk group.
Conclusion: A signature that includes these six innate IRGs may predict prognosis in 
patients with early-stage LUSC.
Keywords: early-stage lung squamous cell carcinoma, prognosis, risk score, gene signature, 
innate immune-related genes, immune cell infiltration

Introduction
Lung cancer is the second most commonly diagnosed cancer (11.4%) and the 
leading cause of cancer-related deaths (18%) worldwide.1 Lung cancer can be 
classified generally into two types: non-small cell lung cancer (NSCLC), which 
accounts for approximately 85% of tumors, and small cell lung cancer (SCLC), 
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which accounts for approximately 15%.2 About 30% of 
patients with NSCLC are diagnosed with lung squamous- 
cell carcinoma (LUSC),3 with these patients having 
a median overall survival (OS) approximately 30% shorter 
than in patients with other NSCLC subtypes.4 Poor prog-
nosis in patients with LUSC may be attributed to older 
age, more advanced disease at diagnosis and a more cen-
tral location predisposing to the invasion of larger blood 
vessels.5,6 Additionally, many novel small-molecule inhi-
bitors shown to provide clinical benefit to patients with 
lung adenocarcinoma are ineffective in patients with 
LUSC.7 Early-stage diagnosis and more effective treat-
ment of LUSC can therefore enhance patient outcomes.

The innate immune system is the first line of defense 
against invading microbes. Pathogen recognition receptors 
on immune system cells activate innate immune signaling 
pathways, leading to the production of various proinflam-
matory cytokines and chemokines, subsequently inducing 
adaptive immune responses.8,9 Innate immune responses 
also indirectly influence the tumor microenvironment 
(TME) by controlling T cell fate and critically sculpting 
the TME.10 Distinct signal regulation modes in the TME 
can alter the biological functions of certain innate immune 
system cells, which may lead to tumor proliferation and 
evasion of immune surveillance. Additionally, specific 
immunophenotypes of partial innate immune cell compo-
sitions depend on the type, pathological type, and even 
stage of malignancy. Therefore, understanding the charac-
teristics of the innate immune landscape in specific tumor 
types and stages may provide a theoretical basis for sub-
sequent monitoring and treatment.

Immune-checkpoint inhibitors (ICIs) have shown pro-
mise in the treatment of NSCLC, with some of these agents 
approved for first-line treatment. These include pembroli-
zumab monotherapy for advanced NSCLC patients with 
PD-L1 TPS ≥ 1% and without EGFR/ALK gene alterations, 
atezolizumab monotherapy for NSCLC patients with high 
PD-L1 expression and without EGFR/ALK genetic altera-
tions, and combinations of pembrolizumab plus chemother-
apy and nivolumab plus ipilimumab.11–14 Some patients, 
however, do not benefit clinically from ICI treatment. For 
example, ICI treatment has not been shown to prolong 
survival in patients with early-stage LUSC, and some 
patients develop resistance to ICIs after an initial or develop 
immune-related adverse events. Owing to the complexity of 
the tumor immune microenvironment (TIME), no single 
indicator, including immunohistochemical expression of 
PD-L1, tumor mutational burden, number of CD8+ tumor- 

infiltrating lymphocytes or IFN-γ-related gene signature, is 
optimal for screening responders.15,16 These drawbacks 
may be overcome by elucidating the detailed mechanisms 
of action of ICIs. Although all currently available ICIs 
target the adaptive immune system to activate T cells,17 

immune sensing and escape in the TIME depend on inter-
actions between the innate and adaptive immune systems. 
Metabolic changes in innate immune system cells can alter 
immune activity and antitumor effects.18 Alternatively, 
newly developed ICIs targeting the innate immune system 
could overcome resistance to currently approved ICIs.17 In 
addition, screening for specific gene signatures related to 
innate immunity may also enhance the effects of immu-
notherapy. Several signature models related to innate immu-
nity, as determined by RNA-sequencing and microarray 
assays, have successfully predicted OS in patients with 
hepatoblastoma,19 head and neck squamous cell 
carcinoma,20 ovarian cancer21 and colorectal cancer.22 

Less is known, however, about the association between 
LUSC and innate immunity.

The present study systematically investigated the relation-
ships between innate immune-related genes (IRGs) and prog-
nosis in patients with early-stage LUSC. Our findings showed 
that innate IRGs can be used to classify patients with early- 
stage LUSC based on their clinical and molecular features. 
Furthermore, this study assessed differences in the immune 
microenvironment in high- and low-risk patients, providing 
a potential theoretical basis for future immunotherapy.

Materials and Methods
Mining from GEO and TCGA Databases
Cohorts I (GSE157009) and II (GSE157010) contain large 
numbers of specimens and datasets from multiple institu-
tions, based on assays by independent laboratories and 
locked test parameters, thus ensuring objective quality 
standards.23 Microarray Suite version 5.0 (MAS 5.0), con-
taining data on normalized mRNA expression and relevant 
clinical information (including age, gender, T stage, OS 
and disease-free survival [DFS]), were acquired from the 
Gene Expression Omnibus (GEOhttps://www.ncbi.nlm. 
nih.gov/geo/). Samples were included if (1) gene expres-
sion data were available; (2) clinical information, includ-
ing age, gender and T stage, were available; and (3) 
follow-up time was greater than 30 days. The training 
cohort consisted of 245 patients in GSE157009, and the 
validation cohort consisted of 232 patients in GSE157010. 
Transcriptome profiles in FPKM format were derived from 
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The Cancer Genome Atlas (TCGA) database. Based on the 
above-described criteria, 438 patients with early stage 
(ranging from IA-IIIA) LUSC were selected as a second 
validation cohort.

Establishment of a Prognostic Signature of 
Innate IRGs
Univariate Cox regression analysis was performed to identify 
possible prognostic genes associated with OS in the training 
cohort, with a P-value < 0.001 considered the filtering criter-
ion. A comparison of these genes with innate IRGs obtained 
from InnateDB was used to select overlapping genes, which 
were considered candidate genes for the construction of 
a prognostic signature. The least absolute shrinkage and 
selection operator (LASSO) method was then applied using 
the glmnet package (https://CRAN.R-project.org/package= 
glmnet) in R24 for feature selection to narrow the number 
of IRGs with non-zero coefficients. Genes with non-zero 
coefficients were included in multivariate Cox regression 
analysis, and genes with P-values < 0.05 included in 
a prognostic signature model. The prognostic risk score of 
each sample was calculated by the “predict” function in 
“stats” R package using the formula:

Risk score=h0 (t)*exp (β1X1+β2X2+β3X3+β4X4 
+β5X5+β6X6),

where h0(t) represents the baseline risk value 
(unknown constants), β represents the regression coeffi-
cient calculated by multivariate Cox regression analysis, 
and X represents the gene expression level.

Evaluation and Validation of Innate IRG 
Signatures for Predicting Survival
Patients in the training cohort were divided into low- and 
high-risk groups based on the median risk score. Kaplan– 
Meier (K-M) survival curves and time-dependent receptor 
operating characteristic (time-ROC) curves were used to 
evaluate the accuracy of this signature. Moreover, the 
above-described formula and statistical methods were 
applied to the independent validation cohorts to validate 
the prognostic capacity of the gene signature.

Construction and Evaluation of 
a Predictive Nomogram
Risk scores were dichotomized into high- and low-risk 
score groups based on median risk score and treated as 
an independent clinicopathological parameter. Univariate 

and multivariate Cox regression analyses were performed 
to determine the clinical characteristics (age, gender, 
T stage and risk score) associated with OS. Factors differ-
ing significantly were visualized using a nomogram and 
their predictive accuracy and clinical efficacy determined. 
Decision curve analysis (DCA) was performed to estimate 
their possible clinical applications,25 and ROC curves 
were used to measure the accuracy of the model.

Functional Enrichment Analysis
Log fold-changes (logFCs) in the levels of gene expression 
in the high- and low-risk groups were calculated using the 
“limma” package in R, with these genes sorted from the 
highest to lowest logFCs. Gene set enrichment analysis 
(GSEA) was performed using the “clusterProfiler” pack-
age in R,26 with results considered significant if |NES| was 
>1, NOM p-value was <0.05, and FDR q-value was <0.25. 
Function and pathway enrichment were visualized using 
Ridgeplot.

Immune Profile Analysis
TIME differences between the high- and low-risk groups 
in the training and validation cohorts were evaluated using 
the “estimate” package in R. The relative proportions of 22 
tumor-infiltrating immune cells (TICs) in the training 
cohort were calculated using the CIBERSORT 
algorithm.27

Statistical Analysis
Univariate and multivariate Cox regression analyses were 
performed using the “survminer” package in R, and 
LASSO analysis was performed using the “glmnet” pack-
age in R. Kaplan–Meier analyses were performed using 
the “survival” and “survminer” packages in R, and ROC 
analysis was performed using the “timeROC” package in 
R. The “rms”, “ggplot2”, “ggforest”, “cowplot”, “gsea-
plot2”, “pheatmap” and “VennDiagram” packages in 
R (version 4.0.3) were used for visualization. A p-value 
<0.05 was considered statistically significant.

Results
Cohort Characteristics
The flow chart of the present study is shown in 
Figure 1A. After screening for eligibility criteria, the 
training cohort consisted of 245 patients in GSE157009, 
and the independent validation cohort consisted of 232 
patients in GSE157010, with a second validation cohort 
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from TCGA consisting of 438 patients. The 245 patients 
in the training cohort included 88 women and 157 men, 
of median age 70 years (range: 43–92 years). The GEO 
validation cohort of 232 patients included 81 women and 

151 men, of median age 68 years (range: 46–89 years), 
and the TCGA validation cohort of 438 patients included 
116 women and 322 men, of median age 68 years (range: 
39–90 years).

Figure 1 Process used to construct the prognostic signature model based on innate immune-related genes. (A) Work flow. (B) Overlap of 147 genes associated with 
patient prognosis and 1376 genes associated with innate immunity, followed by selection of 29 genes by LASSO Cox regression analysis. (C and D) Construction of a LASSO 
Cox regression model from the 29 innate immune-related prognostic genes, followed by calculation of the tuning parameter (λ) based on partial likelihood deviance with 10- 
fold cross-validation. The vertical black line indicates the optimal log λ value.
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Establishment of Innate IRG Signatures 
Model in Training Cohort
Univariate Cox regression analyses identified 147 signifi-
cantly prognostic genes (P < 0.001) in the training cohort. 
Of the 1376 innate IRGs downloaded from the innateDB 
database, 29 overlapped with genes in the training cohort 
(Figure 1B). LASSO-penalized Cox analysis identified 18 
genes based on the optimal value of λ (Figure 1C and D). 
Finally, multivariate Cox regression analysis identified six 
genes (SREBF2, GP2, BMX, NR1H4, DDX41, GOPC) 
that were prognostically significant (P < 0.05). These 
genes were used to build a prognostic signature and calcu-
late corresponding regression coefficients. Evaluation of 
risk scores in each sample yielded the formula:

Riskscore ¼ h0 tð Þ�expð1:493 � expression of SREBF2
þ1:828 � expression of GP2
þ0:977 � expression of BMX
þ2:400 � expression of NR1H4
þ0:847 � expression of DDX41
þ1:480 � expression of GOPCÞ

The median risk score served as the boundary that separated 
patients in the training cohort into high- and low-risk groups 
(Figure 2A), with a scatter diagram showing poorer survival 
outcomes in the high-risk group (Figure 2B). Kaplan–Meier 
analysis confirmed that OS was significantly shorter in the 
high- than in the low-risk group (Figure 2C, P < 0.0001). 
A heatmap showed model genes differentially expressed in 
the high- and low-risk groups of the training cohort 
(Figure 2D). Evaluation of the predictive performance of 
the model using time-dependent ROC curves showed that 
the areas under the curve (AUCs) at 1, 3, and 5 years were 
0.713, 0.722, and 0.708, respectively (Figure 2E).

Validation of the Prognostic Model in an 
Independent Cohort
Two independent validation cohorts were utilized to 
further investigate the prognostic value of the innate 
IRGs signatures model. The 232 samples in the GEO 
cohort GSE157010 were categorized into high- and low- 
risk groups based on the median risk score, calculated as 
described above. The risk curve (Figure 3A) and the 
scatter diagram for survival (Figure 3B) were similar to 
those observed in the training cohort. Kaplan–Meier ana-
lysis showed that OS was significantly shorter in the high- 
risk group (P = 0.00021; Figure 3C). A heatmap showed 
the expression of the six genes in the high- and low-risk 
groups (Figure 3D), and time-dependent ROC curves 

showed that the average AUCs at 1, 3, and 5 years were 
0.661, 0.643, and 0.640, respectively (Figure 3E).

The same classification methods were applied to the 
TCGA cohort. Kaplan–Meier analysis showed that OS was 
markedly shorter in the high-risk group (Supplementary 
Figure 1A), and time-dependent ROC analysis showed that 
the average AUCs in 3, 5, and 7 years, were 0.482, 0.580 
and 0.634, respectively (Supplementary Figure 1B).

Independent Prognostic Value of the IRG 
Signature Model
The independence and integration effects of the IRG signa-
ture model among multiple clinical parameters were assessed 
by drawing Forest plots and a nomogram, followed by uni-
variate and multivariate Cox regression analysis. Univariate 
Cox regression analyses showed that age (hazard ratio [HR] 
=1.480, p = 0.019), T-stage (HR = 1.740, P < 0.001), and risk 
score (HR = 2.250, p < 0.001) were significantly associated 
with OS in the training cohort. Subsequent multivariate Cox 
regression analysis showed that age (HR = 1.560, p = 0.008), 
T-stage (HR = 1.600, P < 0.001) and risk score (HR = 2.060, 
p < 0.001) remained significantly associated with OS 
(Figure 4A and B). In the validation cohort, univariate Cox 
regression analysis showed that T-stage (HR = 1.450, p = 
0.011) and risk score (HR = 2.010, p < 0.001), but not age, 
were significantly associated with OS. Multivariate Cox 
regression analysis also showed that T-stage (HR = 1.440, 
p = 0.014) and risk score (HR = 1.930, p < 0.001) were 
significantly associated with OS (Figure 4C and D). Taken 
together, these findings showed that both risk score and 
T-stage were independently predictive of OS in the training 
cohort. These factors were incorporated into a nomogram to 
quantify the predicted individual survival probability at 1, 3 
and 5 years (Figure 5A). The possible application of this 
model to future clinical decision-making was further esti-
mated by DCA, which quantifies the clinical value of 
a nomogram by analyzing the clinical results at different 
periods. This analysis showed that the combined model was 
more predictive of outcomes than any single model at 1, 3 
and 5 years (Figure 5B), and ROC analyses showed that the 
average AUCs at 1, 3, and 5 years were 0.752, 0.727, and 
0.715, respectively (Figure 5C).

Functional Analysis in the Training and 
Validation Cohorts
To identify the biological functions and pathways asso-
ciated with risk scores, samples in the high- and low-risk 
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groups were subjected to differential analyses, and total 
logFC values were sorted from highest to lowest and 
included in GSEA. The top 20 biological functions and 
pathways enriched in both cohorts were visualized by 
Ridgeplot (adjusted P < 0.05, Figure 6A–D). After inte-
grating, we found that carcinoma-related pathways, such 

as cell cycle, cellular senescence and microRNAs, were 
up-regulated in cancers in the high-risk group of the train-
ing cohort, while immune and cell death-related pathways, 
such as cytokine–cytokine receptor interactions, chemo-
kine signaling pathways and phagosome pathways, were 
down-regulated (Figure 6E). Similar results were observed 

Figure 2 Risk score distribution, Kaplan-Meier survival analysis and time-dependent ROC curves in the training cohort (GSE157009). (A and B) Distribution of risk scores 
and survival status. (C) Kaplan-Meier analysis, showing that overall survival (OS) rates were significantly higher in the low- than in the high-risk group (P <0.0001 by Log rank 
test). (D) Distribution of risk scores as a function of gene expression characteristics. (E) AUC of time-dependent ROC curves measuring the ability of the model to predict 
OS.
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in the validation cohort, with cell cycle, thermogenesis and 
chemical carcinogenesis-reactive oxygen species pathways 
up-regulated in the high-risk group, while apoptosis, cyto-
kine–cytokine receptor interactions and chemokine and 
NOD-like receptor signaling pathways being down- 
regulated (Figure 6F).

TIME Score and Enrichment Analysis of 
22 TICs
GSEA results showed that the differential functions and 
pathways between the high- and low-risk groups mainly 
included cytokine–cytokine receptor interactions and the 
chemokine signaling and carcinoma-related pathways. 

Figure 3 Risk score distribution, Kaplan-Meier survival analysis and time-dependent ROC curves in the validation cohort (GSE157010). (A and B) Distribution of risk 
scores and survival status. (C) Kaplan-Meier analysis, showing that overall survival (OS) rates were significantly higher in the low- than in the high-risk group (P= 0.00021 by 
Log rank test). (D) Distribution of risk scores as a function of gene expression characteristics. (E) AUC of time-dependent ROC curves measuring the ability of the model to 
predict OS.
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Evaluation of the contents of the immune-stromal com-
ponents in TME of the training cohort showed that the 
high-risk group had a higher TumorPurity score but lower 
StromaScore and ImmuneScore than the low-risk group 
(Figure 7A), with similar results in the validation cohort 
(Figure 7B). Evaluation of the proportions of tumor- 
infiltrating immune subpopulations using the 
CIBERSORT algorithm showed the relative distributions 
of 22 TICs in the training cohort (Figure 7C), as well as 
correlations among these 22 TICs (Figure 7D). A violin 
plot (Figure 7E) showed that the numbers of naïve 
B cells, memory activated CD 4 T cells, and gamma 
delta T cells were markedly higher in the low- than in 
the high-risk group, whereas the numbers of memory 

B cells, resting NK cells and activated mast cells were 
significantly lower in the low-risk than in the high-risk 
group.

Validation of the Six-Gene Signature by 
Evaluating Expression and Mutations
The expression patterns of the six gene signature in 
LUSC and normal lung tissue were further confirmed 
using the Human Protein Atlas (HPA; https://www.protei 
natlas.org/). Immunohistochemical results from the HPA 
database showed that levels of expression of SREBF2, 
DDX41, GOPC and GP2 were higher to varying degrees 
in LUSC than in normal lung tissue samples, whereas the 
expression of BMX did not differ significantly 

Figure 4 Univariate and multivariate Cox regression analysis of the risk scores and other clinical characteristics. (A) Univariate Cox regression analysis in the training 
cohort. (B) Multivariate Cox regression analysis in the training cohort. (C) Univariate Cox regression analysis in the validation cohort. (D) Multivariate Cox regression 
analysis in the validation cohort.
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(Figure 8A) and NR1H4 was not included in the HPA. 
The levels of mRNAs encoded by these six signature 
genes were downloaded from the Gene Expression 
Profiling Interactive Analysis (GEPIA) database. Except 
for BMX mRNA, the level of which was markedly lower 
in LUSC samples, there were no significant differences in 
expression of the other five genes (Figure 8B). Evaluation 
of mutations in these six signature genes, including mis-
sense, splice and truncating mutations, in 1176 samples 
from three independent TCGA cohorts using the 
cBioPortal instrument (http://www.cbioportal.org/) 

showed that GP2 and NR1H4 were mutated in 5% of 
these samples (Figure 8C).

Discussion
The present study identified the prognostic innate immune- 
related signature associated with OS in early-stage LUSC 
using one cohort (GSE157009) and validated this signa-
ture in a second cohort (GSE157010). LASSO and subse-
quent multivariate Cox regression analyses identified 
a signature composed of six innate IRGs (SREBF2, GP2, 
BMX, NR1H4, DDX41, GOPC) as being significantly 

Figure 5 Construction and validation of a predictive nomogram. (A) Nomogram predicting the 1-, 3-, and 5-year OS of patients with early stage LUSC. (B) DCA curves 
showing that the nomogram is superior to a single model in providing optimal clinical decision-making benefits. (C) Time–ROC curves evaluating the predictive efficiency of 
the combined model at 1-, 3-, and 5-year.
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associated with OS in early-stage LUSC. SREBF2,28,29 

BMX,30,31 GP2,32 DDX4133–35 and NR1H436–39 have 
been reported to correlate positively and GOPC negatively 
with tumor-related phenotypes and adverse events in sev-
eral types of cancer.40 Bone marrow X kinase (BMX) was 
associated with chemoresistance in SCLC through its 

modulation of autophagy.30 Moreover, BMX signaling 
was found to mediate radiation resistance in the vascular 
endothelium of lung tumors in mice.31 A mutation in the 
gene encoding nuclear receptor subfamily 1 group 
H member 4 (NR1H4) was found to correlate with distant 
metastasis of LUSC.36 An SNP, rs12296850 at 12q23.1, 

Figure 6 Enrichment analyses of biological functions and pathways in the high- and low-risk group. (A and B) Ridgeplots showing biological function enrichment in the 
training and validation cohorts, with the horizontal coordinate corresponding to the peak being the enrichment fraction. (C and D) Pathway enrichment in the training and 
validation cohorts. (E and F) Gene sets with |NES| > 1, NOM p-value <0.05, and FDR q-value < 0.25 were considered significantly enriched.
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Figure 7 Component analysis of the tumor immune microenvironment. (A and B) Evaluation of tumor purity, Stroma score and Immune score by the “estimate” package in 
R and visualization by boxplots in the (A) training and (B) validation cohorts. (C) Relative content distribution of 22 TICs. (D) Analysis of correlations among the 22 TICs. 
(E) Violin plot showing the ratio of each of the 22 TICs between the high- and low-risk groups. (p < 0.05 was significant difference by Wilcoxon rank sum tests).

International Journal of General Medicine 2021:14                                                                             https://doi.org/10.2147/IJGM.S341175                                                                                                                                                                                                                       

DovePress                                                                                                                       
9017

Dovepress                                                                                                                                                                 Li et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


may be associated with the expression of NR1H4 and high 
risk in LUSC.37 Indeed, this study found that the NR1H4 
mutation frequency in LUSCs was 5%. NR1H4 has been 

reported to participate in colorectal cancer tumorigenesis, 
cell proliferation and cell survival via Wnt/β-catenin and 
the regulation of c-MYC stability.38,39 Additional studies 

Figure 8 Differential expression of the six-genes in LUSC and normal lung tissue and gene mutations in LUSC. (A) Representative immunohistochemical results of LUSC 
and normal tissue samples from the Human Protein Atlas (HPA) assessing levels of expression of signature genes. (B) Levels of expression of mRNAs encoded by the six 
signature genes from the GEPIA database, with expression from the TCGA-LUSC and standardized by log2 (TPM+1). (C) Type and frequency of mutations of signature 
genes in three TCGA cohorts from the cBioPortal website.
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are needed to assess the potential role of NR1H4 in LUSC 
development.

After integrating these six innate IRG genes into 
a prognostic signature, we calculated the risk score of 
each sample. Univariate and multivariate Cox regression 
analyses showed that both risk score and T stage were 
independently prognostic of OS. DCA and time-ROC 
curve showed that risk alone had a better capacity than 
T-stage alone in estimating 3- and 5-year OS in early-stage 
LUSC.

GSEA of both the training and validation cohorts 
showed that the high-risk group was enriched in genes 
associated with tumor-related pathways, such as the cell 
cycle, microRNAs in cancer and thermogenesis, in agree-
ment with the evaluation of tumor purity in the TME. 
Moreover, genes associated with cytokine–cytokine recep-
tor interactions and chemokine signal pathways were sig-
nificantly negatively correlated with risk scores in both the 
training and validation cohorts. Specific cytokines, such as 
IFN, IL-2, IL-4, IL13, and IL15,41 can modulate both 
innate and adaptive immunity by interacting with their 
receptors on various immune cells, with chemokines play-
ing crucial roles in inflammation and immunity. Owing to 
their expression in both tumor cells and leukocytes in the 
TME, chemokines represent an ideal target for 
immunotherapy.42 These functional analysis results were 
in accordance with immune microenvironment scores, 
with the low-risk group having a higher proportion of 
immune cells (quantified as ImmuneScore) and stromal 
cells (quantified as StromaScore). The TIME has been 
confirmed important during tumor development and pro-
gression. LUSCs have the highest leukocyte fractions 
among all solid tumors analyzed,16,43 making further 
exploration of the TIME immunity.

Although the adaptive immune system is primarily 
responsible for cytotoxicity and tumor suppression, var-
ious cytokines secreted by innate immune components 
within the TME can activate or suppress the immune 
system. For example, IL-4 in the TME initiates STAT6 
signaling, polarizing macrophages to immune suppressive 
M2 macrophages;10 Neutrophils promote angiogenesis, 
tumor progression, and invasion by secreting neutrophil 
elastase, oncostatin-M and PGE244,45 factors that can 
modulate the curative effects of ICIs. Innate immune 
components and immunophenotypes in the TIME can 
change dynamically during tumor development, therefore, 
suggesting that efforts to develop therapeutic approaches 

should consider the specific conditions of innate immune 
components in different types and stages of cancer.

Genes representative of specific immune-cell types can 
predict TME components. The evolutionary trajectory of 
the immune response, from precancerous lesions to pre- 
invasive stages of LUSC46 has been found to include 
increases in the numbers of activated T cells, total neutro-
phils, M1 macrophages, memory B cells and the myeloid 
signature, accompanied by decreases in the abundance of 
naive B cells. In addition, resting mast cells were found to 
be more abundant in early than in later developmental 
stages, whereas activated mast cells increased during 
development, with both resting and activated NK cells 
remaining at low levels. The present study found that 
some innate immune components differed significantly in 
the high- and low-risk groups, as estimated by the 
CIBERSORT algorithm-based TIC analysis. Specifically, 
the numbers of γδ T cells were higher, while the numbers 
of resting NK cells and activated mast cells were lower. γδ 
T cells are considered a rapid lymphoid stress-surveillance 
system, rapidly responding to stress-induced tissue pertur-
bation, and a bridge between innate and adaptive 
immunity.47,48 Moreover, increased numbers of γδ T cells 
have been found to correlated with prolonged OS in 
patients with LUSC.11 NK cells have potent antitumor 
and antimetastatic activity. Although NK cell infiltration 
did not correlate with clinical outcomes in NSCLC,49 

activated NK cells in the TIME were found to correlate 
with OS in patients with LUSC.11 These findings may be 
due to NK cell dysfunction cells in the TIME,50 

a hypothesis based on the higher ratio of resting NK 
cells in high-risk patients. Mast cells in the TME have 
both pro- and anti-tumorigenic activities, depending on 
tumor type and developmental stage.51 Mast cells infiltrat-
ing into tumor islets enhance the expression of TNFα, 
prolonging survival time in patients with NSCLC.52 In 
contrast, our results demonstrated that activated mast 
cells were more abundant in the high-risk group, suggest-
ing a need for further studies to determine whether acti-
vated mast cells have pro- or anti-tumorigenic activities in 
early-stage LUSC. Despite the innate IRG signature iden-
tified in this study, components of adaptive immunity also 
differed in the high- and low-risk groups. For example, 
levels of activated memory CD4+ T cells and naïve B cells 
were higher, while levels of memory B cells were lower. 
These phenomena may be due to crosstalk between innate 
and adaptive immunity, which could determine the 
immune states in the TME and affect patient prognosis.
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The present study had several limitations. First, clinical 
information about patients in these two cohorts in the GEO 
database was not complete. Although all samples were 
from patients with stage IA-IIIA LUSC (AJCC 8th),23 

accurate clinical staging for each patient was unavailable. 
Thus, T stage was included for independent prognostic 
analysis. Second, further studies in larger numbers of 
samples are needed to validate the present results. Third, 
the functions of IRGs in early-stage LUSC have not been 
fully determined.

Conclusion
Based on bioinformatics analysis, a prognostic model that 
included six innate immune-related genes was constructed to 
predict OS in patients LUSC. The efficacy of the model was 
further validated in two independent cohorts. Risk scores, as 
determined by this model, were negatively associated with 
immune cell infiltration and functional performance. These 
findings may improve understanding of the roles of innate 
immune-related genes in early stages of LUSC and to further 
explore dynamic changes in the TIME.
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