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The green and red lights of a traffic signal can be viewed as the up and down states of an Ising spin. Moreover,
traffic signals in a city interact with each other, if they are controlled in a decentralised way. In this paper,
a simple model of such interacting signals on a finite-size two-dimensional lattice is shown to have Ising-like
dynamics that undergoes a ferromagnetic phase transition. Probabilistic behaviour of the model is realised
by chaotic billiard dynamics that arises from coupled non-chaotic elements. This purely deterministic
model is expected to serve as a starting point for considering statistical mechanics of traffic signals.

K
yoto City in Japan is famous for its grid pattern of roads, as well as its long history as the former capital.
Nowadays, many vehicles use the roads, and traffic signals are placed at the crossings. The traffic signals
at each crossing have essentially two states: in one state, the traffic signals for the north–south direction

are green, and in the other, those for the east–west direction are green. If we relate these two states to the up and
down states of an Ising spin, all of Kyoto City can be viewed as the Ising model on a two-dimensional lattice.
This naive idea cannot be regarded as absolute nonsense when traffic signals are controlled depending on local
traffic flows, because neighbouring signals interact indirectly through the traffic flows between them1,2.
Although finding efficient control strategies for traffic signals is an important problem, their collective beha-
viour under such decentralised strategies has not been well understood3,4. In this paper, we reveal the physics
underlying the interacting signals by showing that a simple model on a finite-size two-dimensional lattice
exhibits a ferromagnetic phase transition with critical behaviour. We also report that probabilistic behaviour
as an Ising-like model is realised by chaotic billiard dynamics that arises naturally from coupled non-chaotic
elements. This purely deterministic model is expected to serve as a starting point for considering statistical
mechanics of traffic signals.

The Ising model5, to which we relate Kyoto City, is an abstract model for ferromagnetism that shows phase
transitions with critical behaviour. The model itself describes only probabilistic distributions of spin configura-
tions and does not specify the underlying dynamics. The dynamics in real ferromagnetic materials may be given in
terms of quantum mechanics. However, it is also intriguing to ask whether the probabilistic behaviour of the Ising
model can be explained by deterministic dynamics, which is referred to as Ising dynamics in this paper. There
have been two series of studies that can be regarded as following this direction.

One approach considers deterministic microcanonical dynamics, in which the spin configuration wanders
deterministically on a microcanonical ensemble according to the Hamiltonian of the Ising model. In a model
proposed by Creutz6, a demon traveling around the lattice is assumed to convey kinetic energy from spin to
spin while conserving the total energy. If the demon travels deterministically, the model is deterministic.
Microcanonical dynamics can also be implemented as cellular automata7,8. The Creutz cellular automaton has
been shown to behave in almost the same way as Monte Carlo simulations of the original Ising model9.

The other approach is based on coupled map lattices (CMLs)10, which are an important class of dynamical
systems with a large number of degrees of freedom that exhibit rich spatio-temporal nonlinear dynamics. CMLs
are typically composed of chaotic elements on a lattice interacting with neighbouring elements. By defining binary
symbols in the state space of each element, Ising-like spin models can be constructed on the basis of CMLs11,12.
Although the microscopic behaviour of the CMLs is far from equilibrium, their macroscopic behaviour can be
understood in terms of equilibrium statistical mechanics13–18.

The traffic signal model on a two-dimensional lattice that we consider here is also deterministic, but it differs
from any of these previous models. Starting from some natural assumptions, we build a simple continuous-time
model of traffic signals on a two-dimensional lattice; microcanonical ensembles are not considered, and elements
are not chaotic. Interactions between neighbouring signals are realised naturally by the traffic flows between
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them, assuming that each signal is controlled on the basis of locally
observed information on traffic flows. Probabilistic behaviour rese-
mbling the Ising model arises from these deterministic interactions.

Results
Traffic signal model. Specifically, the model is formulated as
follows. Traffic signals are located at every crossing (node) of a
two-dimensional lattice (Fig. 1a) of size L 3 L with a periodic
boundary condition. Roads exist between neighbouring nodes, and
each road consists of two lanes, one in each direction. We regard
vehicles as fluids that flow along the lanes; they flow into a traffic lane
at a crossing and flow out at a neighbouring crossing. As shown in
Fig. 1b, the signals at the ith node have one of the following two states:
si 5 11, in which vertical (north–south) traffic flow is allowed, and
si 5 21, in which horizontal (east–west) traffic flow is allowed. We
assume that when si 5 11, only the vehicles coming from the
vertical lanes flow into the crossing at the rate of 1 (vehicle) per
unit time; at the crossing, vehicles go straight at the rate of a, and
they turn right or left at the rate of 1 2 a, where a g [0, 1] is a
parameter of the model. Similarly, when si 5 21, vehicles from the
horizontal lanes are allowed to enter the crossing, where they behave
in the same way.

Then, the number of vehicles qij in the traffic lane from node j to
node i evolves according to the following differential equation:

dqij

dt
~

sij

2
{sizasj
� �

, ð1Þ

where a stands for 2a 2 1, and sij g {11, 21} denotes the direction
of the lane from node j to node i (11 for vertical and 21 for
horizontal).

Traffic signals are controlled locally; essentially, they are changed
to allow traffic from the lanes in which more vehicles are waiting at
each crossing. This type of dynamic and decentralised control strat-
egies, rather than conventional cyclic and centralised ones, has
recently been considered as promising1–4. Let us consider the average
numbers of vehicles coming from the vertical and horizontal lanes at
the ith node. Their difference is given by xi~

P
j[N ið Þ sijqij

�
2, where

N(i) denotes the set of four neighbours of the ith node. When xi . 0,
more vehicles are waiting in the vertical direction, thus the vertical
signals should be green (si 5 11), and when xi , 0, the horizontal
signals should be green (si 5 21). To avoid frequent switching,
signals are controlled by the following on–off control rule:

si/z1 when xi§zh, and si/{1 when xiƒ{h, ð2Þ
where h . 0 is the threshold parameter for the deadband, and we set
h 5 1 without loss of generality in the following.

Equations (1) and (2) define the dynamics of the traffic signal
model. However, instead of considering the numbers of vehicles qij

in all the lanes, it is sufficient to consider only the differences xi at all
the nodes. The time evolution of xi is described by

dxi

dt
~{siz

a

4

X
j[N ið Þ

sj: ð3Þ

Note that because 21 # a # 1, xi never increases when si 5 11, and
never decreases when si 5 21. Therefore, xi can be controlled within
the interval [2h, 1h]. This also means that the values of qij are
bounded and ensures that the lanes become neither too much con-
gested nor empty provided that there are sufficient vehicles at the
initial time. Because the traffic flows are controlled by discrete sig-
nals, the model can be regarded as a switched flow system2,19. More
generally, it is a hybrid dynamical system20, because it is a completely
deterministic system that consists of both continuous variables {xi}
and discrete variables {si}.

The state (x1, …, xN) of N 5 L 3 L crossings moves straight in the
N-dimensional hypercube [2h, 1h]N according to equation (3), and
its direction changes only on the boundary of the hypercube accord-
ing to equation (2). Therefore, its dynamics can be understood as a
pseudo billiard21 or a strange billiard22,23. Note that the dynamics is
invertible. For a 5 1/2 (i.e., a 5 0), interactions between the xi’s
vanish, and the dynamics reduces to a normal hypercubic billiard.
The decoupled dynamics of the nodes can be considered as non-
chaotic oscillators because they behave periodically with a period
of 4h.

Ising-like dynamics. Typical dynamics of the model is shown in
Fig. 2. The snapshots of the spin configurations of the traffic signal
model (Fig. 2a) resemble those of the Ising model in the parama-
gnetic phase. Figures 2b and c show the time evolutions of the
magnetisation per site, m~

P
i si=N , and the energy per site,

~{
P

ij sisj
�

N , respectively, for several values of a. Apparently
the system shows probabilistic behaviour, although each element is
non-chaotic.

Neighbouring spins have ferromagnetic interactions for a . 0,
since as equation (3) shows, xi moves more slowly when more neigh-
bouring spins are aligned. Similarly, they have antiferromagnetic
interactions for a , 0, and the model is symmetric with respect to
a 5 0 (see Methods for mathematical properties of the model). The
parameter a corresponds to the coupling strength between the sig-
nals, which controls the apparent temperature of the system; as a
goes away from 0, the system is considered to be cooled down. As a
approaches 1, the average cluster size grows (Fig. 2a) and the average
energy decreases (Fig. 2c).

In the extreme case of a 5 1, the system dynamics has two absorb-
ing states; as equation (3) shows, once all the spins are aligned, the
state never changes, and the system freezes. Figure 3 shows the time
required to reach one of the absorbing states starting from a random
(high-temperature) initial state. In all the calculations for L # 32, the
system dynamics reaches the absorbing states in a finite time t # 108.
This implies that the traffic signal model of finite size undergoes
spontaneous symmetry breaking as it approaches a 5 1. However,
the absorption time is likely to diverge in the thermodynamic limit,
because in Fig. 3 the absorption time seems to increase exponentially
as L increases.

Thermodynamic behaviour of the model as it approaches a 5 1 is
shown in Fig. 4. For jaj, 1, no absorbing states exist, and similarly to
the case of the Ising model, it can be shown that the long-term
average of the magnetisation Æmæ is strictly zero (see Methods). As

a b

Figure 1 | Schematic figures of the traffic signal model. (a) Grid pattern of roads. (b) The two states of traffic signals at each crossing.
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a approaches 1, the average absolute magnetisation Æjmjæ increases
from 0 to 1 (Fig. 4a), which suggests a phase transition from the
paramagnetic phase to the ferromagnetic phase. In the correspond-
ing range of a, the magnetic susceptibility x 5 N(Æm2æ 2 Æjmjæ2) and
the specific heat c~N 2h i{h i2

� �
have peaks (Fig. 4c and d). The

phase transition point indicated by these peaks seems to converge to
a 5 1 in the thermodynamic limit. This implies that the ordered
behaviour exists only at a 5 1 in the thermodynamic limit. In this
sense, this phase transition in the model can be observed only as a
finite size effect.

More detailed analysis of larger systems is necessary for accurate
estimation of the critical exponents. However, because the calcula-
tion of thermodynamic quantities of the model requires lengthy
computation, these analyses do not seem tractable at present.

The thermodynamic behaviour is realised by nonlinear dynamics
of coupled non-chaotic elements. The dynamics is not ergodic in a
rigorous sense, because it can be shown that it has invariance (see
Methods). However, this non-ergodicity may be subtle from a mac-
roscopic point of view. The dynamics can be characterised by the
piecewise linear Poincaré map defined on the boundary of the hyper-
cube, which we call the spin-flip map (see Methods).

We numerically investigated the dynamics for the smallest case
L 5 2. Figure 5 shows the largest Lyapunov exponents of the spin-flip
map for initial values on a plane in the boundary. The largest
Lyapunov exponents are non-negative. It can be observed that the
instability of the orbits depends strongly on the invariant plane;
namely, it depends on the choice of initial states. Moreover, even if
we limit the dynamics to an invariant plane, there are typically mul-
tiple invariant sets (ergodic components). Therefore, even in the
chaotic case, the state wanders in a limited region on the invariant
plane. It should be investigated as a next step whether these prop-
erties for L 5 2 remain in larger systems.

Discussion
Chaotic dynamics is known to emerge even in a very simple switched
flow system19. Therefore, it has been pointed out that city traffic as a
switched flow system may exhibit chaotic behaviour2. In this regard,
we have presented the first concrete traffic model described by a
switched flow system that exhibits chaotic dynamics in this paper.

The probabilistic distribution of spin configurations realised by
the chaotic behaviour is unknown and should be investigated in the
future. However, it can be intuitively related to the Ising model. Let us
consider the behaviour of the ith node in the lattice surrounded by
four neighbouring nodes whose states are all fixed. Then according to
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Eq. (3), xi moves at the absolute speed of (1{a
P

j sj
�

4) when si 5

11, and (1za
P

j sj
�

4) when si 5 21. Therefore, if we sample si at
a random time, the probability of observing si 5 11 is given by

1za
P

j sj

.
4

� �.
2, which is determined by the states of the neigh-

bouring nodes as in the Ising model. This intuitive discussion gives us
a probabilistic Ising-like model that may be approximately followed
by the determinstic model.

Because the traffic signal model is very simple, it can be extended
in many directions and related to studies in various fields. External
magnetic fields can easily be implemented by considering different
speeds of flows in the horizontal and vertical directions. Extensions
to a d-dimensional hyperlattice and other network structures can be
considered by modifying equation (3). The traffic signal model can
also be regarded as a coupled oscillator system in which, unlike the
Kuramoto model24, the elements interact only through binarised
phases. In the sense that interactions are discrete, the model may

be related to neural networks; in fact, it is similar to a neural network
model of simplified hysteresis neurons25.

Equation (3) can be generalised to the form _xi~F si, sj

� �
j[N ið Þ

� �
,

which in conjunction with equation (2) defines a new class of dynam-
ical systems with a large number of degrees of freedom. This new
class is expected to exhibit chaotic pseudo-billiard dynamics that
arises from coupled non-chaotic elements. Beyond what is shown
in this paper, it may have connections to various models such as spin
models in statistical physics, coupled oscillators and CMLs in non-
linear physics, and cellular automata in computer science. Recently,
we have shown that the Boltzmann machines can be simulated by
chaotic dynamics in this class26.

It should be also noted that over the past half-century, ideas from
statistical physics have been successfully applied to traffic flows27. In
particular, cellular automaton models of city traffic such as the BML
model28 and the CS model29 are built on a similar configuration of
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two-dimensional lattices. However, while these studies focused on
vehicles and characterised traffic jams as phase transitions, we
focused on traffic signals, which themselves constitute a many-body
system in cities. Although the model presented here is too simple for
real city traffic, it is natural to assume that signals are interacting with
each other if they are somehow controlled locally, as pointed out in
the previous studies1,2. In this sense, our model is expected to serve as
a starting point for considering statistical mechanics of traffic signals.

Methods
Symmetries in the model. To understand the dynamics of the model, it is important
to understand symmetries inherent in the model. The time evolution of xi’s (Eq. (3))
can be written in a matrix form as follows:

d
dt

x~ {Iz
a

4
A

� �
s, ð4Þ

where x~ x1, . . . , xNð Þ> , s~ s1, . . . , sNð Þ> , and the matrix A is the adjacency
matrix of the lattice. There is a trivial symmetry in the state space of the nodes as
follows:

d
dt

{xð Þ~ {Iz
a

4
A

� �
{sð Þ: ð5Þ

There is also a symmetry as to time reversal as follows:
d
dt

x {tð Þ~ {Iz
a

4
A

� �
{s {tð Þð Þ: ð6Þ

Let L1 and L2 be the sets of the black and white sites in the checkerboard pattern on
the lattice. Define D 5 diag(d1, …, dN), where di 5 11 if i g L1 and di 5 21 if
i g L2. Since DA 5 2AD, we have

d
dt

Dx~D {Iz
a

4
A

� �
s~ {I{

a

4
A

� �
Ds, ð7Þ

which shows the symmetry between ferromagnetism and antiferromagnetism
(1a and 2a).

Long-term average of the magnetisation. In the traffic signal model, it can be shown
that the long-term average of the magnetisation is strictly zero, as in the Ising model
on a finite-size lattice. By averaging the system dynamics from time 0 to T, we have

1
T

x Tð Þ{x 0ð Þð Þ~ {Iz
a

4
A

� � 1
T

ðT

0
s tð Þdt: ð8Þ

In the limit T R ‘, the left-hand side of this equation goes to zero, because x is
bounded. For jaj, 1, the matrix (2I 1 (a/4)A) is diagonal dominant and regular, so
that Æsæ is zero. Therefore, the long-term average of the magnetisation Æmæ must be
also zero.

Invariant hyperplanes. As one of the dynamical properties of the model, it can be
shown that the system is not ergodic. Let us define C as follows:

C~
X
i[Lz

sixi{
X
i[L{

sixi: ð9Þ

While there is no spin flips, the value of C does not change, because

dC
dt

~
X
i[Lz

si {siz
a

4

X
j[N ið Þ

sj

0
@

1
A{

X
i[L{

si {siz
a

4

X
j[N ið Þ

sj

0
@

1
A

~
a

4

X
i[Lz

X
j[N ið Þ

sisj{
a

4

X
i[L{

X
j[N ið Þ

sisj~0,

ð10Þ

where N(i) denotes the set of four neighbouring nodes of node i. When a spin flips, the
value ofC changes only by multiples of two. When si changes from 11 to 21, xi has to
be 11, and similarly when si changes from 21 to 11, xi has to be 21. Therefore, sixi

always changes from 11 to 21 when the ith spin flips. Therefore the system evolves
within the invariant hyperplanes determined by the invariance of C modulo 2.

Spin-flip map. To analyse the dynamics of the model, it is important to analyse the
Poincaré map defined on the boundary of the hypercube, which we call the spin-flip
map. Let t1ƒt2ƒt3ƒ � � � be the time sequence of spin flips. For convenience, define
x[k] 5 x(tk) and s[k] 5 s(tk 1 0). The kth time interval tk 5 tk11 2 tk of the spin
sequence is given by

tk~ min
i

e>i {s k½ �{x k½ �ð Þ
�

e>i r k½ �, ð11Þ

where ei is the ith standard basis for N-dimensional Euclidean space and

r k½ �~ {Iz
a

4
A

� �
s k½ �: ð12Þ

Let i[k] be the spin actually flipped at time tk. Then, we have the spin-flip map

x kz1½ �~x k½ �zr k½ �tk~x k½ �z
r k½ �e>i kz1½ �

e>i kz1½ �r k½ � {s k½ �{x k½ �ð Þ: ð13Þ

Therefore, the spin-flip map is piecewise linear.
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13. Marcq, P., Chaté, H. & Manneville, P. Universality in Ising-like phase transitions

of lattices of coupled chaotic maps. Phys. Rev. E 55, 2606–2627 (1997).
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