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In this paper, a closed-form analytical solution of option price under the Bi-Heston model is derived. Through 
empirical analysis, the advantages and disadvantages of the parametric pricing model are compared and analysed 
with those of the non-parametric model. The analysis shows that: (1) the parametric pricing model significantly 
outperforms the machine learning model in terms of in-sample pricing effects, while the Bi-Heston model slightly 
outperforms the Heston model. (2) In terms of out-of-sample pricing, the machine learning model is inferior to 
the parametric model for call options, while the Bi-Heston model is significantly better than the other two models 
for put options, and the other two models are similar. (3) In the robustness analysis of the three pricing models, 
the machine learning model shows strong instability, while the Bi-Heston model shows a more stable side.

1. Introduction

In recent years, China’s financial markets have developed at a rapid pace, and a large number of financial products have emerged as derivatives. 
Financial derivatives, which are financial contracts with functions such as risk management, price discovery and hedging, have become an integral 
part of the financial market as they can efficiently enhance market allocation efficiency. Options, as a financial derivative product and one of the 
most dominant products traded in the financial derivatives market, are valued by investors for their flexibility in risk management. While options 
can bring great convenience to investors, they also have some potential drawbacks if they are not priced correctly. Therefore, the correct pricing 
of options is critical to the risk control of investors. In the literature, there are two types of pricing models, parametric option pricing models and 
non-parametric option pricing models.

In all the parametric models, the most influential one was proposed by Black and Scholes [1] in 1973, from which an option pricing formula 
in the form of a closed solution can be derived. This formula was considered to be epoch-making and was well known among researchers and 
practitioners due to an easiness of use. Soon after, researchers discovered that it did not correspond well to some of the realities of the market 
due to its strict assumptions. And then, Heston [2] improved the Black-Scholes model by making a new assumption that volatility is not constant, 
but follows a CIR [3] process. This solves the volatility estimation problem. The Heston model is arguably one of the most widely used volatility 
models, but later scholars have found that the Heston model does not fit the implied volatility smile phenomenon very well. To address this problem, 
Christoffersen et al. [4] improved the Heston model by proposing the Bi-Heston stochastic volatility model which specifies a two-factor structure for 
volatility. Its additional parameters allow it to estimate option prices more accurately as well as fit implied volatility. Very recently, more scholars 
joined in the study of the model. Rouah [5] showed the implied volatility of the Bi-Heston model and found that it was closer to the actual market 
implied volatility than the Heston model. Fallah [6] first proved the existence and uniqueness of solutions of stochastic differential equations under 
the Bi-Heston model. Mehrdoust [7] proposed an extension of the Bi-Heston model to include jumps in the financial modelling of stock prices and 
found that it was an efficient tool for option pricing with the Fast Fourier Transform method. Their findings all suggest that the Bi-Heston model 
is highly relevant. Therefore, in this paper, we aim to explore the pricing performance of the Bi-Heston model, and the Heston model is used to 
compare with.

However, there is one more issue that needs to be addressed when using these parametric models in practice. As the name implies, to use the 
parametric model to price options, the model parameters need to be estimated first. Models usually have many parameters to be estimated, and the 
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objective function is complex. To solve this problem, there are also many researchers who have given their solutions. Cui [8] changed the structure 
of the characteristic functions in the Heston model to give an analytic gradient for solving the problem of parameter estimation and proposed 
a new fast and efficient multi-parameter correction algorithm for the Heston model based on the analytic gradient. In recent studies, Cacace [9] 
developed a new polynomial filtering method to estimate parameters in the Heston model that relied on a linear filter using a polynomial state-space 
formulation of a discrete version of the continuous-time model. In this paper, we reduce this problem to an optimization problem and give a solution 
based on numerical calculations.

Even if the problem of parameter estimation is solved, traditional parametric models still have some drawbacks that they are strictly limited 
in some statistical or economic assumptions and do not facilitate the judgement of the merit of the model fit. Machine learning, as an alternative 
to non-parametric models, is also intensively developed recently. Ma [10] proposed a price forecasting method based on cost-sensitive deep forest, 
which maintains the high accuracy of deep forest and can significantly reduce the forecast cost error while maintaining high forecast accuracy. 
Hitam [11] proposed a support vector machine based on particle swarm algorithm optimization to predict the futures price of cryptocurrencies. It 
is found that the hybrid model can effectively predict the price of cryptocurrencies, and the prediction performance is better than that of a single 
support vector machine. Yang et al. [12] combined hybrid genetic algorithms with support vector machines and found that support vector machines 
constructed based on genetic algorithms and radial basis functions are more suitable for real values than other methods. Kumar [13] proposed 
four hybrid prediction models that are combinations of four different feature selection techniques with proximal support vector machine classifier. 
Due to the variety of machine learning algorithms, researchers have proposed a large number of related pricing models, and among these, the 
XGBoost model stands out. Le et al. [14] used an improved XGBoost algorithm to build a non-parametric machine learning model for analyzing 
corporate financial statements and demonstrated that the optimized XGBoost algorithm has a great advantage in processing time and has the best 
prediction results. More recently, Ivacu [15] analyzed the prediction performance of the XGBoost algorithm for option pricing and affirmed its 
feasibility. Chang [16] constructed a credit risk assessment model using an extreme gradient boosting machine classifier and empirically tested that 
the XGBoost classifier had better prediction results than logistic regression, clustered data processing techniques, and three support vector machine 
classifiers.

In this paper, we use traditional parametric models and non-parametric machine learning models to price 50ETF options respectively and 
compare the prediction accuracy of all models. Of these models, the Heston and Bi-Heston model represent the traditional parametric models, and 
the XGBoost model represents the non-parametric model. Our article is organized as follows: In Section 2, we give a brief description of the Heston 
model, and a detailed derivation of the Bi-Heston model is provided. In Section 3, the research methodology and data are presented. Firstly, the 
selected data sources are presented, followed by the machine learning model using the XGBoost algorithm. Besides, the methods for parameter 
calibration and the metrics for model evaluation are given. In Section 4, the detailed process of the empirical analysis is given. The prediction results 
of the traditional parametric model and the machine learning model are compared to provide a more comprehensive comparison of the predictive 
validity of them. Furthermore, the robustness tests are conducted for both. Some summaries are provided in Section 5.

2. Derivation of the bi-Heston model

It is well-known that the Heston model overcomes the Black-Scholes model’s shortcoming of assuming constant volatility well and is one of the 
most popular models in the option valuation literature. It is given by

⎧⎪⎪⎨⎪⎪⎩

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡+
√
𝑣𝑡𝑆𝑡𝑑𝑍1,𝑡

𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡+ 𝜎
√
𝑣𝑡𝑑𝑍2,𝑡

𝐶𝑜𝑣(𝑍1,𝑡,𝑍2,𝑡) = 𝜌,

where 𝑆𝑡 denotes the underlying asset price, which is modelled by the square root process with a stochastic instantaneous variance 𝑣𝑡, {𝑍𝑖,𝑡} (𝑖 = 1, 2)
denote the standard Brownian motion, 𝑟 is the risk-free rate, 𝜅 is the mean reversion speed, 𝜃 is the mean reversion of variance, 𝜎 is the volatility 
of variance, and 𝜌 is the correlation coefficient. However, some scholars have pointed out that the Heston model sometimes fails to fit the implied 
volatility smile very well. To overcome this shortcoming, the Bi-Heston model is generalized from the Heston model, which is a straightforward way 
to incorporate a stochastic correlation by using multiple stochastic volatility factors. Assume that risky asset prices satisfy the Bi-Heston model as 
follows

⎧⎪⎪⎨⎪⎪⎩

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡+
√
𝑣1𝑡𝑑𝑍1,𝑡 +

√
𝑣2𝑡𝑑𝑍2,𝑡

𝑑𝑣1𝑡 = 𝜅1(𝜃1 − 𝑣1𝑡)𝑑𝑡+ 𝜎1
√
𝑣1𝑡𝑑𝑍3,𝑡

𝑑𝑣2𝑡 = 𝜅2(𝜃2 − 𝑣2𝑡)𝑑𝑡+ 𝜎2
√
𝑣2𝑡𝑑𝑍4,𝑡,

where 𝑆𝑡 is modelled by two square root processes with two stochastic instantaneous variances 𝑣1𝑡 and 𝑣2𝑡, {𝑍𝑖,𝑡} (𝑖 = 1, 2, 3, 4) denote the stan-

dard Brownian motion, 𝑣1𝑡, 𝑣2𝑡 are extended from 𝑣𝑡. In order to ensure that the square root processes are always positive, we require that 
2𝜅1𝜃1 ≥ (𝜎1)2, 2𝜅2𝜃2 ≥ (𝜎2)2 [2]. We assume that the covariances between these Brownian motions are equal to zero except 𝐶𝑜𝑣(𝑍1,𝑡 , 𝑍3,𝑡) = 𝜌1𝑡, 
𝐶𝑜𝑣(𝑍2,𝑡, 𝑍4,𝑡) = 𝜌2𝑡.

Consider undefined assets denoted by 𝑉 (𝑆𝑡, 𝑣1𝑡, 𝑣2𝑡, 𝑡). The maturity payout function for European options is (𝑆𝑇 −𝐾)+. By the Faman-Kac 
theorem, we have

⎧⎪⎪⎪⎨⎪⎪⎪

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆 𝜕𝑉

𝜕𝑆
+ 𝜅1(𝜃1 − 𝑣1𝑡)

𝜕𝑉

𝜕𝑣1𝑡
+ 𝜅2(𝜃2 − 𝑣2𝑡)

𝜕𝑉

𝜕𝑣2𝑡
+ 1

2
(𝑣1𝑡 + 𝑣2𝑡)𝑆2 𝜕

2𝑉

𝜕𝑆2 +𝑆𝜎1𝑣1𝑡𝜌1
𝜕2𝑉

𝜕𝑆𝜕𝑣1𝑡

+ 𝑆𝜎2𝑣2𝑡𝜌2
𝜕2𝑉

𝜕𝑆𝜕𝑣2𝑡
+ 1

2
𝜎1

2𝑣1𝑡
𝜕2𝑉

𝜕𝑣1𝑡
2 + 1

2
𝜎2

2𝑣2𝑡
𝜕2𝑉

𝜕𝑣2𝑡
2 − 𝑟𝑉 = 0

𝑉 (𝑆,𝑣1𝑡, 𝑣2𝑡, 𝑇 ) = (𝑆 −𝐾)+.
⎩
2
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Decompose 𝑉 (𝑆𝑡, 𝑣1𝑡, 𝑣2𝑡, 𝑡) into two parts

𝑉 (𝑆,𝑣1𝑡, 𝑣2𝑡, 𝑡) = 𝑆𝑃1(𝑆,𝑣1𝑡, 𝑣2𝑡, 𝑡) −𝐾𝑒−𝑟(𝑇−𝑡)𝑃2(𝑆,𝑣1𝑡, 𝑣2𝑡, 𝑡), (1)

where 𝑃𝑗 (𝑆, 𝑣1𝑡, 𝑣2𝑡, 𝑡) (𝑗 = 1, 2) satisfies the following equation at 𝑡 = 𝑇

𝑃1(𝑆,𝑣1𝑡, 𝑣2𝑡, 𝑇 ) = 𝑃2(𝑆,𝑣1𝑡, 𝑣2𝑡, 𝑇 ) =𝐻(𝑆 −𝐾),

where 𝐻(𝑥) is Heaviside function, 𝐻(𝑥) = 𝐼{𝑥>0}.
Let 𝑥 = ln𝑆, then 𝑃𝑗 (𝑥, 𝑣1𝑡, 𝑣2𝑡, 𝑡), (𝑗 = 1, 2) satisfies the following differential equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑃
𝑗

𝜕𝑡
+ [𝑟+ 𝛼𝑗 (𝑣1𝑡 + 𝑣2𝑡)

𝜕𝑉

𝜕𝑥
] + (𝜅1𝜃1 − 𝛽𝑗𝑣1𝑡)

𝜕𝑉

𝜕𝑣1𝑡
+ (𝜅2𝜃2 − 𝑟𝑗𝑣2𝑡)

𝜕𝑉

𝜕𝑣2𝑡
+ 1

2
(𝑣1𝑡 + 𝑣2𝑡)

𝜕2𝑉

𝜕𝑥2

+ 𝜎1𝑣1𝑡𝜌1
𝜕2𝑉

𝜕𝑣1𝑡𝜕𝑥
+ 𝜎2𝑣2𝑡𝜌2

𝜕2𝑉

𝜕𝑣2𝑡𝜕𝑥
+ 1

2
𝜎1

2𝑣1𝑡
𝜕2𝑉

𝜕𝑣1𝑡
2 + 1

2
𝜎2

2𝑣2𝑡
𝜕2𝑉

𝜕𝑣2𝑡
2 = 0

𝑃𝑗 (𝑥, 𝑣1𝑡, 𝑣2𝑡, 𝑇 ) =𝐻(𝑥− ln𝐾),

where

⎧⎪⎨⎪⎩
𝛼1 =

1
2
, 𝛼2 = −1

2
, 𝛽1 = 𝜅1 + 𝜆1 − 𝜌1𝜎1, 𝛽2 = 𝜅1 + 𝜆1,

𝛾1 = 𝜅2 + 𝜆2 − 𝜌2𝜎2, 𝛾2 = 𝜅2 + 𝜆2.

To solve the above system of differential equations, we first consider its characteristic functions, namely 𝑓𝑗(𝑥, 𝑣1𝑡, 𝑣2𝑡, 𝑡; 𝜑), (𝑗 = 1, 2). When 𝑡 = 𝑇 , 
the termination condition is

𝑓𝑗 (𝑥, 𝑣1𝑡, 𝑣2𝑡, 𝑇 ;𝜑) = 𝑒𝑖𝜑𝑥, (𝑗 = 1,2).

Similar to the derivation of the Heston model, we assume that the characteristic function has the form of the following solution

𝑓𝑗 (𝑥, 𝑣1𝑡, 𝑣2𝑡, 𝑡;𝜑) = 𝑒𝐶(𝑇−𝑡;𝜑)+𝐷(𝑇−𝑡;𝜑)𝑣1𝑡+𝐸(𝑇−𝑡;𝜑)𝑣2𝑡+𝑖𝜑𝑥. (2)

Taking the partial derivatives separately into equation (2) yields the following three ODEs

⎧⎪⎪⎨⎪⎪⎩

d𝐷
d𝑡
𝑣1𝑡 + 𝑖𝜑𝛼𝑗𝑣1𝑡 −

1
2
𝑣1𝑡𝜑

2 + (𝑖𝜑𝜎1𝜌1 − 𝛽𝑗 )𝑣1𝑡𝐷 + 1
2
𝜎1𝑣1𝑡𝐷

2 = 0

d𝐸
d𝑡
𝑣2𝑡 + 𝑖𝜑𝛼𝑗𝑣2𝑡 −

1
2
𝑣2𝑡𝜑

2 + (𝑖𝜑𝜎2𝜌2 − 𝛾𝑗 )𝑣2𝑡𝐸 + 1
2
𝜎2𝑣2𝑡𝐸

2 = 0

d𝐶
d𝑡

+ 𝛾𝑖𝜑+ 𝜅1𝜃1𝐷 + 𝜅2𝜃2𝐸 = 0

By solving the above ODE, we can easily obtain a display solution of the characteristic function, as follows

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐶(𝜏,𝜑) = 𝑟𝜑𝑖𝜏 +
𝜅1𝜃1
𝜎1

2

{
(𝛽𝑗 − 𝜌1𝜎1𝜑𝑖+ 𝑑1)𝜏 − 2 ln[

1 − 𝑔1𝑒𝑑1𝜏

1 − 𝑔1
]
}

+
𝜅2𝜃2
𝜎2

2

{
(𝛾𝑗 − 𝜌2𝜎2𝜑𝑖+ 𝑑2)𝜏 − 2 ln[

1 − 𝑔2𝑒𝑑2𝜏

1 − 𝑔2
]
}

𝐷(𝜏,𝜑) =
𝛽𝑗 − 𝜌1𝜎1𝜑𝑖+ 𝑑1

𝜎1
2 [ 1 − 𝑒𝑑1𝜏

1 − 𝑔1𝑒𝑑1𝜏
]

𝐸(𝜏,𝜑) =
𝛾𝑗 − 𝜌2𝜎2𝜑𝑖+ 𝑑2

𝜎2
2 [ 1 − 𝑒𝑑2𝜏

1 − 𝑔2𝑒𝑑2𝜏
],

where

⎧⎪⎪⎨⎪⎪⎩

𝑔1 =
𝛽𝑗 − 𝜌1𝜎1𝜑𝑖+ 𝑑1
𝛽𝑗 − 𝜌1𝜎1𝜑𝑖− 𝑑1

, 𝑑1 =
√

(𝜌1𝜎1𝜑𝑖− 𝛽𝑗 )2 − 𝜎12(2𝛼𝑗𝜑𝑖−𝜑2 ),

𝑔2 =
𝛾𝑗 − 𝜌2𝜎2𝜑𝑖+ 𝑑2
𝛾𝑗 − 𝜌2𝜎2𝜑𝑖− 𝑑2

, 𝑑2 =
√

(𝜌2𝜎2𝜑𝑖− 𝛾𝑗 )2 − 𝜎22(2𝛼𝑗𝜑𝑖−𝜑)2.

By the Fourier inversion, 𝑃𝑗 (𝑆, 𝑣1𝑡, 𝑣2𝑡, 𝑡) (𝑗 = 1, 2) can be calculated in the following form.

𝑃𝑗 (𝑆,𝑣1𝑡, 𝑣2𝑡, 𝑡) =
1
2
+ 1
𝜋

∞

∫
0

Re(
𝑒−𝑖𝜑 ln𝐾𝑓𝑗 (𝑥, 𝑣1𝑡, 𝑣2𝑡, 𝜑)

𝑖𝜑
)𝑑𝜑. (3)

The above expressions can be obtained numerically by programming. As a result, substitute the equation (3) into (1), we obtain a closed-form 
solution of the Bi-Heston model.
3
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3. Data and price by XGBoost

3.1. Data

In this paper, we use the 50ETF stock Index options data as the research data to calibrate the parameters of the parametric model and train the 
machine learning model. A total of 123,999 options were selected from 4 January 2016 to 31 December 2020, with the option code, trade date, 
option closing price, option volume, option trade amount, option type, option name, strike price, expiry date, remaining expiry time, 50ETF price, 
risk-free return and implied volatility recorded as the original data set (Tables 9 and 10).

3.2. The XGBoost model

The option pricing model is established based on XGBoost, where the feature variables (𝑥𝑖(𝑚), 𝑚 = 1, ..., 7) are: option trading volume, execution 
price, remaining maturity time, 50ETF price, 50ETF daily return, risk-free return and implied volatility, and the target variable (𝑝) is the closing 
price of the option. Let the training data set with 𝑛 data sets and 7 feature indicators be, 𝐷 = {(𝑥1, 𝑝1), ..., (𝑥𝑛, 𝑝𝑛)}, where 𝑥𝑖 = {𝑥𝑖(1), ..., 𝑥𝑖(7)}. Because 
its essence is boosting iterative algorithm, which includes two key parts: addition model and forward distribution algorithm. According to the 

addition model, the predicted value of option price can be expressed as 𝑝̂𝑖 =
𝑘∑
𝑡=1
𝑓𝑡(𝑥𝑖), 𝑓𝑡 is the t-th tree model, and 𝑝̂𝑖 denotes the predicted price of 

the i-th option sample 𝑥𝑖. At the same time, we need to minimize the objective function to learn the function in the supervision model. During the 
training of option pricing model, the objective function is:

𝑂𝑏𝑗 =
𝑛∑
𝑖=1
𝑙(𝑝𝑖, 𝑝̂𝑖) +

𝑘∑
𝑡=1

Ω(𝑓𝑡).

𝑝𝑖 is the market price of the option. The objective function 𝑂𝑏𝑗 consists of a traditional loss function 𝑙 and a regularization term Ω that suppresses 
the complexity of the model and prevents the model from over fitting. The loss function reflects the difference between the predicted value and the 
real value. As the penalty term of tree model complexity, Ω should be regularized by the number of leaf nodes and the weight of leaf nodes. So we 
define the complexity function of the tree model

Ω(𝑓𝑡) = 𝛾𝑇 + 1
2
𝜆

𝑇∑
𝑗=1
𝜔𝑗

2, 𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗},
where 𝛾𝑇 denotes the penalty term for the complexity of the number of leaf nodes 𝑇 , 𝜔𝑗 is the weight of the leaf node and also represents the 

predicted value on each leaf node, 1
2𝜆 

𝑇∑
𝑗=1
𝜔𝑗

2 punishes the weight of leaf nodes in the form of norm. In addition, XGBoost, as the antecedent 

distribution algorithm, the learning process is to learn the first tree first, then learn the second tree based on the first, and so on. In the t-th iteration, 
the price prediction for the i-th option sample 𝑥𝑖 is

𝑝̂𝑡
𝑖
= 𝑝̂𝑡−1

𝑖
+ 𝑓𝑡(𝑥𝑖),

where 𝑓𝑡(𝑥𝑖) is the tree model we are going to find in this round. By optimizing the above objective function, we can get 𝑓𝑡(𝑥𝑖). Specifically, carry out 
the second-order Taylor expansion of the function 𝑙 and remove the constant term 𝑙(𝑝𝑖, 𝑝̂𝑡−1𝑖 ) of the second iteration to obtain the simplified result:

𝑂𝑏𝑗 =
𝑛∑
𝑖=1

(𝑔𝑖𝑓𝑡(𝑥𝑖) +
1
2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)) +
𝑘∑
𝑡=1

Ω(𝑓𝑡), (4)

where 𝑔𝑖, ℎ𝑖 are the first and second derivatives of the function 𝑙 to the option price prediction value 𝑝̂𝑡−1
𝑖

obtained by the passed 𝑡 −1 iteration. Next, 
define the sample set of leaf nodes

𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗},
𝑞(𝑥) represents the specific leaf node into which the sample falls, 𝜔𝑞(𝑥) represents the predicted value of each sample, i.e., we can convert 𝑓𝑡(𝑥) to 
𝜔𝑞(𝑥). Rewriting the set of samples to the set of leaf nodes. In the equation (4), let 𝐺𝑗 =

∑
𝑖∈𝐼𝑗

𝑔𝑖, 𝐻𝑗 =
∑
𝑖∈𝐼𝑗

ℎ𝑖, the new objective function can be obtained

𝑂𝑏𝑗 =
𝑇∑
𝑗=1

[𝐺𝑗𝜔𝑗 +
1
2
(𝐻𝑗 + 𝜆)𝜔𝑗2] + 𝛾𝑇 . (5)

The predicted value 𝜔𝑗 is unknown. The problem of requiring the most value of the above function, i.e., making the value of the first-order derivative 
of the objective function (5), finding the value 𝜔𝑗∗ = − 𝐺𝑗

𝐻𝑗+𝜆
corresponding to the leaf node 𝑗, and obtaining the minimum value of the objective 

function as

𝑂𝑏𝑗 = −1
2

𝑇∑
𝑗=1

𝐺𝑗
2

𝐻𝑗 + 𝜆
+ 𝛾𝑇 .

The final sample prediction value we want to get is the sum of the weights of the leaf nodes Ω that the sample finally falls into in each tree model. 
When implementing XGBoost algorithm, we should consider the optimal parameter combination of the algorithm to ensure the optimality of the 
model. The super parameters of XGBoost algorithm are mainly divided into three categories: task parameters, conventional parameters and lifter 
parameters. The following is the range of a set of super parameters of XGBoost selected by grid search method combined with cross validation to 
find the best combination of super parameters (Table 1):
4
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Table 1. Algorithm Parameters of XGBoost Model.

Parameters of XGBoost Implication of parameter Range of parameter

n-estimators Number of decision trees 300~1000

max-depth Maximum depth of tree 5~10

min-child weight Sum of leaf node weights 5~10

learning rate Learning Rate 0.1~0.5

subsample Proportion of subsamples to training sample set 0.6~0.8

Colsample bytree Feature random sampling ratio 0.3~0.5

In the empirical analysis, we control the scope of the above hyperparameters within the above range to obtain multiple sets of prediction results 
and then compare the models.

3.3. Parameter calibration and model estimation

There is no doubt that, after observing the option pricing formulae described in the previous section, when we want to use the Heston and Bi-

Heston models for option pricing, we should determine the values of the parameters in the models firstly. The objective of parameter determination 
is to minimise the error between the true price and the theoretical price, and the method of judgement used in this paper is non-linear least squares, 
so the parameter calibration problem is transformed into an optimisation problem as shown in the following equation.

argmin
Θ

𝑀𝑆𝐸 = 1
𝑛

𝑛∑
𝑖=1

(𝑝𝑖 − 𝑝̂𝑖(Θ))2,

where 𝑛 denotes the number of samples used for parameter calibration, and 𝑝𝑖 denotes the market price of option 𝑖 and 𝑝̂𝑖 denotes the price predicted 
by the Heston or Bi-Heston model of option 𝑖. The Heston model requires the determination of the values of 5 parameters Θ = (𝜈, 𝜃, 𝜅, 𝜎, 𝜌), while the 
Bi-Heston requires 10 parameters Θ = (𝜈1, 𝜃1, 𝜅1, 𝜎1, 𝜌1, 𝜈2, 𝜃2, 𝜅2, 𝜎2, 𝜌2). At the same time, the parameter calibration problem is transformed into the 
problem of finding the minimum value of a high-dimensional function. We use a particle swarm algorithm based on parallel computing to calibrate 
the parameters of the Heston and Bi-Heston models. To avoid the influence of the parameter calibration part on the empirical study of the models 
later on, we selected the same objective function and the same sample for the parameter calibration of the two models mentioned above.

Firstly, we use the root mean squared error (RMSE) as a way of assessing the in-sample pricing effectiveness of the model. A distinct advantage 
of the RMSE is that it squares the bias term, which allows it to give greater weight to error terms with larger weights, thus penalising models with 
larger error terms. We expect the better model to show a smaller RMSE, which in turn reflects the good fit of the model.

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑛

𝑛∑
𝑖=1

(𝑝𝑖 − 𝑝̂𝑖)2.

Secondly, we use the implied volatility root mean square error (IVRMSE) as a way of assessing the out-of-sample pricing effectiveness of the 
model. IVRMSE is a frequently used method when evaluating the pricing effectiveness of options and is represented by the following equation

𝐼𝑉 𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑛

𝑛∑
𝑖=1

(𝜎𝑖 − 𝜎̂𝑖)2,

where 𝜎𝑖 denotes the implied volatility of the underlying asset as inverse solved from the B-S model using the price of option 𝑖 on that day; and 𝜎̂𝑖
denotes the implied volatility of the underlying asset as inverse solved from the B-S model by using the price of option 𝑖 obtained from the pricing 
model. As implied volatility is an important factor in option analysis, a smaller IVRMSE indicates a smaller deviation between the market price of 
the option and the theoretical price, and the model is better.

4. Empirical analysis

4.1. Experimental steps

In the first step, since the dataset has some invalid fields and some data are missing, we need to pre-process the dataset to facilitate the subsequent 
study; in the second step, the valid dataset is divided into experimental samples, part of which is used for in-sample parameter calibration and model 
training, and the other part is used for out-of-sample model prediction; in the third step, the parameters of the Heston and Bi-Heston models are 
calibrated and the XGBoost model is trained for the first part of the sample; in the fourth step, the parameters and the model obtained in the third 
step are used for out-of-sample pricing for the second part of the sample (Fig. 1).

4.2. Analysis of in-sample pricing effects

Based on the processed dataset, we perform a hybrid parameter calibration using options data from 30 September 2020 to 17 December 2020, i.e., 
call and put options are placed in the same dataset. Finally, the calibrated parameters and the trained model are used to perform in-sample pricing 
on this dataset. As the PSO algorithm is an intelligent algorithm and XGBoost is a machine learning model, the results obtained are stochastic in 
nature. Therefore, for the in-sample pricing of the three models, we will perform 10 operations each and evaluate the in-sample pricing effectiveness 
of the three models using the evaluation metric RMSE described in the previous section.

As can be seen from Table 2, the Bi-Heston model outperforms the Heston model in terms of parameter calibration, although both models use 
the same calibration technique. In terms of in-sample pricing, the Bi-Heston model and the Heston model are significantly better than the XGBoost 
model, and the Heston model is more consistent with the Bi-Heston model in terms of pricing, but the Bi-Heston model is slightly better than the 
Heston model. It is only a coincidence that the in-sample pricing effect is not good enough, but the out-of-sample pricing effect is better, so we 
5
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Fig. 1. Experimental Flow Chart.

Table 2. Comparison of Parametric Calibration Results.

Number of experiment Heston model Bi-Heston model XGBoost model

1 0.0207 0.0191 0.0375

2 0.0200 0.0190 0.0387

3 0.0199 0.0191 0.0454

4 0.0199 0.0193 0.0366

5 0.0200 0.0190 0.0375

6 0.0199 0.0190 0.0399

7 0.0209 0.0190 0.0366

8 0.0199 0.0191 0.0375

9 0.0199 0.0190 0.0451

10 0.0199 0.0190 0.0375

Fig. 2. Out of sample pricing effect comparison of the three models.

select the group with the best in-sample pricing effect as the parameters for out-of-sample pricing, and the specific parameter values are as follows 
(Table 3):

Table 3. Model parameters.

Heston 𝜈 𝜃 𝜅 𝜎 𝜌

0.0086 0.7644 0.8579 1.1452 0.4069

Bi-Heston 𝜈1 𝜃1 𝜅1 𝜎1 𝜌1

0.0471 0.0010 0.8579 0.0025 -0.9997

𝜈2 𝜃2 𝜅2 𝜎2 𝜌2

0.5038 1.0000 0.0422 0.0010 0.2901

4.3. Analysis of out-sample pricing effects

Based on the model parameters obtained as described previously, we can easily calculate the out-of-sample option price based on the option 
pricing formula. Fig. 2 shows a comparison of the actual results of the three models for call and put options respectively.

It is clear from the graphs that the pricing results of the Heston and Bi-Heston models match the actual option prices, while the XGBoost model is 
less effective than the first two models. As the strike price of the call option increases, the theoretical price of the option decreases for all models; as 
the strike price of the put option increases, the theoretical price of the option increases for all models. This phenomenon is consistent with objective 
reality. The Bi-Heston model is slightly more effective than the Heston model, as can be seen from the images, and specifically, the actual pricing 
results are shown in Table 4, 5.
6
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Table 4. Call options for Selected Days and Maturi-

ties.

K True Heston Bi-Heston XGBoost

2.514 1.031 1.026 1.026 0.855

2.612 0.933 0.928 0.928 0.783

2.711 0.835 0.830 0.830 0.747

2.809 0.737 0.732 0.732 0.671

2.908 0.639 0.633 0.633 0.558

3.100 0.449 0.444 0.444 0.399

3.200 0.348 0.341 0.348 0.317

3.300 0.252 0.242 0.258 0.220

3.400 0.166 0.148 0.178 0.142

3.500 0.096 0.071 0.115 0.094

3.600 0.053 0.030 0.071 0.050

3.700 0.028 0.012 0.042 0.031

3.800 0.015 0.005 0.025 0.029

3.900 0.010 0.002 0.014 0.026

4.000 0.007 0.001 0.008 0.026

Table 5. Put options for Selected Days and Maturi-

ties.

K True Heston Bi-Heston XGBoost

2.563 0.004 0.001 0.004 0.004

2.661 0.006 0.002 0.007 0.007

2.711 0.006 0.002 0.008 0.011

2.809 0.010 0.005 0.013 0.014

2.908 0.016 0.009 0.020 0.020

3.056 0.036 0.025 0.038 0.042

3.154 0.058 0.045 0.057 0.064

3.253 0.091 0.077 0.088 0.103

3.351 0.136 0.122 0.134 0.152

3.450 0.194 0.179 0.193 0.205

3.549 0.263 0.248 0.263 0.277

3.647 0.340 0.324 0.339 0.371

3.746 0.428 0.406 0.421 0.468

3.844 0.518 0.492 0.506 0.540

Fig. 3. Comparison of the Stability of three models.

In response to the above actual results, we can analyse that as the strike price (𝐾) increases, the errors of all three models also increase, but 
the Bi-Heston model is more stable than the remaining two models. We can also see from the specific values that the Heston model does not differ 
significantly from the Bi-Heston model at low strike prices for call options, but as the strike price increases, the Bi-Heston model significantly 
outperforms the Heston model; for put options, the Bi-Heston model significantly outperforms the other two models.

On the other hand, we also examine the effect of out-of-sample pricing of options using IVRMSE. The out-of-sample pricing spans the period 
from 30 September 2020 to 17 December 2020, and the expiry date of the options is 23 December 2020. We can see that the data set has a relatively 
long time horizon and we can consider studies that address the stability of the option pricing model. The actual results are shown in Fig. 3.

As can be seen from the graph, the Bi-Heston model is more stable than the other two models for both call and put options. All three models 
show an increase in IVRMSE as the expiry date approaches, and this is particularly evident in the XGBoost model. Otherwise, the IVRMSE reflects 
the deviation between the market price of the option and the theoretical price, and the smaller the IVRMSE, the better the option is priced. From 
the above graph, we can see that the IVRMSE of the Bi-Heston model is smaller than that of the Heston and XGBoost models for both call and put 
options when the expiry dates are the same, which means that the pricing effect of the Bi-Heston model is better than that of the other two models. 
7
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Fig. 4. Volatility Smile for Selected Days.

Table 6. RMSE for in-sample pricing results.

Dataset Name Heston model Bi-Heston model XGBoost model

50ETF 0.0199 0.0190 0.0366

300ETF(510300) 0.0260 0.0250 0.0521

300ETF(159919) 0.0166 0.0162 0.0327

Table 7. IVRMSE for pricing results of out-sample call option.

Dataset Name Heston model Bi-Heston model XGBoost model

50ETF 0.0268 0.0206 0.0894

300ETF(510300) 0.3479 0.3166 0.0800

300ETF(159919) 0.0524 0.0569 0.0830

For call options, the XGBoost model is significantly better than the Heston model when the expiry date is far away, while the XGBoost model is less 
stable than the Heston model as the expiry date approaches, and the pricing effect is inferior to that of the Heston model. For put options, both the 
Heston and Bi-Heston models are more stable and better priced than the XGBoost model.

According to the assumptions of the traditional B-S model, the implied volatility in the model should be a constant that is independent of the 
strike price. However, many scholars have pointed out that this assumption is not valid in the real market, and the most direct evidence of that 
is the volatility smile phenomenon. The volatility smile gets its name from the shape of this curve: when the option price deviates from the strike 
price, the implied volatility of the option rises, thus showing a low middle and high sides, in the form of a smiling mouth. We then also explored 
whether the three pricing models mentioned above could exhibit the phenomenon of a volatility smile, as shown in Fig. 4.

The first row shows the relationship between the implied volatility of the call option and the strike price, while the second row shows the 
relationship between the implied volatility of the put option and the strike price. We can see from the above graph that both the Heston model and 
the Bi-Heston model reflect the phenomenon of volatility smiles well, while the XGBoost model does not reflect the phenomenon well.

4.4. Analysis of the impact of dataset on the models

In order to explore the impact of the selected data on the models, we designed empirical analyses for different option datasets. In the process 
of the experiment, we only changed the types of datasets, and did not change the specific parameters of the three models and the experimental 
process, so as to exclude the adverse effects of other possible factors. In addition to the 50ETF, we also selected two other stock index options, 
namely, 300ETF(510300) and 300ETF(159919). The number of datasets and variables are basically consistent with the 50ETF described above. The 
experimental process is still divided into the mixed pricing of call and put options in the sample, and the separate pricing of call and put options 
out of the sample. The pricing effect is analyzed according to the evaluation metrics RMSE and IVRMSE. Detailed experimental data are shown in 
Table 6, 7, 8.

From the data in Table 6, 7, 8, it can be concluded that the pricing effect of the model has nothing to do with the type of dataset, and the relevant 
results are basically consistent with those above.
8
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Table 8. IVRMSE for pricing results of out-sample put option.

Dataset Name Heston model Bi-Heston model XGBoost model

50ETF 0.0072 0.0146 0.0868

300ETF(510300) 0.0232 0.0207 0.2002

300ETF(159919) 0.0073 0.0068 0.1271

Table 9. The data of 50ETF Call options.

Panel A: Number of Call options1

Moneyness2 DTM3 <30 30≤DTM<90 90≤DTM<180 DTM≥180 ALL

DOTM(S/K<0.94) 4171 5826 4694 1966 16657

OTM(0.94≤S/K<0.97) 1693 2578 1992 1224 7487

ATM(0.97≤S/K<1.03) 3510 5298 4169 2709 15686

ITM(1.03≤S/K<1.06) 1198 2046 1789 1089 6122

DITM(S/K≥1.06) 2491 4169 3428 1629 11717

ALL 13063 19917 16072 8617 57669

Panel B: Average Call Price

Moneyness DTM<30 30≤DTM<90 90≤DTM<180 DTM≥180 ALL

DOTM(S/K<0.94) 0.003 0.016 0.044 0.083 0.029

OTM(0.94≤S/K<0.97) 0.014 0.039 0.080 0.117 0.057

ATM(0.97≤S/K<1.03) 0.055 0.086 0.131 0.166 0.105

ITM(1.03≤S/K<1.06) 0.146 0.166 0.205 0.238 0.186

DITM(S/K≥1.06) 0.400 0.392 0.369 0.363 0.383

ALL 0.108 0.132 0.158 0.187 0.142

Panel C: Average Implied Volatility from Call Options4

Moneyness DTM<30 30≤DTM<90 90≤DTM<180 DTM≥180 ALL

DOTM(S/K<0.94) 0.268 0.211 0.182 0.166 0.212

OTM(0.94≤S/K<0.97) 0.183 0.163 0.148 0.142 0.160

ATM(0.97≤S/K<1.03) 0.188 0.158 0.139 0.129 0.155

ITM(1.03≤S/K<1.06) 0.264 0.171 0.138 0.126 0.171

DITM(S/K≥1.06) 0.550 0.270 0.161 0.143 0.279

ALL 0.288 0.199 0.158 0.142 0.199

1 We use the closing price of options for each business day from 4 January 2016 to 31 December 
2020.

2 The moneyness and maturity filters used by Bakshi [17] are applied here as well.
3 DTM represents the time to maturity of the option.
4 The implied volatilities are extracted using the Black-Scholes formula.

Table 10. The data of 50ETF Put options.

Panel A: Number of Put options1

Moneyness2 DTM3 <30 30≤DTM<90 90≤DTM<180 DTM≥180 ALL

DOTM(S/K<0.94) 2735 4658 4694 1966 14053

OTM(0.94≤S/K<0.97) 1188 2363 1993 1224 6768

ATM(0.97≤S/K<1.03) 3384 5387 4281 2824 15876

ITM(1.03≤S/K<1.06) 1709 2482 2078 1321 7590

DITM(S/K≥1.06) 5096 7600 6715 2633 22044

ALL 14112 22490 19761 9968 66331

Panel B: Average Put Price

Moneyness DTM<30 30≤DTM<90 90≤DTM<180 DTM≥180 ALL

DOTM(S/K<0.94) 0.382 0.391 0.409 0.384 0.394

OTM(0.94≤S/K<0.97) 0.138 0.157 0.196 0.229 0.178

ATM(0.97≤S/K<1.03) 0.045 0.075 0.121 0.155 0.095

ITM(1.03≤S/K<1.06) 0.011 0.032 0.070 0.100 0.050

DITM(S/K≥1.06) 0.003 0.012 0.033 0.067 0.027

ALL 0.099 0.123 0.162 0.179 0.138

Panel C: Average Implied Volatility from Put Options4

Moneyness DTM<30 30≤DTM<90 90≤DTM<180 DTM≥180 ALL

DOTM(S/K<0.94) 0.432 0.303 0.267 0.231 0.306

OTM(0.94≤S/K<0.97) 0.224 0.192 0.203 0.212 0.205

ATM(0.97≤S/K<1.03) 0.164 0.170 0.188 0.198 0.178

ITM(1.03≤S/K<1.06) 0.173 0.168 0.180 0.189 0.176

DITM(S/K≥1.06) 0.264 0.201 0.192 0.199 0.215

ALL 0.259 0.212 0.209 0.205 0.220

1 We use the closing price of options for each business day from 4 January 2016 to 31 December 
2020.

2 The moneyness and maturity filters used by Bakshi [17] are applied here as well.
3 DTM represents the time to maturity of the option.
4 The implied volatilities are extracted using the Black-Scholes formula.

5. Conclusions

In this paper, the Bi-Heston pricing model is derived and a closed-form analytical solution is given. A relevant empirical analysis is also done 
to compare and analyse the advantages and disadvantages of the parametric pricing model with the machine learning pricing model. Due to the 
9
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high latitude and complex nature of the estimated reference function of the parametric model, we use a particle swarm algorithm based on parallel 
computing for parameter calibration, and the actual results show that the parameter calibration is excellent. In the final empirical analysis, we obtain 
the following conclusions: (1) In terms of in-sample pricing effects, the parametric pricing model is significantly better than the machine learning 
model, while the Bi-Heston model is slightly better than the Heston model. (2) In terms of out-of-sample pricing, the machine learning model is 
inferior to the parametric model for call options, while the Bi-Heston model is significantly better than the other two models for put options, and the 
other two models are similar. (3) In the robustness analysis of the three pricing models, the machine learning model shows strong instability, while 
the Bi-Heston model shows a more stable side. (4) When plotting the implied volatility images of the three pricing models, the machine learning 
model fails to capture the phenomenon of volatility smiles.
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