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Simple Summary: Glioma prognosis and treatment are based on histopathological characteristics
and molecular profile. Following the World Health Organization (WHO) guidelines (2016), the
most important molecular diagnostic markers include IDH1/2-genotype and 1p/19q codeletion
status, although more recent publications also include ARTX genotype and TERT- and MGMT pro-
moter methylation. Machine learning algorithms (MLAs), however, were described to successfully
determine these molecular characteristics non-invasively by using magnetic resonance imaging
(MRI) data. The aim of this review and meta-analysis was to define the diagnostic accuracy of
MLAs with regard to these different molecular markers. We found high accuracies of MLAs to
predict each individual molecular marker, with IDH1/2-genotype being the most investigated
and the most accurate. Radiogenomics could therefore be a promising tool for discriminating
genetically determined gliomas in a non-invasive fashion. Although encouraging results are
presented here, large-scale, prospective trials with external validation groups are warranted.

Abstract: Treatment planning and prognosis in glioma treatment are based on the classification
into low- and high-grade oligodendroglioma or astrocytoma, which is mainly based on molecular
characteristics (IDH1/2- and 1p/19q codeletion status). It would be of great value if this classifica-
tion could be made reliably before surgery, without biopsy. Machine learning algorithms (MLAs)
could play a role in achieving this by enabling glioma characterization on magnetic resonance
imaging (MRI) data without invasive tissue sampling. The aim of this study is to provide a per-
formance evaluation and meta-analysis of various MLAs for glioma characterization. Systematic
literature search and meta-analysis were performed on the aggregated data, after which subgroup
analyses for several target conditions were conducted. This study is registered with PROSPERO,
CRD42020191033. We identified 724 studies; 60 and 17 studies were eligible to be included in
the systematic review and meta-analysis, respectively. Meta-analysis showed excellent accuracy
for all subgroups, with the classification of 1p/19q codeletion status scoring significantly poorer
than other subgroups (AUC: 0.748, p = 0.132). There was considerable heterogeneity among some
of the included studies. Although promising results were found with regard to the ability of
MLA-tools to be used for the non-invasive classification of gliomas, large-scale, prospective trials
with external validation are warranted in the future.
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1. Introduction

The most common primary brain tumor—glioma—is a rare cancer, but it is invariably
fatal despite surgery, chemotherapy, and radiotherapy. While primary central nervous
system tumors account for only 2% of primary tumors, they cause 7% of the years of life
lost from cancer before age 70 [1–3]. Current glioma classification is based on the 2016
World Health Organization (WHO) guidelines, which differentiates subtypes of gliomas
based on the presence or absence of isocitrate dehydrogenase (IDH) mutation and 1p/19q
codeletion status. In addition to the mutation status, cytologic features and degrees of
malignancy after hematoxylin and eosin (H&E) staining are also evaluated (Figure 1). Over
the years, various other molecular biomarkers have been reported in the scientific literature,
which led the European Association of Neuro-Oncology (EANO) to consider it necessary
to update its guideline for the management of adult patients with gliomas [4].

Figure 1. Classification of gliomas according to the WHO 2016 Classification Guidelines. IDH: Isocitrate dehydrogenase
gene; mut: mutant; wt: wildtype.

Improved differentiation between the different subtypes of oligodendroglial tumors
and astrocytic tumors based on neuroimaging would be beneficial, as this would facilitate
the treatment planning, such as the extent of the resection margins and radiotherapy
field [5]. Molecular characteristics of glioma have been shown to represent hallmark
features that help clinicians to accurately define the nature of the neoplasm. For example,
primary glioblastomas are characterized by a distinct pattern of genetic aberrations when
compared with secondary glioblastomas, which develop by degeneration of pre-existing
lower-grade gliomas [6]. Moreover, molecular characteristics are known to impact the
effectiveness of certain treatment options and can therefore help to identify the most
suitable treatment strategy for each patient individually [7,8]. Finally, the different subtypes
of glioma are known to have different survival rates [9,10]. With regard to prognosis,
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patients suffering from a grade II glioma with an oligodendroglial origin have a 5-year
survival rate of 81%, whereas those suffering from a grade II astrocytic glioma have a 5-year
survival rate of 40%. When classified as WHO grade III, oligodendroglial tumors have
better 5-year survival rates as compared to astrocytic tumors (43% vs. 20%, respectively).
The patients suffering from glioblastoma (grade IV) have the poorest outcomes, with
a 5-year survival rate of 5.5% [11]. In terms of treatment, preoperative distinguishing
of oligodendroglial tumors from astrocytic tumors would be beneficial in facilitating
the planning, extent of the resection, and the radiotherapy field [5]. Unfortunately, no
visual features have yet been proven accurately enough to circumvent histopathological
assessment after neurosurgical intervention. Application of machine learning algorithms
(MLAs), however, could be helpful in the non-invasive characterization of gliomas [12].

As previously predicted, MLAs are increasingly becoming a critical component of
advanced software systems in radiology [13,14]. MLAs concern medical imaging analysis
carried out by (automatic) feature selection, followed by automatic classification. These
processes detect complex patterns in images elusive to the eyes of neuroradiologists and
make predictions that surpass human intelligence and human-level performance. In
general, input data for MLAs consist of the imaging data themselves (e.g., different MRI
sequences) and/or the segmentation of the regions of interest. Output data, on the other
hand, are the desired parameters that should be extracted from the imaging data [13–15].
In general, the dataset is divided into two different sets: the training and the test set.
The training set is used to train the performance of the MLA, indicating that the MLA
is attempting to elucidate an often complex relationship between input data and output
data. The test set is then used to test the actual performance of the data on a new dataset,
indicating that the network has not yet been able to train on these data. The term “test set”
is often used interchangeably with “validation” set. Nevertheless, only a small amount of
MLAs are actually validated on a completely different, external dataset, which significantly
hampers the further development of the integration of MLAs in daily practice [15].

With regard to the use of MLAs in neuro-oncology imaging, various reports on the use
of MLAs, using a broad range of extracted features on magnetic resonance imaging (MRI),
showed promising results with regard to the prediction of molecular markers and genetic
alterations (e.g., IDH genotype, 1p/19q codeletion status, P53 mutations, MGMT promoter
mutation, TERT promoter mutation, BRAF status, EGFR receptor mutations) [3,12,16–19].
However, one of the limitations of this type of research is the relatively limited amount of
data in each study, which could possibly be overcome by a systematic review and meta-
analysis of the aggregated study results [20]. The purpose of this study was to provide such
an overview and perform a meta-analysis of the accuracy of MLAs in predicting gliomas’
genotype.

2. Materials and Methods
2.1. Guidelines and Registration

A systematic review and meta-analysis were conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [21].
Prior to the initiation of the review, the study protocol was registered in the international
open-access Prospective Register of Systematic Reviews (PROSPERO) under the number
CRD42020191033.

2.2. Search Strategy, Inclusion Criteria, and Exclusion Criteria

Papers describing the use of MLAs for the binary classification of molecular charac-
teristics of gliomas were reviewed. Databases searched for literature included Medline
(accessed through PubMed), EMBASE, and the Cochrane Library. Searches were conducted
from 1 April 2020 to 24 January 2021. Search strings are made available in the Supplemen-
tary Methods S1 and were included when they discussed the use of classification MLA
methodologies on MR images in glioma patients. Next, papers must report results as mean
accuracy and/or mean area under the receiver operator characteristics curve (AUC). Papers
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were excluded from this review when they discussed findings in animal-based studies or
in non-human samples. In addition, MLA models needed to be at least internally validated.
Letters, preprints, scientific reports, and reviews were included. After the removal of
duplicates, the remaining papers were systematically screened on title and abstract by
two researchers (E.v.K. and D.H.) independently. Non-consensus papers were identified
and discussed by two researchers (E.v.K. and D.H.) to resolve disagreements and to reach
consensus. Formal quality assessment tools are still lacking for this type of research [19],
although a version of the TRIPOD statement tailored to machine learning methods has
been announced [22].

Standardized tables were used to acquire the information of interest from the included
articles. Data extracted from each study were (a) first author and year of publication, (b) size
of the training set, (c) mean age of participants in the training set, (d) sex of participants in
the training set, (e) size of the validation set, (f) whether there was an external validation, (g)
study design, (h) architecture of the MLA algorithm(s), (i) target condition, (j) performance
of the algorithm(s). Performance of the classification tools was expressed in accuracy,
AUC, sensitivity, and specificity for both the training and the validation set. For studies
performing external validation, externally validated data were displayed. Extracted data
were cross-checked afterward, and discrepancies were resolved.

2.3. Statistical Analysis

Meta-analysis was conducted on the papers, which included the AUC ± standard
deviation (SD) using a random-effects model to estimate the performance of the included
MLA methodologies. For inclusion in quantitative analysis, studies must have reported
a standard deviation, 95% confidence interval (CI), or standard error, along with the
AUC-value. For the meta-analysis, the standard deviation was derived from the standard
error or 95%-CI for studies not reporting the standard deviation [23]. If not provided,
corresponding authors were contacted with the request to provide the necessary data to be
included in the meta-analysis. Results of all appropriate studies were combined to meta-
analyze the aggregated data. Then, meta-analyses were conducted on different subgroups
of target conditions in order to estimate the accuracy of the algorithm for each condition
separately. To be included in subgroup analysis, an additional criterium for the included
studies was to describe a specific target condition (e.g., IDH and 1p/19q). Meta-analysis
was performed with the use of IBM SPSS Statistics (IBM Corp. Released 2017. IBM SPSS
Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.) and OpenMeta[Analyst]
software (MetaAnalyst, Brown University EPBC [24]), which is the visual front-end for the
R package (version 12.11.14) [25]. Results were displayed in forest plots. AUC-values of
subgroups were compared by looking at the 95% confidence intervals and whether there
was any overlap. The Higgins I2-test was used to test for heterogeneity between included
studies with I2 > 75% deemed as considerable heterogeneity [23]. The Egger regression
analysis was carried out to test for publication bias [26].

3. Results

A total of 1094 publications were initially retrieved through literature searches, and
724 remained after the removal of duplicates. After title and abstract screening, 215 full-
text articles were assessed for eligibility. After a full-text assessment, 60 and 17 studies
were included for the systematic review and meta-analysis, respectively (Figure 2). A
total of 155 studies were excluded based on the full-text assessment for the following
reasons: 66 studies described the segmentation of tumor-area instead of the classification
of glioma; 23 studies did not report AUC as a performance metric; 14 studies discussed the
classification of texture features instead of molecular characteristics of glioma; 14 studies
had an incomplete description of the published data and/or methods; 14 studies did not
describe an MLA model, but instead a number of combined features; 13 studies reported a
too specific target condition (e.g., H3K27M and Ki-67); 5 studies used imaging techniques



Cancers 2021, 13, 2606 5 of 26

other than MR imaging; 3 studies had no internal validation-group; 3 studies included
other brain tumors besides glioma.

Figure 2. PRISMA flowchart of systematic literature search. MLA: Machine learning algorithms; MR imaging: Magnetic
resonance imaging.

3.1. Review of the Included Studies

A total of 60 studies [16–23,25–74] were included after the eligibility assessment.
Table 1 shows the participant demographics and study characteristics. The performance
evaluation of the MLA algorithms in terms of accuracy, AUC, sensitivity, and speci-
ficity for the validation set is displayed in Table 1, organized by target condition sub-
groups. For 12 of the included studies, an external out-of-sample validation was carried
out [23,35,36,39–41,46,48,50,64,67,74], all other studies performed internal validation only.

Due to the high dimensionality and complexity of MRI data using different sequences,
two critical steps were used to reduce the computational power needed to carry out such
complex analyses. Feature selection was one key step in the discovery of predictors from
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high-throughput features. The included imaging genomics studies built their classifica-
tion models by selecting a set of non-redundant features. The second step consists of
applying a dimensionality reduction method. Often, unimodal methods are used for each
dataset separately, thus failing to properly extract important, though subtle, interactions
between various sequences. The least absolute shrinkage and selection operator (Lasso)
method was discussed most often to perform dimensionality reduction [27–45]. With
regard to feature selection, most papers discussed the use of a support vector machine-
based recursive feature elimination (SVM-RFE) method [28,32–37,42,43,45–67]. The Lasso
method was another often mentioned method to select features [27–45]. Other methods,
which were frequently used for feature selection, concerned random forest classification
algorithms [50,51,53,63,66,68–74], convolutional neural networks [37,46,48,56,57,65,75–81],
and/or logistic regression models [33,57,82,83].

For the target condition, 22 studies focused on IDH mutation status, 6 on 1p/19q
codeletion status, 11 on MGMT promoter methylation status, 3 on TP53 mutation status,
1 on the PTEN gene mutation, 2 on ATRX gene mutation status, 3 on the TERT promoter
mutation, and 20 on the differentiation between different subtypes of glioma. Five of the
included studies described multiple target conditions and/or multiple tested MLA models,
each of those presented separately in Table 1. The included classification studies showed
different references in classifying the presence or absence of the outcome of interest, such as
standard-of-care diagnosis, (immuno)histopathology, and expert consensus. Twenty-two
studies [17–19,23,25,28,32,33,37,39,43,45,49,51,56,61,63,66,69–71,74] focused on classifying
the IDH mutation status in glioma. Mutations of the IDH genes serve as a diagnostic
marker to diffuse WHO grade II and III gliomas as well as secondary glioblastomas. They
are associated with a better prognosis in these gliomas [7]. One included study described
two separate MLA methods, and therefore 23 methodologies could be analyzed. All studies
used retrospectively collected data, and three [23,39,74] carried out external validation. Five
studies did not report a validated AUC-value. Performance evaluation from the remaining
17 [19,25,28,32,37,43,45,49,51,56,61,63,66,69–71,74] studies in terms of the validated AUC
ranged from 0.75 to 0.99. Additionally, 14 studies [18,19,27,32,33,37,43,45,51,56,61,63,69,71]
presented the sensitivity and the specificity ranging from 54% to 98% and 67% to 99%,
respectively.

Six studies [20,32,56,57,60,64] described the classification of the 1p/19q codeletion
status in glioma patients, all using retrospectively collected data. The 1p/19q codele-
tion status is associated with better prognosis in patients with (oligodendro)glial tumors
receiving adjuvant radio-chemotherapy [7]. One study [64] included an external valida-
tion. Validated AUC for classifying 1p/19q codeletion status ranged from 0.72 to 0.87
(n = 5) [32,56,57,60,64]. The range of the sensitivity and the specificity were 68% to 92%
and 71% to 85%, respectively (n = 5) [32,56,57,60,64].

Regarding the classification of the MGMT promoter methylation status, all studies
(n = 11) [31,35,44,51–56,65,67] used retrospectively collected data and two studies [35,67]
had been externally validated. The importance of the MGMT promoter methylation status
can be found in the fact that it is a predictive variable for the response of GBM to alkylating
chemotherapy [7]. Seven studies [31,35,44,51,52,56,65] reported the validated AUC-value,
which ranged from 0.54 to 0.90. Moreover, the sensitivity and specificity ranged from 67%
to 94% and 54% to 97%, respectively (n = 7) [35,51,52,55,56,65,67].

Three studies [36,56,62] were included that described the classification of the TERT
promoter mutation status in glioma. All studies used retrospectively collected data, and
one study [36] was externally validated. Although still under investigation, it has been
suggested that TERT promoter mutations characterize gliomas that require aggressive
treatment [8]. All studies reported the validated AUC (range: 0.82–0.89). Additionally, the
sensitivity and specificity ranged from 71% to 77% and 86% to 91%, respectively (n = 3).
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Table 1. Participant demographics, study characteristics and outcomes of the included studies.

Training Set Validation Set Performance *

First Author
(Year of Publication)
(Reference)

N Age
(Mean ± SD)

Gender
(Male-
Female)

N
Validated on
an Independent
External Dataset?

Input
Imaging Data MLA Method Target

Condition Sensitivity Specificity AUC
(±SD) Accuracy

Ahammed Muneer
(2019) [46]

389 NR NR 168 No T2w images;
tumor
segmentation

Deep CNN Glioma
grade

92.72 98.13 NR 94.64

Arita (2018) [27] 111 NR NR 58 No T2w-based VOI
segmentation
and T1w, T2w,
FLAIR, and T1w
+c images

Lasso and
Elastic-Net
Regularized
Generalized Linear
Model

IDH
genotype

NR NR NR 87

Bakas (2018) [47] 86 NR NR NR No T1w, T2w, FLAIR,
T1w +c images;
DTI series and
DSC-PWI series

Multivariate
machine learning
model with a
Random Forests
algorithm

IDH
genotype

66.7 92.9 NR 88.4

Bangalore
Yogananda (2020)
[48]

214 NR NR 214 No
T2w, FLAIR, and
T1w +c images

3D Dense-UNet:
T2-Net

IDH
genotype

97 98 0.98 ± 0.146 97.14

3D Dense-UNet:
TS-Net

IDH
genotype

98 97 0.99 ± 0.146 97.12

Batchala (2019) [84] 102 NR 50–52 106 No T1w, T2w, FLAIR,
and T1w +c
images;
DSC-PWI series

Multivariate model 1p/19q
integrity

NR NR NR 81.1

Bonte (2016) [68] 274 NR NR NR No BraTS-data (T1w,
T2w, FLAIR, and
T1w +c images)

Random Forests
algorithm

LGG/HGG 95.5 79.5 NR 92.3
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Table 1. Cont.

Training Set Validation Set Performance *

First Author
(Year of Publication)
(Reference)

N Age
(Mean ± SD)

Gender
(Male-
Female)

N
Validated on
an Independent
External Dataset?

Input
Imaging Data MLA Method Target

Condition Sensitivity Specificity AUC
(±SD) Accuracy

Cao (2020) [28] 141 NR 74–67 88 No T1w, T2w, FLAIR,
and T1w +c
images

Lasso and
Elastic-Net
Regularized
Generalized Linear
Model with
Support vector
machine classifier

LGG/HGG NR NR 0.915 ±
0.356

NR

Carver (2019) [29] 78 NR NR 50 Yes T1w, T2w, FLAIR,
and T1w +c
images

Lasso and
Elastic-Net
Regularized
Generalized Linear
Model

IDH
genotype

NR NR NR 74

Chang (2018) [77] 1188 NR NR 153 No T1w, T2w, FLAIR,
and T1w +c
images

Residual CNN
model

IDH
genotype

NR NR 0.93 83.0

Citak-Er (2018) [49] 43 49.5 ± 12.8 25–18 NR No T1w, T2w, DW
images; DTI
series, DSC-PWI
series, and MRS

Support vector
machine classifier
with linear kernel
and logistic
regression with a
Random Forests
algorithm

LGG/HGG 86.7 96.4 NR 93.0

Cui (2018) [30] 40 NR NR NR No T1w, T2w, FLAIR,
and T1w +c
images; tumor
segmentation

Lasso and
Elastic-Net
Regularized
Generalized Linear
Model

LGG/HGG NR NR 0.84 NR
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Table 1. Cont.

Training Set Validation Set Performance *

First Author
(Year of Publication)
(Reference)

N Age
(Mean ± SD)

Gender
(Male-
Female)

N
Validated on
an Independent
External Dataset?

Input
Imaging Data MLA Method Target

Condition Sensitivity Specificity AUC
(±SD) Accuracy

De Looze (2018) [50] 381 NR 251–130 NR No Three VASARI
criteria as
assessed on T1w,
T2w, FLAIR, and
DW images

Random Forests
model

IDH
genotype

81 77 0.88 NR

Glioma
grade II/III

82 94 0.98 NR

Glioma
grade II/IV

100 100 1.0 NR

Glioma
grade
III/IV

83 97 0.97 NR

Fan (2019) [45] 126 46.8 NR NR No T1w +c images Lasso and
Elastic-Net
Regularized
Generalized Linear
Model adopted
into linear
discriminant
analysis and
Support vector
machine classifier

glioblastoma/anaplastic
oligodendro-
glioma

100.0 91.0 0.923 93.8

Gates (2020) [51] 23 NR NR NR No T2, ADC, CBV,
and Ktrans

Random Forests
algorithm

Glioma
grade

NR NR NR 96

Han (2018) [76] 117 NR NR 21 No T1w, T2w, and
FLAIR images

Recurrent CNN
model

MGMT
promoter
methyla-
tion
status

NR NR 0.54 53

Han (2018) [71] 184 41.67 120–64 93 No T2w images and
T2w-based
segmentation

Random Forests
algorithm

1p/19q
integrity

68.3 71.2 0.760 ±
0.477

70.0
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Table 1. Cont.

Training Set Validation Set Performance *

First Author
(Year of Publication)
(Reference)

N Age
(Mean ± SD)

Gender
(Male-
Female)

N
Validated on
an Independent
External Dataset?

Input
Imaging Data MLA Method Target

Condition Sensitivity Specificity AUC
(±SD) Accuracy

Hwan-Ho (2017) [33] 108 NR NR NR No BraTS-data (T1w,
T2w, FLAIR, and
T1w +c images)
and BraTS-
segmentation

Lasso and
Elastic-Net
Regularized
Generalized Linear
Model and logistic
regression

Glioma
grade

88.89 90.74 0.8870 89.81

Inano (2014) [52] 33 NR 22–11 33 No DW images,
FA-maps, first
eigenvalue,
second
eigenvalue, third
eigenvalue,
MD-maps, and
raw T2 signal
with no diffusion-
weighting

Support vector
machine classifiers

Glioma
grade

84.8 74.5 0.912 ±
0.028

80.4

Jiang (2019) [34] 87 45.4 ± 13.1 43–44 35 Yes T2w and T1w +c
images

Lasso regression
model with fusion
Radiomics model
and Support vector
machine classifier

MGMT
promoter
methyla-
tion
status

82.1 85.7 0.898 ±
0.323

88.6

Jiang (2020) [35] 83 45.5 ± 12.3 50–33 33 Yes T2w and T1w +c
images

Lasso regression
model with
radiomics
signature model
and Support vector
machine classifier

TERT
promoter
mutation
status

71.4 89.5 0.827 ±
0.470

84.8
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Table 1. Cont.

Training Set Validation Set Performance *

First Author
(Year of Publication)
(Reference)

N Age
(Mean ± SD)

Gender
(Male-
Female)

N
Validated on
an Independent
External Dataset?

Input
Imaging Data MLA Method Target

Condition Sensitivity Specificity AUC
(±SD) Accuracy

Kim (2020) [53] 127 NR 68–59 28 No T1w, T2w, FLAIR,
T1w +c, DW
images;
DSC-PWI series

Recursive feature
elimination with
Support vector
machine,
completed with a
Random Forests
algorithm and a
logistic regression
classifier

IDH
genotype

53.6 86.7 0.747 ±
0.228

NR

Kinoshita (2018) [70] 199 NR NR NR No Conventional
MR sequences
(NOS)

Random Forests
algorithm

Glioma
grade

NR NR 0.711 64.5

Lee (2019) [54] 88 NR 47–41 35 Yes T1w, T2w, FLAIR,
DW images;
DSC-PWI series

Eight machine
learning classifiers:
K-Nearest
Neighbors,
Support vector
classification,
Decision Tree,
Random Forest,
AdaBoost, Naive
Bayes, Linear
Discriminant
Analysis, and
Gradient Boosting

IDH
genotype

NR NR NR 83.4

Li (2019) [55] 69 60.0 37–32 40 Yes T2w and T1w +c
images

Support vector
machine classifier
with Support
vector machine
classifier

PTEN
genotype

86.7 70.0 0.787 82.5
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Table 1. Cont.

Training Set Validation Set Performance *

First Author
(Year of Publication)
(Reference)

N Age
(Mean ± SD)

Gender
(Male-
Female)

N
Validated on
an Independent
External Dataset?

Input
Imaging Data MLA Method Target

Condition Sensitivity Specificity AUC
(±SD) Accuracy

Li (2018) [32] 63 43.6 25–38 91 Yes T2w images Lasso regression
model with
Support vector
machine classifier

ATRX
genotype

57.1 85.7 0.725 76.9

Li (2018) [33] 180 39.2 111–69 92 No T2w images Lasso regression
model with
Support vector
machine classifier

P53 status 62.2 85.1 0.763 70.7

Li (2017) [56] 151 40.7 ± 10.8 81–70 151 No T1w and FLAIR
images

CNN for
segmentation
followed by DLR
model with
Support vector
machine classifier

IDH
genotype

94.38 86.67 0.9521 92.44

Li (2018) [77] 133 54.2 79–54 60 No T1w, T2w, FLAIR,
and T1w +c
images

Multiregional
Radiomics model

MGMT-
methylation

NR NR 0.88 80

Li (2018) [78] 118 53.6 70–48 107 No T1w, T2w, FLAIR,
and T1w +c
images

Multiregional
Radiomics models

IDH
genotype

80 99 0.96 97

Liang (2018) [79] 167 52.4 ± 15.5 NR NR No BraTS-data (T1w,
T2w, FLAIR, and
T1w +c images)

Multimodal
Three-Dimensional
DenseNet

IDH
genotype

78.5 88.0 0.857 84.6

Lo (2020) [57] 39 NR 28–11 NR No T1w +c images;
processed by
transformed
ranklet images.

Logistic regression
classifier

IDH
genotype

57 97 NR 90
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Table 1. Cont.

Training Set Validation Set Performance *

First Author
(Year of Publication)
(Reference)

N Age
(Mean ± SD)

Gender
(Male-
Female)

N
Validated on
an Independent
External Dataset?

Input
Imaging Data MLA Method Target

Condition Sensitivity Specificity AUC
(±SD) Accuracy

Lu (2018) [58] 214 NR NR 70 Yes T1w, T2w, FLAIR,
T1w +c, and DW
images
(T2w and DW
images were
optional)

Three-level
machine learning
model

LGG/HGG 82.5 90.5 NR 87.7

Matsui (2020) [36] 217 42 131–86 NR No T1w, T2w, and
FLAIR images

Lasso regression
model with DLR
model

Grading
LGG

NR NR NR 58.5

Mzoughi (2020) [37] 284 NR NR 67 Yes T1w +c images Lasso regression
model with 3D
CNN model with
Support vector
machine classifier

Glioma
grade

NR NR NR 96.4

Park (2020) [71] 168 NR NR 168 No T2w, FLAIR, and
T1w +c images

Random Forests
algorithm

IDH
genotype

NR NR 0.900 ±
0.298

NR

Park (2019) [72] 136 44.99 ±
12.94

65–71 99 Yes T2w, FLAIR, and
T1w +c images;
DTI series

Random Forests
algorithm

Glioma
grade

72.6 60.4 0.72 ± 0.51 66.7

Rathore (2019) [59] 202 NR NR NR No T1w, T2w, FLAIR,
and T1w +c
images.
Data were
sometimes
complemented
with DTI and
DSC-PWI series

CNN adjusted
with a Support
vector machine
classifier

IDH
genotype

83 86 0.85 85

MGMT 83 85 0.84 83
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Table 1. Cont.

Training Set Validation Set Performance *

First Author
(Year of Publication)
(Reference)

N Age
(Mean ± SD)

Gender
(Male-
Female)

N
Validated on
an Independent
External Dataset?

Input
Imaging Data MLA Method Target

Condition Sensitivity Specificity AUC
(±SD) Accuracy

Rathore (2018) [67] 111 NR NR NR No T1w, T2w, FLAIR,
and T1w +c
images

Support Vector
Machine model
with a Random
Forests algorithm

MGMT-
methylation

75.0 97.0 0.80 88.28

Rathore (2019) [59] 270 NR NR NR No T1w, T2w, FLAIR,
and T1w +c
images; DTI and
DSC-PWI series

Cross-validated
sequential feature
selection

MGMT-
methylation

NR NR NR 86.95

Sasaki (2018) [39] 207 NR NR NR No T1w, T2w, FLAIR,
and T1w +c
images

Lasso regression
model with
supervised
component
principal analysis

MGMT-
methylation

NR NR NR 68

Sasaki (2019) [38] 201 NR NR NR No T1w, T2w, and
T1w +c images

Lasso regression
model with
supervised
component
principal analysis

MGMT-
methylation

67 66 NR 67

Shboul (2020) [40] 81 NR NR 27 No T1w, T2w, FLAIR,
and T1w +c
images

Lasso regression
model with
supervised
component
principal analysis
and
multi-resolution
fractal modeling

IDH
genotype

90 79 0.84 ± 0.156 NR

1p/19q
integrity

75 85 0.80 ± 0.208 NR

MGMT-
methylation

93 73 0.83 ± 0.208 NR

ATRX
genotype

69 83 0.70 ± 0.468 NR

TERT
promoter
mutation
status

77 86 0.82 ± 0.208 NR



Cancers 2021, 13, 2606 15 of 26

Table 1. Cont.

Training Set Validation Set Performance *

First Author
(Year of Publication)
(Reference)

N Age
(Mean ± SD)

Gender
(Male-
Female)

N
Validated on
an Independent
External Dataset?

Input
Imaging Data MLA Method Target

Condition Sensitivity Specificity AUC
(±SD) Accuracy

Shofty (2018) [60] 47 37.7 ± 10.6 27–20 NR No T2w, FLAIR, and
T1w +c images

Ensemble
Radiomic Classifier
model with a
Support vector
machine classifier

1p/19q
integrity

92 83 0.87 87

Sun (2020) [41] 92 NR NR NR No T1w, T2w images Lasso regression
model with logistic
regression models

P53 status 100 40 0.709 81.3

Takahashi (2019) [80] 44 NR NR 11 No DW (b1000 and
b2000) images,
ADC-maps,
FA-maps, and
MK-maps

Deep CNN model Glioma
grade

NR NR NR 82

Takahashi (2019) [82] 38 NR NR NR No T2w-based VOI
segmentation

Logistic regression
models

1p/19q
integrity

69.7 73.3 0.736 71.1

Tan (2019) [42] 74 47.93 ±
13.28

45–29 31 No FLAIR and T1w
+c images;
ADC-maps

Radiomics
Nomogram model

IDH
genotype

86.7 87.5 0.900 ±
0.116

87.1

Tian (2020) [43] 88 NR 53–35 38 No T1w, T2w, FLAIR,
and T1w +c
images; MRS

Lasso regression
model with
Radiomics
Nomogram model

TERT
promoter
mutation
status

75.0 90.9 0.889 ±
0.335

84.2
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Table 1. Cont.

Training Set Validation Set Performance *

First Author
(Year of Publication)
(Reference)

N Age
(Mean ± SD)

Gender
(Male-
Female)

N
Validated on
an Independent
External Dataset?

Input
Imaging Data MLA Method Target

Condition Sensitivity Specificity AUC
(±SD) Accuracy

Tongtong (2017) [61] 110 NR NR NR No 3D FLAIR images Support vector
machine classifier
with minimum
redundancy,
maximum
relevance, and
maximum sparse
representation
coefficient

IDH
genotype

88 79 0.90 85

van der Voort (2019)
[62]

284 NR 161–123 129 Yes T2w and T1w +c
images. Data
were sometimes
complemented
with FLAIR
images

Support vector
machine classifier

1p/19q
integrity

73.2 61.7 0.723 ±
0.084

69.3

Wei (2019) [83] 74 NR 42–32 31 No FLAIR and T1w
+c images;
ADC-maps

Fusion Radiomics
model by logistic
regression
modelling

MGMT
promoter
methyla-
tion

94.4 53.9 0.902 ±
0.305

77.4

Wu (2019) [73] 84 53.5 ± 15.0 67–59 42 No T1w, T2w, FLAIR,
and T1w +c
images

Random Forests
algorithm

IDH
genotype

NR NR 0.931 ±
0.233

89.5

Xi (2018) [44] 98 NR 55–43 20 Yes T1w, T2w, and
T1w +c images

Lasso regression
model with
Support vector
machine model

MGMT
promoter
methyla-
tion

87.5 75.0 NR 80.0

Yang (2018) [81] 113 NR NR NR No T1w, T2w, FLAIR,
and T1w +c
images

CNN model LGG/HGG NR NR NR 86.7
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Table 1. Cont.

Training Set Validation Set Performance *

First Author
(Year of Publication)
(Reference)

N Age
(Mean ± SD)

Gender
(Male-
Female)

N
Validated on
an Independent
External Dataset?

Input
Imaging Data MLA Method Target

Condition Sensitivity Specificity AUC
(±SD) Accuracy

Yu (2017) [85] 110 40.3 ± 11.3 54–56 30 No FLAIR images Radiomics model IDH
genotype

88 67 0.79 83

Zhang (2017) [63] 90 51.4 52–38 30 No T1w, T2w, FLAIR,
T1w +c, and DW
images

Random Forests
algorithm

IDH
genotype

NR NR 0.9231 89

Zhang (2018) [64] 73 NR NR 30 No
T1w, T2w, FLAIR,
and T1w +c
images

Support vector
machine-based
recursive feature
elimination

IDH
genotype

85.0 70.0 0.792 80.0

P53 status 84.6 85.7 0.869 85.0

Zhang (2020) [65] 108 NR 61–47 NR No DTI series
CNN model with a
Support vector
machine classifier

LGG/HGG 98 86 0.93 94

Glioma
grade
III/IV

98 100 0.99 98

Zhao (2020) [74] 36 45.0 ± 14.4 19–17 36 No FLAIR and T1w
+c images

Random Forests
algorithm

Glioma
grade II/III

77.8 78.3 0.861 ±
0.240

78.1

Zhou (2019) [66] 538 NR 303–235 206 Yes FLAIR and T1w
+c images

Random Forests
algorithm with a
Support vector
machine classifier

IDH
genotype

NR NR 0.919 ±
0.286

NR

Legend: ADC: Apparent diffusion coefficient; ARTX: Alpha thalassemia/mental retardation syndrome X linked gene; BraTS: Brain Tumor Segmentation Challenge; CNN: Convolutional neural network; DW:
Diffusion-weighted images; DTI: Diffusion tensor imaging; DSC-PWI: Dynamic susceptibility contrast perfusions weighted imaging; FA: Fractional anisotropy imaging; FLAIR: fluid attenuated inversion
recovery; HGG: High grade glioma; IDH: Isocitrate dehydrogenase gene; LGG: Low-grade glioma; MGMT: O6-Methylguanine-DNA Methyltransferase; MRS: Magnetic resonance spectroscopy imaging; TERT:
Telomerase reverse transcriptase gene; T1w: T1-weighted images; T1w +c: T1-weighted post-contrast images; T2w: T2-weighted images; VASARI: Visually AcceSAble Rembrandt Images. * If cross-validation was
used, the Performance values of the cross-validation set were provided here. When the dataset was split into training/validation/test sets, the Performance evaluation values with regard to the investigated
outcome (e.g., IDH genotype) of the Validation set were provided here.
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3.2. Meta-Analysis of the Included Studies

For the classification papers, 17 out of the 60 were eligible for the meta-analysis. In
total, 22 MLA methodologies, described in 17 individual studies [19,22,32,34–37,49,50,56,
61,62,64–66,73,74] were retrieved. Meta-analysis was performed separately in subgroups
for different target conditions. For inclusion in this subgroup meta-analysis, studies must
focus on a specific target condition (i.e., IDH genotype, 1p/19q codeletion and MGMT- and
TERT promoter status).

For the subgroup meta-analysis of the classification studies with a focus on IDH mu-
tation status, eight MLA algorithms, originating from seven studies [19,37,49,56,61,66,74],
were included. Results show an overall AUC of 0.909 (95%-CI: 0.867–0.951), as seen
in Figure 3. Moreover, heterogeneity between groups, measured with Higgins I2, was
estimated as 90.402% (p < 0.001).

Figure 3. Forest-plot of the included studies that assessed the accuracy of predicting IDH mutation status in glioma. AUC,
Area Under the receiver operator Curve; CI, Confidence Interval. Forest plot shows that the performance of the MLAs to
classify IDH mutation status are centered around an AUC of 0.909 with a 95%-CI ranging from 0.867–0.951.

The forest plot shows that the performance of the MLAs to classify molecular char-
acteristics of glioma are centered around an AUC of 0.858 with a 95%-CI ranging from
0.812–0.904.

Three studies [32,56,64] were included in the subgroup meta-analysis of the 1p/19q
codeletion status. Results of this subgroup analysis are displayed in Figure 4. The over-
all AUC is 0.748 (95%-CI: 0.699–0.797). Heterogeneity between groups was considered
moderate (Higgins I2= 50.655% (p = 0.132)).

Figure 4. Forest-plot of the included studies that assessed the accuracy of predicting 1p/19q codeletion status in glioma.
AUC, Area Under the receiver operator Curve; CI, Confidence Interval. Forest plot shows that the performance of the MLAs
to classify 1p/19q codeletion status are centered around an AUC of 0.748 with a 95%-CI ranging from 0.699–0.797.

Subgroup meta-analysis of MGMT promoter methylation status included three stud-
ies [35,56,65]; see Figure 5 for an overview of the results. The overall AUC of these MLA
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models was estimated as 0.866 (95%-CI: 0.812–0.921). Heterogeneity between the included
studies was considered very low (Higgins I2= 0% (p = 0.453)).

Figure 5. Forest-plot of the included studies that assessed the accuracy of predicting MGMT promoter methylation status in
glioma. AUC, Area Under the receiver operator Curve; CI, Confidence Interval. Forest plot shows that the performance of
the MLAs to classify MGMT mutation status are centered around an AUC of 0.866 with a 95%-CI ranging from 0.812–0.921.

Three studies [36,56,62] were included in the subgroup analysis of the TERT promoter
mutation status. Figure 6 displays the results of the meta-analysis with an estimated overall
AUC of 0.842 (95%-CI: 0.783–0.901) and considered a low I2 heterogeneity of 0% (p = 0.582).

Figure 6. Forest-plot of the included studies that assessed the accuracy of predicting TERT promoter mutation status in
glioma. AUC, Area Under the receiver operator Curve; CI, Confidence Interval. Forest plot shows that the performance of
the MLAs to classify TERT promoter mutation status are centered around an AUC of 0.842 with a 95%-CI ranging from
0.783–0.901.

Classification of the 1p/19q codeletion status showed to have a significantly poorer
AUC when compared to other subgroup classifications, except for the TERT mutation
status classification. No significant differences in performance between the other three
subgroups (i.e., IDH, MGMT, TERT) were observed due to overlap of the 95% confidence
intervals.

3.3. Testing for Publication Bias

Egger’s regression test showed no significant publication bias with regard to MLAs to
predict the molecular status of gliomas (p = 0.235).

4. Discussion

In this study, a number of studies that describe the classification of gliomas with
the use of MLAs were reviewed and meta-analyzed. The overall performance of the
classification tools as reported in AUC-values showed to be excellent. Subgroup analysis
showed that the classification of 1p/19q codeletion status was significantly poorer than the
classification performance of other molecular markers (i.e., IDH and MGMT). The observed
heterogeneity between the included studies in the IDH-subgroup was considerably high.

The binary classification of various molecular characteristics of glioma with the use of
artificial intelligence showed promising results with regard to future implementation in
clinical practice. This implementation will have a significant impact on the care of glioma
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patients, as it could help to stratify patients for treatment options prior to undergoing
surgery. However, clinically relevant studies need to be undertaken to increase the impact
of these techniques in daily practice. For example, predicting 1p/19q codeletion status is
more relevant in a subset of low-grade gliomas, as it enables to non-invasively distinguish
IDH-mut astrocytoma (1p/19q intact) from oligodendroglioma (1p/19q codeleted) [62].
This is clinically relevant as the median survival of patients with these glioma subtypes
is significantly different and can be impacted by the extent of the neurosurgical resec-
tion [86,87]. In addition, to further verify the performance of MLA methodologies, larger-
scale multi-center studies using prospective data are required. Moreover, despite the
growing knowledge and use of MLA methodologies, integration in widespread clinical
practice still faces some challenges [12]. One major challenge for this implementation
concerns the generalizability of these systems, as they are mostly trained on small datasets
lacking external validation [88]. Considering external validation as an additional inclusion
criterium for a sub-analysis, we found that no meta-analysis could be performed. The
twelve papers included in this review which validated their results externally investigated
IDH mutation status (n = 2), 1p/19q codeletion status (n = 1), MGMT promoter methylation
status (n = 2), PTEN gene mutation (n = 1), ATRX gene mutation (n = 1), TERT promoter
mutation (n = 1), and various predictions with regard to WHO grading (n = 4), indicating
that no pooled data can be acquired from these individual studies. Although the computer-
aided classification of glioma holds great potential, computer-obtained diagnosis is not
likely to replace histopathologic diagnosis in the near future.

4.1. Implementation of Computer-Aided Approaches in Future Medicine

The diagnosis of different diseases by the use of MLAs is believed to hold great
potential in modern medicine. The number of retrieved papers on this narrow topic is
relatively limited, especially when compared to other reviews with a broader scope with
regard to the use of artificial analysis in medical imaging analysis [22]. Nevertheless,
conclusions and major limitations seem to be similar across fields. We can cautiously
state that the accuracy of MLAs in the non-invasive classification of glioma holds great
potential and is equal to or better than the predictions of healthcare professionals. On
the other hand, the lack of external validation of the obtained results was recognized as
the major limitation of the current scientific literature. Additionally, poor reporting is
known to be prevalent in MLA studies, which limits reliable interpretation of the reported
diagnostic accuracy and thereby hampers clinical implementation. Improving reporting
and publication will enable greater confidence in the results of future evaluations of these
promising technologies in medicine. When such improved confidence will be achieved,
prospective evaluation should be carried out in the context of an intended clinical pathway.
With regard to the context discussed in this paper, MLAs could be used on the preoperative
imaging data, after which the predicted outcomes can be compared to the histopathological
assessment after biopsy. Such implementation will help to elucidate whether important
unknown covariates were present in the retrospective studies reviewed here. Thereafter, a
randomized comparison could help to reveal and quantify possible clinical implications of
implementing these MLAs in daily practice.

Furthermore, as recently suggested by Bhandari et al., a greater effort is needed to
start translating these findings into an interpretable format for clinical radiology [89]. In
addition, as several studies focused on singular molecular biomarkers in gliomas, it must be
underlined several molecular alterations in astrocytic, oligodendroglial gliomas can occur
in different combinations [79]. Consequently, a growing number of (and a combination of)
different molecular tests are used to provide clinically relevant tissue-based biomarkers.
Furthermore, the performance of MLAs to grade glioma according to the WHO grading
score remains restricted by the interobserver variability of the neuropathological exami-
nation as reviewed by Van den Bent (2010) [90]. This clinically significant interobserver
variation of the histological grading of glioma limits the diagnostic performance of other
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diagnostic tests (e.g., MLAs) as the neuropathological assessment was considered to be the
ground truth.

4.2. Clinical Relevance of Computer-Aided Diagnosis

Automated diagnosis from medical imaging through artificial intelligence could help
to overcome the mismatch between the increasing amount of diagnostic images and the
capacity of available specialists [91]. More than 100 MLAs have now CE-marked, 57 of
which can be used within neuroimaging features. Only four of these MLAs have been
tailored to be used on neuro-oncology practices [91] (see https://grand-challenge.org/
aiforradiology/; accessed on 5 March 2021). Only one of these software packages claims to
aid in tumor differentiation (The Brain Tumours Application; Hanalytics (BioMind; https:
//biomind.ai/; accessed on 5 March 2021). This application focuses on the differentiation of
22 types of intracranial tumors on MRI scans, including the differentiation of astrocytoma,
oligodendroglioma, and glioblastoma. Therefore, no software is commercially present to
distinguish different molecular subtypes of glioma. Therefore, we conclude that the use
of MLA models in daily radiological practice to non-invasively predict glioma subtype
remains an important topic of future research in order to improve accuracy and commence
external validation [91].

4.3. Strengths and Limitations

Meta-analysis of the aggregated MLA models showed high heterogeneity between
included study groups. This heterogeneity could be expected, as multiple subgroups
of target conditions are included in this analysis. Subgroup meta-analyses show signif-
icantly lower heterogeneity among included groups. However, for the IDH-subgroup,
estimated heterogeneity still is remarkably high (I2 > 80%). Possible explanations for this
heterogeneity could be the inclusion of multiple technically different MLA methodologies,
multiple included MRI protocols with different sequences (e.g., T1-weighted, T2-weighted,
diffusion-weighted), and the fact that there were no specific criteria set for the target
population of glioma patients. The latter indicates that there is a good chance of variety
between the included groups of patients. Although not supported by the results of the
Egger’s regression test, the presence of publication bias is not unlikely, there being little
interest for classification tools with poor performance. The analyzed MLA methodologies
showed excellent accuracy in the classification of multiple molecular characteristics of
glioma. However, some deficiencies in the methods of this study should be considered.
The quality of included articles was not formally assessed because no sufficient assessment
tool is currently available for prediction models using MLA-techniques. The previously
announced MLA variant of the TRIPOD statement could possibly be the solution to this
problem for future research [22]. Moreover, external validation of the MLA methodologies
was conducted for only 12 of the 60 studies. As internal validation commonly overesti-
mates the performance, external validation of the described system is highly preferred.
Lastly, a large number of the studies found in the initial search had missing reports of the
validated AUC-value. Therefore, plural studies needed to be excluded from this review.
Moreover, out of 60 studies included for qualitative synthesis, 43 studies did not note
the 95% confidence interval, standard error, and/or standard deviation, which led to a
restriction in the number of studies eligible for meta-analysis. For this matter, we recom-
mend a standardized way of reporting MLA findings. In addition, as MLAs are statistical
model-fitting methods, the reliability and performance of each study are at least partially
dependent on the study sample size. Therefore, a large dataset next to the available BraTS
dataset would be indispensable for this field of research.

5. Conclusions

This systematic review and meta-analysis show good accuracy for various MLA
methodologies for the classification of molecular characteristics of gliomas, which could be
beneficial for treatment planning. Remarkably, various studies did not perform external

https://grand-challenge.org/aiforradiology/
https://grand-challenge.org/aiforradiology/
https://biomind.ai/
https://biomind.ai/
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validation, causing significant limitations for these study results. Quality guidelines should
be used when publishing studies on MLAs, including out-of-sample external validation
and standardized reporting of obtained results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13112606/s1. Methods S1: The search strategy for (a) Medline (accessed through
PubMed), (b) EMBASE, (c) The Cochrane Library is displayed here.
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