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Abstract

Metapopulation rescue effects are thought to be key to the persistence of many acute immunizing infections. Yet the
enhancement of persistence through spatial coupling has not been previously quantified. Here we estimate the
metapopulation rescue effects for four childhood infections using global WHO reported incidence data by comparing
persistence on island countries vs all other countries, while controlling for key variables such as vaccine cover, birth rates
and economic development. The relative risk of extinction on islands is significantly higher, and approximately double the
risk of extinction in mainland countries. Furthermore, as may be expected, infections with longer infectious periods tend to
have the strongest metapopulation rescue effects. Our results quantitate the notion that demography and local community
size controls disease persistence.
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Introduction

Highly contagious pathogens can invade host populations fast

and use the susceptible pool very efficiently. The consequence of

this for immunizing infections such as measles, mumps, rubella

and whooping cough, is that local chains of transmission can break

and cause local extinction as the susceptible pool is depleted. It has

long been recognized that these infections may depend on

metapopulation dynamics whereby local persistence is impossible,

but recolonization (‘rescue effects’) among spatially separate

communities with asynchronous epidemics can ensure regional

persistence (e.g. [1,2]). The Critical Community Size (CCS) is the

threshold population size below which an infectious disease is

liable to stochastic extinction during post-epidemic troughs

because the susceptible pool is exhausted [3,4]. The larger the

CCS, the greater will be the importance of rescue effects in

maintaining circulation. Mass vaccination generally increases the

probability of local extinction, potentially rendering rescue effects

increasingly important as elimination thresholds are approached.

The CCS is a complex emergent function of pathogen biology

and susceptible recruitment. Low birth rates (or R0, which has an

analogous effect [5]), and high vaccine coverage increase the CCS;

and, comparing infections, so does decreasing the infectious period

[6,7]. However, the relationship between R0 and the CCS may be

complex. Although increasing R0 and birth rate tend in general to

decrease the CCS (by lowering the susceptible threshold for

epidemic growth), increasing mean transmission rate in the

presence of seasonal forcing can decrease local persistence, as

dynamics are drawn to multi-annual attractors, with deep inter-

epidemic troughs [8–10].

Empirically, the CCS is normally estimated via the relationship

between fadeouts (periods of zero incidence) and local community

size [3,10–12]. Underreporting of disease incidence may bias such

estimates [13]. However, more importantly all local host

communities are embedded in a metapopulation in which rescue

effects will take place at least to some extent, and the rate and

scaling of import of infected individuals change the nature of the

relationship between zero-incidence and population size [9].

In an applied context, the CCS has been proposed as a guide for

control strategies, and an argument has been made for ignoring

communities below the CCS if vaccines are limited or resources

constrained [14–16]. This, however, only has merit if regional

persistence is largely due to local persistence in large (core)

communities and if rescue effects are rare. The experience from

attempting to eliminate vaccine preventable childhood infections

shows that this is not always the case. For example, prior to recent

outbreaks in Wales, contemporary measles in the UK persisted

only through metapopulation processes [7], yet its country-wide

persistence appears robust.
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Despite its potential importance, the magnitude of rescue effects

has not previously been empirically estimated. As local elimina-

tion, or even eradication targets are increasingly on the agenda,

developing estimates of this effect is correspondingly important.

Here we use national level data to explore this question globally.

We use a comparison between island and mainland countries as a

means to elucidate rescue effects, since greater requirements for

reaching islands mean that they are likely to be less well connected

to the global metapopulation. To further isolate this rescue effect,

we control for covariates such as the size of the susceptible

population (of critical importance in sustaining a chain of

transmission), the human development index (likely to be

indicative of the sensitivity of surveillance systems) and proportion

of migrants living within the country (a measure of overall

connectedness). We compare four immunizing infections with

somewhat different life-histories.

Methods

Data sources
No community is completely isolated in this age of global travel.

We therefore take a broad-brush global approach to study

metapopulation persistence of rubella, measles, pertussis and

mumps. We use yearly reported incidence available from the

WHO [17]; and WHO corrected estimates of immunization

coverage [18]. For rubella and mumps, vaccination coverage is not

reported, so we used the WHO reported year of introduction for

each country, and then assumed that thereafter, coverage reflects

measles containing vaccine (MCV) coverage. For population size

and birth rates, we use the World Bank data bank [19]. For

estimates of the Human Development Index (HDI), we use UNDP

data (http://hdr.undp.org/en/statistics/hdi/). To infer missing

values of HDI, we used a polynomial regression linking log

country GDP to available HDI values. The estimated relationship

is y = 0.26–0.1731log(GDP)+0.0443log(GDP)2 –0.002 log(GDP)3,

r2 = 0.88, p,0.05. We used the simplest possible classification for

islands, including any country whose land mass was surrounded by

water; with the exception of Australia, which is essentially a

continent. Many resulting island countries are actually archipel-

agos (see Text S1 for the full list). To distinguish between highly

connected islands (e.g., Singapore) and very remote islands (e.g.,

Vanu Atu) we also used a measure of the relative levels of

movement between countries. Foreign-born and foreign-national

population data derived from recent censuses represent the most

complete and comparable datasets for global and regional analyses

that most readily accord with actual population movements

[20,21]. We used these as a measure of the relative levels of

movement between countries. Data on international bilateral

migrant stocks for 226 countries and territories in 2000–2002 were

obtained from World Bank estimates [20]. Wherever possible,

these data were derived from the latest round of censuses, as these

were considered most comparable at the global level. Where

unavailable, population registers were drawn upon, and in the

cases of missing data, a variety of techniques and tests were used to

create and validate a complete matrix of international bilateral

migrant stocks [21]. In total, all required data were available for

between 12 (for rubella and mumps) and 30 (for pertussis and

measles) years for 178 countries of which 40 were islands.

Estimates of the Critical Community Size
To estimate the CCS, we took years for which incidence was

reported (1998 to 2011 for rubella and mumps; and 1980 to 2011

for pertussis and measles), and identified the proportion of

reported years with non-zero incidence. We then fitted a linear

regression relating this to the size of the unvaccinated population,

obtained by combining estimates of population size in every year

for which data was available with estimates of vaccine coverage in

that year, and then taking the average (resulting in one data-point

per country). The CCS was crudely identified as the point at which

this regression line intersects with zero. The covariate "unvacci-

nated population size" was chosen to facilitate comparison with

previous analyses [10–12], despite the fact that unvaccinated

births might be a correlate more tightly linked to persistence [8].

We also supply results using the latter instead, where unvaccinated

births are obtained by multiplying births rates by population size

to obtain the size of the birth cohort, and then multiplying this by

1-vaccination coverage to get the fraction unvaccinated. In fact,

since infection for these diseases generally affects children at older

ages, lagging this value might be appropriate; however, to avoid

further depletion of the data, and given other likely greater

imprecisions, we retained this value without further transforma-

tion.

Estimating the Metapopulation Rescue Effect (MRE)
Many factors other than rescue effects affect the persistence of

our four infections. We therefore use a logistic regression

framework to study the probability of the chain of transmission

being broken (at the annual time scale), as a function of country i

being an island as well as a number of other potentially important

covariates. Explicitly, we study the probability of zero incidence in

year t+1 (Ii,t+1 = 0) given pathogen circulation in the previous year

(Ii,t.0). We defined the indicator variable Ji,t+1 = 0 when Ii,t+1.0

and Ji,t+1 = 1 when Ii,t+1 = 0 and use this as the response variable.

The covariates, other than whether the country was an island or

not (Isl), are the log size of the population of unvaccinated

children, N, taken to reflect susceptible population, the human

development index, HDI, and the log of the proportion of the

population made up of migrants living within the country, M. The

model is of the form

Ji,tz1~Bin(ni,t,hi,t)

with, in the simple case of only main effects,

hi,t~logit{1(b0zb1Ni,tzb2HDIizb3Mizb4Isli)

where b0 is the intercept, b1–b4 are slopes. We fitted all two-way

interactions between the continuous covariates (N, HDI and M),

and identified the Minimum Adequate Model (MAM) using the

‘step’ function in R and then deleting interactions that were not

significant at the 0.05 level (since we are interested in the island

main effect, we did not include island interactions).

To carry out inference on the MRE that adequately incorpo-

rates parameter uncertainty, we used the variance-covariance

matrix of parameters identified in the MAM, and generated 1000

samples from a multivariate normal with the appropriate mean

and variance covariance [22]. This allowed us to obtain the odds

of extinction on island countries relative to mainland countries

incorporating parameter uncertainty. To extract the specific effect

of islands, taken as representative of the MRE, we set other

covariates to reflect an unvaccinated population size set at 100

000, the median HDI (0.67), and the median log proportion of

migrants across countries (–3.52). Predictions can also be made

that compare odds of extinction on an island with the lowest

quantile of migrants (–6.25) vs. odds of extinction on the mainland

Rescue Effects in Measles and Other Infections
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with median (–3.25) or high quantiles of migrants (–0.62).

However, since the number of migrants living within a country

might be shaped by a range of historical, economical, and

geographical factors, not necessarily of direct relevance to the

metapopulation rescue effects, we present here results based on the

median. The alternative analysis incorporating variation in

number of migrants, yield the same qualitative predictions, but

the estimated MREs are more extreme (Metcalf unpublished

results).

Results

The pattern of persistence against log unvaccinated population

size is shown in Figure 1. Table 1 contains fitted regressions for

both this relationship and the alternative obtained using log

number of unvaccinated births as the covariate. Corresponding

estimates of the CCS are shown in Figure 2a. The data show

considerable spread along the x axis (Figure 2b), indicating that

our CCS estimates carries substantial uncertainty. The ranges,

however, encompass previous estimates for each of the three

diseases for which estimates are available (Fig. 1 and 2). Despite

our expectations, the proportion of the variance explained was

higher for models using unvaccinated population size as a

covariate, rather than models using the size of the unvaccinated

birth cohort (Table 1, r2 values). There are two possible

explanations. First, since the estimate of the size of the

unvaccinated birth cohort combines three sources of information

(population size, birth rate, and vaccination coverage) each with

their own degree of uncertainty, the accumulated noise may

reduce the signal. Alternatively, as the average age of infection for

all infections considered is rather greater than 1, unvaccinated

birth cohort in that year may not be the appropriate measure, and

should instead be lagged to a degree reflective of the average age of

infection. Since this may be a rather variable number even within

countries [11] and given the limited number of years available for

analysis, such lagging (by e.g., 9 years for mumps) would

Figure 1. Critical Community Size of four immunizing childhood infections. The x axis shows the size of unvaccinated proportion of the
populations of each country (log scale), the y axis shows the proportion of years where incidence reported to the WHO is greater than zero (years
range between 1998 and 2011 for rubella and mumps and 1980 and 2011 for pertussis and measles). Colours indicate island states (red); the size of
points indicates the number of years for which there was data. Vertical lines show previously reported CCS values; higher values for measles refers to
Niger [10], lower to America and the UK [3,24]; for pertussis values refer to England and Wales [12]. The grey lines show a fitted linear regression,
weighted to reflect sample size for each country (Table 1). The extreme positive outlier for measles (reflecting no years with more than one case at a
relatively large population size) is the Democratic People’s Republic of Korea. For all infections, islands with no years with no cases reported tend to
be islands like the United Kingdom and New Zealand, likely to have highly effective surveillance systems.
doi:10.1371/journal.pone.0074696.g001
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considerably deplete the number of data-points, we did not pursue

this.

For all four infections, the data suggest lower persistence on

islands. Parameter estimates for the minimum adequate model

describing probability of extinction are shown in Table 2. All main

factors are broadly consistent with theoretical expectations for

persistence in epidemic metapopulations. The size of the

unvaccinated child cohort has a negative effect on extinction

probability. More unvaccinated children imply a greater suscep-

tible replenishment rate and thus a more robust chain of

transmission. There is a negative slope with HDI, consistent with

the expectation that higher HDI implies greater health-care

functioning (though any associated increase in reporting rates

would be a confounder that pulls in the opposite direction). The

log proportion of migrants in the population is expected to have a

positive influence on persistence, consistent with more migration

leading to more frequent rescue effects. This is clearly born out for

measles and pertussis, and in a weaker and non-significant way for

rubella and mumps. There is a significant interaction between

HDI and size of the population of unvaccinated children for

measles, indicating that larger populations with a high HDI more

effectively control infections; and a significant interaction between

the HDI and number of migrants for rubella, suggesting that more

migrants have less of an effect in countries with a high HDI. In all

cases, the direction of the effect of the "island" covariate was

positive, indicating that persistence is lower (extinction rates

higher) on islands (Table 2). The odds ratio of .1 indicate that the

odds of extinction are greater on islands than on mainland

countries. More specifically the odds of extinction on islands are

roughly 1.5 fold higher on islands than on the mainland countries

for measles; and are even higher for rubella, mumps and pertussis.

Correcting for all other covariates, Figure 3 depicts the

probability of extinction as a function of population size on island

versus non-island communities. To quantify the rescue effect, we

further use the relative risk of extinction on islands (correcting for

all other covariates and using resampling to propagate regression

uncertainties) for the four infections (Figure 4). For all infections,

the relative risks of extinction are predicted to be considerably

higher in island than mainland countries (the bulk of the

distributions shown in Fig. 4 are greater than 1). Note, though,

that while there is a significant effect for all infections there is

substantial uncertainty, once we propagate the regression errors.

The extreme value estimated for mumps may be a real biological

effect, or reflect biases because of the generally very low reporting

Table 1. Weighted linear regression linking log size of the unvaccinated population and proportion of years for which no cases
were reported; followed by the same but taking the size of the number of unvaccinated births as the covariate; corresponding
estimates of the CCS, obtained as the point at which the fitted line intersects with zero are shown in Fig. 2.

Relationship to log size of the unvaccinated
population

Relationship to the log number of
unvaccinated births

Rubella y = 1.806–0.105x r2 = 0.47, df = 187,
p,0.05

y = 1.482–0.107x r2 = 0.43, df = 181,
p,0.05

Measles y = 1.060–0.063x r2 = 0.39, df = 187,
p,0.05

y = 0.770–0.058x r2 = 0.34, df = 186,
p,0.05

Pertussis y = 1.322–0.088x r2 = 0.54, df = 187,
p,0.05

y = 0.868–0.074x r2 = 0.41, df = 186,
p,0.05

Mumps y = 1.152–0.084x r2 = 0.24, df = 169,
p,0.05

y = 1.227–0.083x r2 = 0.19, df = 163,
p,0.05

doi:10.1371/journal.pone.0074696.t001

Figure 2. Estimates of the Critical Community Size. a) Estimates of the distribution of the population size at which no years with no cases are
expected based on linear regressions described in Table 1 and shown in Fig. 1 for the total unvaccinated population and for unvaccinated births; here
encompassing parameter uncertainty; b) Violin plots showing the distribution of sizes of the unvaccinated populations for which no years with no
cases were recorded for each of the infections (p0 = 0 indicates no zeros in the time-series, and therefore points along the y = 0 line in Fig. 1); vertical
dotted lines indicated previous estimates of the CCS for each of the infections, see Fig. 1 for a description.
doi:10.1371/journal.pone.0074696.g002

Rescue Effects in Measles and Other Infections
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Table 2. Main effects for the model of the probability of extinction for each of the 4 infections identified using the ‘step’ function
in R; and then eliminating variables not significant at the 0.05 level; standard errors shown in brackets; stars indicate significance
with 6 for p-values ,0.1, * for p,0.05, ** for p,0.01, *** for p,0.001.

Description Pertussis Measles Rubella Mumps

Intercept b0 4.79(0.71)*** 7.09(1.77) *** 3.48(1.92) u –8.01(5.40)

slope of log unvaccinated
children (N)

b1 –0.60(0.05) *** –1.08(0.17) *** –0.28(0.06)*** –0.77(0.53)

OR: 0.548 OR: 0.340 OR: 0.755 OR: 0.46

slope of HDI (HDI) b2 –5.33(0.59) *** –9.43(2.45) *** –5.71(2.48) * –8.41(7.26)

OR: 0.004 OR: 8.02e–5 OR: 0.003 OR: 0.0002

slope of log proportion of
migrants (M)

b3 –0.20(0.06) ** –0.30(0.05) *** 0.77(0.44)u –0.23(0.174)

OR: 0.818 OR: 0.740 OR: 2.15 OR: 0.794

slope of island (Isl) b4 0.82(0.18) ***
OR: 2.270

0.41(0.17) *
OR: 1.506

0.68(0.31) *
OR: 1.97

2.38(0.46) ***
OR: 10.804

Residual deviances are 1140.4, 1318.3, 541.0, and 208.1 respectively in the order of the columns of the table; and degrees of freedom are 3513, 4004, 1044 and 203.
Significant interactions were retained in the models, including an interaction between N and HDI for measles [0.85(0.25)***] and mumps [–1.626(0.779)*]; and an
interaction between HDI and M for rubella [–1.39(0.62)*]. ‘‘OR’’ indicates the odds ratios corresponding to each covariate.
doi:10.1371/journal.pone.0074696.t002

Figure 3. Predicted probability of extinction. The x axis is population size for four childhood infections and the y axis is probability of extinction
for island nations (red) and mainland nations (black) and showing upper and lower standard errors, taken at the median log proportion of resident
migrants (an index of connectivity of –3.52) and median human development index (0.67). Parameters underlying these predictions are shown in
Table 1.
doi:10.1371/journal.pone.0074696.g003
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rate for this infection. The measures of development (HDI) and

migration had a lesser, yet still significant effect on the probability

of disease extinction. For countries with high levels of development

(HDI,0.9), the probability of extinction tended to be around 1%

higher than for countries with very low HDI (HDI,0.4), whilst the

probability of extinction decreased roughly in proportion with the

percentage of migrants in the population.

Discussion

Our analysis reveals a consistently higher risk of extinction of

four different immunizing childhood infections on islands, when

correcting for other confounding variables. We believe our study

represents the first empirical estimate of the magnitude of

metapopulation rescue effects (MREs) in epidemic metapopula-

tions [2]. All else being equal, island nations have roughly double

the risk of extinction for our four focal diseases (Figure 4), arguing

for a key role for MREs in their persistence.

At the country scale, development level (as captured by the

HDI) reduces infection persistence, and migration (measured by

proportion of resident migrants) increases it. Both these aspects are

likely to change dynamically across the globe in coming years, with

global mobility and connectivity continuing to increase. Whether

the combined impact of their future trajectories increases or

decreases infection persistence within the global metapopulation

will depend on the relative patterns of change and is an interesting

question for future research.

A natural hypothesis for the ordering of the different infections

in terms of odds of extinction on islands is that infections with

longer generation times might be more sensitive to the MRE, and

this is indeed what we observed, with a greater difference in

extinction probabilities for pertussis and rubella on islands relative

to measles. While mumps has a relatively long infectious period, it

is an outlier in that the estimated MRE is very large. This may be

a real effect or perhaps spurious because of the overall low

reporting rates for mumps (estimated for example at 12% in pre-

Figure 4. Relative risks of extinction on an island. The probability of extinction for island countries divided by the probability of extinction for
non-island countries for 4 childhood infections relative to extinction on the mainland; showing only a fraction of the distribution for mumps for
clarity. The proportion of migrants and HDI are set to the median across all countries (–3.52 and 0.67 respectively), and the population size of
unvaccinated children is set to 1e5. Median values are 1.92 (1.04–3.37) for rubella, 1.51 (1.07–2.16) for measles, 10.26 (4.06–25.29) for mumps, and 2.27
(1.57,3.32) for pertussis; brackets indicate 2.5% and 97.5% quantiles from prediction made across 2000 samples from the estimated multivariate
normal distribution of the parameters.
doi:10.1371/journal.pone.0074696.g004
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vaccination Copenhagen relative to 40% for measles and 17% for

pertussis [23]).

Our analysis is subject to a number of uncertainties associated

with the data used. These will variously pull the CCS to be either

an over- or under-estimate. Widespread under-reporting of

infections [10,24,25] should lead to an over-estimate of extinction

risk, especially in countries where surveillance systems are weak.

Additionally, countries with better vaccination coverage may also

tend to have better surveillance, meaning that many countries with

large unvaccinated birth cohorts will report too frequent absence

of disease. Conversely, the coarseness of the annual time step will

induce biases in the opposite direction, with short-lived fade-outs

going undetected. Moreover the coarseness of the country-wide

spatial grain will make more local fade-outs go undetected. Our

estimates of the CCS (Figure 1) are generally slightly larger than

those found previously [3,10,12,24], implying that the crudeness of

the spatial and temporal scale is counter-acted by biases acting in

the other direction.

Despite the crudeness of our CCS estimates, we believe our

estimates of the MREs to be more robust because they correct for

a number of potentially confounding factors. It is further

reassuring that the magnitude of the MREs are fairly consistent

across the four diseases (except, perhaps, mumps), despite

reporting rates being likely to differ. The variation in MREs

correlates positively with infectious period and (possibly) negatively

with disease severity. However, both these effects may be

confounded by reporting rates, which are generally highest for

measles (relatively virulent) and lowest for mumps (relatively

avirulent). Furthermore, the more subtle effects of development

(and therefore the effectiveness of health services) and population

connectivity were still clearly apparent in the risk of disease

extinction (Table 2).

In conclusion, we provide the first estimates of the magnitude of

metapopulation rescue effects for four immunizing childhood

infections, with values indicating an approximate halving of

persistence in isolated nations. This is likely to be a highly

significant effect from an applied point of view as mass vaccination

increasingly drives persistence away from the local scale towards

the metapopulation scale for such diseases. There is some

indication that infections with longer generation times have

stronger rescue effects, as consistent with metapopulation theory

(Figure 4). Disease severity may also directly affect metapopulation

rescue effects if illness decreases movement of infectious individ-

uals, and likelihood of contact between susceptible and infectious

individuals, although associated differences in reporting rate may

confound such effects. The structure of within-country metapop-

ulations will be a key determinant of the global patterns that we

report; and will be a function of population density and

distribution with countries, as well as area, and other geographic

features (e.g., for island countries, the role of being an

archipelago). More detailed information at finer spatial scales is

increasingly available for specific countries [10,11]; and compar-

ative analyses of commonalities and determinants of countries’

metapopulation structures are increasingly possible, opening the

way to generalization of the role of metapopulation rescue effects

at a global scale.
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