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Abstract: Up to half of the global fruit and vegetable production is wasted or lost along the supply
chain, causing wastage of resources and economic losses. Ambient parameters strongly influence
quality and shelf life of fresh fruit and vegetables. Monitoring these parameters by using Internet of
Things (IoT)-enabled sensor and communication technology in supply chains can help to optimize
product qualities and hence reduce product rejections and losses. Various corresponding technical
solutions are available, but the diverse characteristics of fresh plant-based produce impede establish-
ing valuable applications. Therefore, the aim of this review is to give an overview of IoT-enabled
sensor and communication technology in relation to the specific quality and spoilage characteristics
of fresh fruit and vegetables. Temperature, relative humidity (RH), O2, CO2 and vibration/shock
are ambient parameters that provide most added value regarding product quality optimization,
and can be monitored by current IoT-enabled sensor technology. Several wireless communication
technologies are available for real-time data exchange and subsequent data processing and usage.
Although many studies investigate the general possibility of monitoring systems using IoT-enabled
technology, large-scale implementation in fresh fruit and vegetable supply chains is still hindered by
unsolved challenges.

Keywords: wireless sensing; Internet of Things; cold chain management; fruit and vegetables; postharvest
quality; shelf life; food waste

1. Introduction

It is estimated that 40–50% of the global fruit and vegetable production is lost or wasted
along the supply chain, which is approximately half of the total amount of food waste [1,2].
This leads not only to wastage of resources and corresponding avoidable greenhouse gas
emissions, but also creates huge economic losses [1,2]. Therefore, reducing the amount of
food wasted and lost along the supply chain is of major importance regarding sustainability
and economical aspects [1].

There is no single reason for the high losses in the fresh fruit and vegetable sector,
but several characteristics make these products particularly prone to wastage. They are
highly perishable with shelf life and postharvest quality being strongly influenced by
the environmental conditions during storage and transportation [3]. Furthermore, the
seasonality of many fruits and vegetables can lead to discrepancies between the availability
and the market situation, causing product losses [4]. An additional aspect is the increasing
consumer demand for the highest product quality [3]. Together with rising quality stan-
dards enforced by retail, this results in high losses of less aesthetically perfect products,
especially when marketing alternatives are lacking [1,4].
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Both the postharvest quality retention and the shelf life of fresh fruit and vegetables
are influenced by a range of ambient parameters such as temperature, relative humidity
(RH), gas atmosphere and shock or vibration [5,6]. Monitoring and controlling these
parameters during storage and distribution contributes to optimized product qualities
and reduction of losses in the respective supply chains [5]. Combining the product’s
temperature history with shelf life models allows predictive shelf life calculations and
improved logistic decisions [7,8].

A common way for ambient parameter tracking is using respective sensor technology.
Various solutions have been developed in recent years [6]. With the progress of the IoT,
monitoring systems with wireless real-time data exchange between numerous system
components become possible [9,10]. This is a huge advantage over most conventional
systems such as dataloggers, graphical temperature recorders, time-temperature integrators
and smart labels, which require physical interaction with the device for data extraction [11].
Luo et al. [12] proposed an IoT-based monitoring system, including layers for sensing
(sensing layer), transmitting and processing (network layer) and management of data
(application layer). The corresponding technologies are emerging and partly already
commercially available.

However, despite the rapid technological development and the potential for reducing
food loss and waste, the implementation of IoT-based monitoring systems is still facing
unsolved challenges. Ambient parameter tracking using IoT technologies has been in-
vestigated in various studies [13–15], but the corresponding detailed concepts on data
processing and cross-chain implementation are missing. Fruit and vegetables are a com-
plex product group with various freshness and quality characteristics. Depending on the
product and its spoilage kinetics, different ambient parameters are important and useful to
measure. This leads to a broad range of monitoring requirements for fruit and vegetables
on the one hand. On the other hand, a variety of IoT-based technologies is available, but
there are currently no generic guidelines that help actors to decide which technology fits
best for their specific supply chains.

The central objective of this review is to give an overview of IoT-enabled sensor and
communication technology for monitoring ambient parameters in relation to the specific
quality and spoilage characteristics of fresh fruit and vegetables. Current technological
solutions were reviewed for their potential regarding useful applications in supply chains
of fresh plant-based produce. This enables actors to make a more informed choice about
which technology could be valuable for specific supply chains, contributing to optimized
product qualities and reduction of losses.

For bibliographic retrieval, scientific databases (Web of Science, Google Scholar, Wiley)
were used to collect scientific literature. The research was conducted on the main topics
of spoilage characteristics, quality-relevant ambient parameters, IoT sensor and commu-
nication technology, and application studies. Examples of keywords used for the search
are “fruit and vegetables” and “shelf life”, “wireless sensing” and “postharvest quality”,
“IoT” and “food supply chain”, “IoT” and “cold chain management”. For examples of
sensor technology and related technical information, sources directly retrieved from the
web were used additionally, since scientific literature is not exhaustive enough for this
kind of information. After reviewing the search results, 105 bibliographic references from
scientific databases and 22 web sources were included in this review.

Firstly, spoilage mechanisms of fresh fruit and vegetables and their implications
for the quality and shelf life are described in Section 2. This is followed by Section 3,
in which relevant ambient parameters and the corresponding IoT-enabled sensors are
presented. In Section 4, IoT communication technologies enabling wireless data exchange
are described. In the discussion in Section 5, the findings from the previous sections are
integrated. The potential, but also the challenges of ambient parameter monitoring in fresh
fruit and vegetable supply chains using IoT-based sensor and communication technology
are pointed out.
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2. Spoilage Characteristics and Shelf Life of Fresh Fruit and Vegetables

The term “fruit and vegetables” covers a broad range of products originating from
different plant parts, including tissue types such as leaves, reproductive organs and other
organs such as roots [9,16]. The physiological variety of fruit and vegetables leads to diverse
characteristics regarding quality and spoilage. Some products such as berries and lettuce
are highly perishable with only a few days of shelf life, although others such as apples, pears
and onions can be stored for months. Accordingly, the requirements for postharvest quality
retention vary. Depending on each product and its specific spoilage characteristics, different
ambient parameters are relevant and thus must be monitored to enable quality optimization
and dynamic shelf life calculations [5,7,17]. However, common spoilage mechanisms that
are influenced by certain ambient parameters can be observed. Categorizations after those
mechanisms can help to establish which products can be transported or stored together
without accelerated quality decline [18].

2.1. Respiration

Postharvest fruit and vegetables are living tissue with continuing respiration that leads
to further ripening and eventually over-ripeness and senescence. Respiration describes
the process of metabolizing O2 from the air together with organic molecules (e.g., sugar)
from the tissue to intermediate compounds and eventually CO2 and water [19,20]. Many
metabolic processes that have direct influence on quality attributes such as firmness, sugar
content and aroma are depended on respiration [19]. If these quality parameters deteriorate
beyond a certain acceptance threshold, the product is spoiled. Therefore, respiration
rate and shelf life are mostly inversely correlated, meaning that a higher respiration rate
implies a shorter shelf life [19]. A comprehensive table with respiration rates for fruit and
vegetables can be found in Gross et al. [21]. Some authors classify the respiration rates
relatively to each other to indicate whether a product has a “high” or “low” respiration rate
and accordingly a longer or shorter shelf life [5,16,19]. Respiration is strongly influenced by
the ambient temperature and the gas atmosphere surrounding the product [20]. Lowering
respiration rates via temperature control and/or modified gas atmosphere (e.g., reduction
of oxygen concentration) can lead to an extended storage life for some commodities [16,22].

A special type of respiratory behavior can be observed in climacteric fruits during
ripening. This also includes some products which are commonly termed as “vegetables”
but are physiologically fruit-vegetables, such as tomatoes. For non-climacteric commodities
hardly any changes are observed in their respiration pattern, climacteric fruits show a
sudden strong increase in respiration rate to a maximum (climacteric peak) that is fol-
lowed by a rapid decline [5]. Examples of climacteric fruits are apples, bananas, mangoes,
melons, pears and tomatoes. Climacteric behavior can be advantageous if products are
transported over long distances, such as overseas transport, because it allows for continued
ripening after harvest. It is common practice that climacteric fruits are harvested mature
but preclimacteric and are ripened under controlled conditions at their destination [9]. The
gaseous plant hormone ethylene strongly influences the onset and progression of climac-
teric ripening [23]. Therefore, optimized conditions regarding temperature and ethylene
concentration in the surrounding atmosphere are necessary for preventing product loss by
enhanced respiration or sudden climacteric ripening.

2.2. Transpiration

Transpiration describes the physiological process in which water vapor evaporates from
the product’s surface to the surrounding air. It continues after harvest and causes progressing
water loss in the product, resulting in turgor loss, wilting, shriveling and shrinking [24]. This
leads to a deterioration of quality parameters such as taste, turgidity or texture, until the product
is unacceptable to the consumer [5,9,25]. The degree of water loss that is still accepted is product-
specific [5,16]. Next to visible quality parameters, the nutritional value can also decrease from
water loss [16]. Quality decline and spoilage due to moisture loss concerns primarily leafy
vegetables, vegetables with leaves on top, citrus fruit and products with a high surface area to
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fresh weight ratio, such as bell peppers [16,24]. The ambient RH and temperature play a crucial
role in reducing postharvest transpiration [5,9]. High RH (95–100%) for optimum shelf life and
quality retention during storage and distribution is recommended for many products [21]. Only
few products, such as onions and garlic, require a lower RH [18].

2.3. Microbial Growth

All fruits and vegetables are nutrient-rich and high in water activity, providing a
suitable habitat for various microorganisms. The main spoilage flora is composed of
saprophytic microorganisms derived from the surroundings in the field or orchard (e.g.,
soil, air, insects, irrigation water, hands of personnel) [26]. Microbial spoilage can occur
for any product and often is the limiting factor for its shelf life, because of altered quality
parameters such as smell, flavour, firmness, texture, and colour. For vegetables, bacterial
spoilage is common [27]. Organisms such as Erwinia carotovora and Pseudomonas spp.
frequently cause spoilage in onions, crucifers, peas, beans, carrots, potatoes, asparagus,
celery, and lettuce [27]. Due to their acidity, fruit are more likely to be infected by fungi [27].
Berries in particular are very susceptible to fungal infections and subsequent spoilage.
Main spoilage organisms are Rhizopus stolonifer and Botrytis cinerea, both leading to
high market losses [26]. Likewise, citrus fruit are frequently spoiled by fungi, especially
by the species Penicillium italicum and Penicillium digitatum [26]. In addition, fruit and
vegetables can be associated with pathogens naturally occurring in the plant environment
or by contamination via various sources. Recent outbreaks in Europe have for instance
been reported for Norovirus in radish sprouts and Salmonella enteritidis in cucumbers and
tomatoes [28,29]. Growth of microorganisms is strongly dependent on ambient parameters
such as temperature, RH, and gas atmosphere [30]. Therefore, close control and monitoring
of these parameters is essential for delaying microbial spoilage and preventing the growth
of pathogens.

2.4. Degradation of Internal Components

Metabolic processes such as respiration and enzymatic activity continuously alter the
internal product composition. Degradation of components can be visible, as in the loss of
green colour in broccoli heads, because of chlorophyll breakdown [16,31], but this is not
always necessarily so. Although the loss of components is not always related to spoilage,
it is an important quality aspect. Beneficial health effects are associated with compounds
such as vitamins, carotenoids, flavonoids, phytosterols and phenols [30]. These might be
reduced or lost if products are stored under improper conditions. Several studies show
that the ambient temperature and RH have an influence on the degradation of nutrients
such as ascorbic acid, chlorophyll, carotenoids, lipids and glucosinolates in different fruit
and vegetables [5,32–35]. Bergquist et al. [36] state that the ascorbic acid content in baby
spinach is so closely correlated with the ambient conditions that it could be used as a shelf
life indicator. Therefore, control of ambient parameters such as temperature and RH also
has a direct influence on the nutritional quality of a product.

2.5. Damage and Injury

Fresh fruit and vegetables are delicate products and easily damaged by shocks or
vibration during handling, storage, and distribution. Mechanical injuries and bruises
promote the beforementioned deterioration mechanisms strongly, leading to faster quality
decline and spoilage. They increase respiration, transpiration, ethylene production and
accelerate enzymatic activity [5,22,26]. Furthermore, mechanical damage results in contact
areas for microorganisms, especially for moulds, and leakage of cellular fluid that provides
good conditions for growth of bacteria [21,26]. A special type of injury is the so-called
chilling injury. Commodities that are susceptible to this condition can suffer from different
physiological disorders when exposed to low temperatures for a certain time [37]. For
example, apples, pomegranates, and pineapples can develop internal browning, and
pitting can occur in oranges, papayas, watermelons, and cucumbers [37]. The threshold
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temperature is product-specific, therefore chilling injury cannot only be prevented by close
temperature control, but also by knowing the optimum conditions for each commodity.

3. Ambient Parameter Monitoring and Sensor Technology

From the spoilage mechanisms discussed before, it becomes obvious that ambient
parameters strongly influence the quality and shelf life of fruit and vegetables. Purposeful
and continuous monitoring is required to provide safe, fresh and nutritious products.
Traditional ambient parameter tracking in fruit and vegetable supply chains relies on
non-connected, partly even non-digitalized practices [3]. New approaches are under in-
vestigation to complement or replace those monitoring methods. The lack of real-time
information is a particular problem that new solutions try to overcome to improve food
safety and reduce waste [38,39]. Moreover, the availability of real-time information on
ambient conditions is a critical requirement for predictive shelf life calculations [7,40]. One
approach to provide this information is to use IoT-based sensors with wireless communica-
tion technologies.

3.1. Temperature

Temperature is the most important ambient parameter in the context of quality reten-
tion and shelf life because it strongly influences all spoilage mechanisms of fresh fruit and
vegetables as discussed in Section 2. For instance, Nunes and Emond [41] found that the
shelf life of raspberries was reduced by 50% if the storage temperature was 10 ◦C instead
of 0 ◦C. For blueberries, a shelf life shorter by 3 days was observed for storage at 10 ◦C
compared to storage at 0 ◦C [42]. Also for arugula, increasing the storage temperature from
0 ◦C to 7 ◦C reduces the shelf life by several days, depending on the season and the harvest
batch [43]. For products that are sensitive to chilling injury, such as mangoes, avocados,
bananas, papayas and pineapples, not only a temperature increase, but also a lower than
optimum temperature can negatively impact their quality. Islam et al. [44] reported first
symptoms of chilling injury in mango after 10 days of storage at 5 ◦C, whereas at 10 ◦C
the onset of symptoms only started after 20 days. Another study on papayas showed that
chilling injury symptoms were much more severe in fruit stored at 5 ◦C for 7 days than in
fruit stored at 10 ◦C for 7 or even 14 days [45]. These examples illustrate that particularly for
very perishable products that require strict refrigeration and for chilling sensitive products,
real-time temperature monitoring could be beneficial to prevent accelerated quality losses.
Technologically, this is already possible. Temperature sensors are widely available and
account for up to 80% of the global sensor market [46]. Although traditionally thermo-
couples were common, in most IoT temperature sensors resistive temperature devices
or thermistors are used [6]. Both types are inexpensive and measure the temperature
accurately over a wide range [6]. Given the availability of cost-efficient IoT temperature
devices, an application for optimized product quality and shelf life can be profitable for all
fruit and vegetables.

3.2. Relative Humidity

During storage and distribution, it is essential to find the right level of RH that
minimizes moisture loss but at the same time prevents microbial growth [5]. For example,
Mahajan et al. [47] observed increasing weight loss in fresh mushrooms with decreasing
RH. They state that the RH has the largest effect on lowering the transpiration rate, but
that a high RH at the same time can promote growth of certain microorganisms [47].
Therefore, real-time monitoring and control of RH is especially important for fresh fruit and
vegetables that are either prone to water loss or very susceptible to microbial decay, such
as berries and citrus fruit. Apart from moisture loss, RH can adversely influence further
quality characteristics. Jones et al. [35] describe that broccoli heads lose visual quality
and glucosinolates’ content faster at low RH than at high RH when stored at ambient
temperature. For carrots, studies indicate that high RH is beneficial for maintaining levels
of ß-carotene, ascorbic acid, glucose and fructose [48]. This shows that monitoring of
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RH with IoT technology can be beneficial for several fruit and vegetable supply chains.
Different technologies are possible, including optical, gravimetric, capacitive, resistive,
piezo-resistive and magnetoelastic sensors [49]. For application in IoT devices, mostly
capacitive and resistive sensors are used, because of their robustness, small size and low
power consumption [6]. IoT solutions for measuring RH are widely available and often
combined with temperature sensors [6].

3.3. Ethylene

The gaseous plant hormone ethylene enhances metabolic processes in many fruit
and vegetables, but especially stimulates ripening in climacteric fruits [23]. Already ex-
tremely low concentrations can affect sensitive products [23,50]. Detrimental effects include
accelerated senescence [23], loss of chlorophyll and yellowing in green-colored vegeta-
bles [16,22,23], accumulation of bitter compounds in carrots and parsnips [16,22,51] and
excessive flesh softening, e.g., in kiwifruit and watermelons [51,52]. Unfavorable conditions
can arise when multiple commodities are stored together, since the presence of ethylene
producing products can lead to quality decline in sensitive ones [18]. Even when ethylene
is intentionally added for controlled ripening and de-greening purposes, the concentrations
should be monitored and controlled carefully [53]. Therefore, real-time monitoring of ethy-
lene concentrations would be highly valuable during transport and storage of climacteric
fruits and products that are sensitive to exposure. Several technological approaches exist;
however, challenges regarding specificity, selectivity, price, size and stability in a harsh
measurement environment remain [50,51]. Until now, ethylene sensors with sufficient accu-
racy are too costly for an application in IoT devices, but promising progress is being made,
particularly in the field of chemiresistors, chemicapacitors and NDIR spectroscopy [6,50].
Another possibility for further cost reduction could be the development of “threshold” sen-
sors that only transmit data if the ethylene concentration reaches a certain level, dependent
on the respective product [50].

3.4. Oxygen and Carbon Dioxide

In controlled atmosphere (CA) storage, altered oxygen and carbon dioxide concentra-
tions are used to reduce respiration, ethylene production and enzymatic activity, which
lead to better nutrient retention and slower microbial growth [5,54]. For example, Schouten
et al. [31] found that broccoli heads stored in 1.5 kPa O2/15 kPA CO2 at 18 ◦C were still
green after 10 days whereas broccoli heads in other CA storage conditions turned yellow.
Chung et al. [55] showed that for apples of the variety “Fuji”, the flesh firmness was re-
tained significantly better under CA conditions than in air storage. Comparable beneficial
effects are observed for many commodities, but only for some the beneficial effects are
large enough for a profitable commercial use [22]. CA storage is commonly applied for
apples, pears, cabbages and, to a lesser extent, to bananas, onions, kiwifruit, avocados,
kakis, strawberries during long-distance transport [52,54]. Injuries and physical disorders
can occur when the concentrations shift outside the suitable range [54]. Therefore, real-time
monitoring of oxygen or carbon dioxide concentrations can be valuable when using CA.
For both gasses, several sensing technologies are established, but not all of them are suitable
for an IoT application [56]. Finner and Zomer [6] propose the use of electrochemical or
fluorescence sensors for oxygen detection and NDIR sensors or metal oxides sensors for
carbon dioxide detection because they are inexpensive and sufficiently accurate [6].

3.5. Shock and Vibration

During transport and distribution, products are loaded and unloaded several times,
and may experience shock or vibration. Fresh fruit and vegetables are easily damaged
during those incidents. This is relevant for quality and shelf life because mechanical damage
or injuries strongly promote quality loss and spoilage. For instance, Martinez-Romero
et al. [57] measured significantly higher respiration rates during storage for damaged
apricots than for non-damaged ones. For carrots, different processing steps from mechanical
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harvesting to packing can cause a huge amount of loss through damage [25]. The severity
of the damage also plays an important role for quality retention and shelf life, as Ariffin
et al. [58] show for different spinach types. Hence, using accelerometers (motion sensors)
for detecting shock or vibration can be useful for very sensitive products such as berries,
but also for many other commodities. Most suitable accelerometers for IoT devices are
based on microelectrochemical systems (MEMS), because they are small, inexpensive and
accurate [59,60]. These devices are widely available and can be used for detecting shock or
vibration throughout the chain by simple attachment to a pallet [60].

Table 1 gives an overview of the presented ambient parameters and the corresponding
sensor technology suitable for an IoT application. In addition, fresh fruit and vegetables are
listed for which monitoring of the respective ambient parameter could bring value by pre-
venting product losses through unexpected deterioration. The examples for commercially
available sensors contain ready-to-use solutions including battery, communication modules,
etc. For ethylene, only sensing units without inbuilt battery or connectivity were found.
Depending on the intended application it can also be favorable to develop a customized
sensor from single modules.
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Table 1. Overview of ambient parameters and corresponding sensor technology for an IoT application.

Ambient
Parameter

Sensor Technology Suitable
for IoT

Solutions Commercially
Available Examples Relevant Fruit and Vegetables References

Temperature Thermistor
Resistive temperature device Yes

SentriusTM RS1xx by LairdTM

Connectivity (LoRa)
SentriusTM BT510 LairdTM

Connectivity (Bluetooth)
Piccolo TMX by WirelessLinks (cellular
communication)Wireless temperature and
humidity logger by Efento (NB-IoT)
LAS-603V2 T/RH Sensor by kiwi
technology Inc. (LoRa)
XSense®RT-2G by XSense®

(cellular communication)
freshtime by infratab (RFID/NFC)

All commodities, particularly for:
berry fruit, leafy vegetables, fresh
herbs, pineapples, papayas,
mangoes, avocadoes, bananas

[6,21,46,61–67]

Relative Humidity Resistive hygrometer
Capacitive hygrometer Yes

Sentrius RS1xx by LairdTM

Connectivity (LoRa)
Wireless temperature and humidity logger
by Efento (NB-IoT)
LAS-603V2 T/RH Sensor by kiwi
technology Inc. (LoRa)
DRA LHT65 by Dragino (LoRaWAN)
TempTale Geo LTE by Sensitech
(cellular communication)
Pod Humidity PA3 by Verigo (Bluetooth)
XSense®RT-2G by XSense®

(cellular communication)

All commodities, particularly for:
leafy vegetables, fruit-vegetables,
fresh herbs, berry fruit,
citrus fruit
In long-term storage: pumpkins,
onions, garlic

[6,21,49,61,64–66,68–70]

Ethylene Chemiresistors
Chemicapacitors

No
(only sensing units
without battery or
wireless connectivity)

Sensing units:
Membrapor Ethene, Ethylene Gas Sensor
C2H4/C-10 by Membrapor
Electrochemical Ethylene Gas Sensor
ME3-C2H4 by Winsen

Climacteric fruit, particularly for
bananas, leafy vegetables,
broccoli, cauliflower, cucumbers,
carrots, eggplant, citrus fruit,
watermelons, bell pepper,
pumpkin, green beans, pears,
blackberries, raspberries,

[6,21,50,71,72]
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Table 1. Cont.

Ambient
Parameter

Sensor Technology Suitable
for IoT

Solutions Commercially
Available Examples Relevant Fruit and Vegetables References

Oxygen Electrochemical sensor
Fluorescence sensor Yes ECgaspoint by EC Sense (Wi-Fi)

PS-3217 by Pasco (Bluetooth)

During CA storage/transport:
apples, pears, cabbages, onions,
kiwifruit, avocados, melons,
nectarines, peaches, broccoli,
bananas, cherries, figs, kakis,
asparagus, mangoes,
plums, strawberriers

[6,21,73,74]

Carbon Dioxide NDIR sensor
Metal oxide sensor Yes

PS-3208 by Pasco (Bluetooth)
SenseCAP Wireless CO2 Sensor by Seeed
Studio (LoRa)

During CA storage/transport:
same as for oxygen
Climacteric fruit

[6,21,75,76]

Shock/
vibration MEMS accelerometer Yes

SentriusTM BT510 LairdTM

Connectivity (Bluetooth)
BeanDevice®WIFI|Wilow® AX-3D by
BeanAir (Wi-Fi)
BeanDevice®WIFI|Wilow® AX-3DS by
BeanAir (Wi-Fi)

All commodities, particularly for:
berry fruit, pineapples, cherries,
tomatoes, mushrooms,
courgettes, bananas

[21,59,60,62,77]
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4. Wireless Communication Technologies for IoT-Enabled Data Transmission

A key advantage of ambient parameter monitoring with IoT technology is that the
gathered data can be transmitted and processed in real-time, so that actions can be taken
accordingly [78]. In the context of IoT architecture, this is done via the network layer [10,12].
It transmits data that is collected by the device layer (which includes sensors as described
in the previous section) using wired or wireless communication technologies [10]. This
review focuses on wireless communication technologies such as Bluetooth, RFID or cellular
communication, because they have multiple advantages over wired ones regarding cost,
size and flexibility [79]. The technologies mentioned here are described with a focus
on potential applications in fresh fruit and vegetable supply chains. More extensive
information can be found in Ruiz-Garcia et al. [79], Mekki et al. [80], Feng et al. [81] and
Cao et al. [82].

4.1. Near-Field Communication, Radio Frequency Identification, Zigbee and Bluetooth

The technologies Near-Field Communication (NFC), Radio Frequency Identification
(RFID), Zigbee and Bluetooth operate in short range data transmission with transmission
distances from a few centimeters up to a few hundred meters and use unlicensed frequency
bands [79–81,83]. NFC uses the frequency band of 13.56 MHz and provides the shortest
transmission range with up to 10 cm [83]. Important advantages of this technology are
its low costs, international standardization and easy integration into existing processes
because NFC tags are readable with almost every smartphone [82]. An interesting aspect
is the possibility of using energy harvesting to power passive NFC tags, making them
independent from a battery and more sustainable [82]. Zigbee and Bluetooth enable data
transmission over a range of up to 100 m [81,82]. Both are technologies with relatively low
costs and low power consumption [81]. On the one hand, Zigbee can be preferred over
Bluetooth when a large number of sensor devices should be connected, or a flexible network
structure is needed [84]. On the other hand, Bluetooth can outperform Zigbee regarding
energy efficiency, especially when the newest Bluetooth Low-Energy (BLE) standard is
used [83]. Low-cost and low-power communication are also characteristics of RFID, when
passive or semi-passive tags are used. These tags send their data only by reflecting or
modulating the signal coming from the reader, although active tags have their own battery
which enables a stronger signal and a larger range [79]. For passive and semi-passive
tags, the data transmission range is limited to 10 m, and for active tags, up to 100 m is
possible [85]. In food supply chains, RFID applications were originally intended to replace
optical barcodes for traceability purposes [79,86]. However, interest has grown in further
applications of RFID tags because they are robust, able to work under harsh conditions and
quickly installed [87]. If sensors are integrated in RFID tags, they can enable automatic iden-
tification of goods, e.g., a pallet with fruit, combined with the ambient parameter history
profile of that pallet [87]. Drawbacks of RFID are readability problems when surrounded
by metal or products with high water content, and limited real-time data collection during
transport [85,87]. Furthermore, the lack of standardized global frequency use hinders
international RFID applications [85]. These are major disadvantages for applications in
fresh fruit and vegetable supply chains, which often operate internationally. The short data
transmission range of RFID, but also of NFC, Bluetooth and Zigbee is an additional limiting
factor that obstructs many IoT applications [80]. Therefore, various authors investigated the
combined use of short range and other wireless communication technologies to overcome
the disadvantage of short transmission distance. Some examples are presented at the end
of this section.

4.2. Wi-Fi and Cellular Communication

The transmission distance of Wi-Fi is up to 100 m, which is comparable to Zig-
bee [81,83]. Costs are relatively low because Wi-Fi uses an unlicensed band, but this
can also lead to interference with other devices sharing the same band [88,89]. Therefore,
the Quality of Service is not guaranteed for this technology [88]. However, it enables a
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faster data transmission speed than other short range communication technologies and
many facilities along a supply chain already have a Wi-Fi connection [89]. The high data
rate and therefore also higher power consumption can be unfavorable for direct connec-
tion to sensor devices that depend on battery power. The same is applicable for cellular
communication technologies such as 2G, 3G, 4G and 5G which enable a high data rate
and thus have a high power consumption [81]. IoT-enabled sensors for ambient parameter
monitoring require only a low data rate, shifting the preferences towards a communication
technology that is more energy efficient [80]. Nevertheless, applications that transmit larger
amounts of data can benefit from cellular communication because they are not duty cycle
limited [90]. An advantage of cellular networks is their large coverage for long distance
data transmission of several kilometers due to an already existing infrastructure [80,90].
Moreover, modern specifications such as 5G offer a very high Quality of Service and the
possibility of connecting a massive number of devices [88].

4.3. Low Power Wide Area Networks

An emerging communication technology for use in an IoT context are low power wide
area networks (LPWAN). LPWAN technologies provide low cost, low power, low data rate,
large coverage and long distance data transmission connections [81,91]. Technologies that
are often used are for example LoRa and narrowband (NB)-IoT. A detailed comparison
study is provided by Mekki et al. [80]. An important aspect is that LoRa uses an unlicensed
frequency band, and NB-IoT uses a licensed one. This results in a guaranteed Quality of
Service for NB-IoT because no duty cycle limits hinder the data throughput [80,90]. Key
advantages of LoRa are its lower costs for connecting end devices and no operating costs
for data transmission [80,91]. Additional smaller differences in for example the maximum
number of end devices, payload length and latency might be important to consider when
choosing the right technology for a certain application. For real-time parameter monitoring
in fresh fruit and vegetable supply chains, the coverage in suburban and rural areas can be
a critical factor. Although LoRa and NB-IoT are expected to further expand their coverage,
this aspect is important especially for internationally operating supply chains.

All communication technologies presented in this section have their specific strengths and
weaknesses. Generally, the biggest differences are in the range of data transmission, the data rate,
the power consumption, the standardization, the costs and the availability of guaranteed Quality
of Service. It is important to distinguish between technologies that use licensed and unlicensed
frequency bands for data transmission, because this has direct influence on the costs and possible
interference problems. Wireless communication is a crucial part of IoT applications and therefore
technologies will further develop (e.g., transformation to 6G) and new technologies will emerge.
Unfortunately, interoperability is limited and establishing corresponding standards remains
a challenge [83,91]. Additionally, various privacy concerns hinder actors from adopting these
technologies on a large scale [3,39,78,92].

Regarding IoT-based ambient parameter monitoring in fresh fruit and vegetable supply
chains, there are many approaches to overcome disadvantages of certain communication
technologies by combining two or more of them. Only some of the studies proposing an IoT-
based monitoring system also apply it in practice. Luo et al. [12] proposed a temperature
and RH tracking system that combines RFID, Zigbee and cellular communication tech-
nologies, but did not test it in a real supply chain. Musa and Vidyasankar [93] described
a similar approach using RFID and cellular networks for transmission of temperature,
RH, carbon dioxide concentration and light intensity data in a blackberry supply chain.
However, no validation was carried out in a real environment. Ou et al. [94] developed a
system using NFC connection to a smartphone for monitoring temperature and RH during
transport, but also no testing scenario was described. An example of an application in a
real supply chain provided by Badia-Melis et al. [13] used RFID tags and a wireless sensor
network based on Zigbee to monitor temperature and RH in commercial fruit storage
warehouses. Data transmission was possible even across isolating doors [13]. More than
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98% of the data packages were transmitted successfully, but they concluded that the large
amount of RFID tags used was only practical in a testing scenario [13].

A study by Ruiz-Garcia et al. [95] investigated the application of a Zigbee-based
monitoring system inside a truck. It was observed that some sensor motes were not able to
transmit any data due to absorption of the signal, depending on their position inside the
truck. Regarding temperature measurements, they found that, on average, the temperature
was outside the recommended level for 98% of the time [95].

Another application can be found in Zou et al. [96], who proposed a combination
of RFID and Wi-Fi or cellular networks and used it in a supply chain for sweet melons
from Brazil to Sweden to monitor temperature, RH, oxygen concentration, carbon dioxide
concentration, and vibration or shock. They found that the dense packing of products inside
the container lengthened the cooling time until the desired temperature was reached [96].
Furthermore, they measured critical CO2 concentrations at different handling steps, which
could have a negative effect on product quality [96].

Zhu et al. [97] developed and evaluated a monitoring system that uses RFID and
cellular communication for tracking temperature, RH, vibration, O2, CO2, and ethylene
in a fresh garlic scape supply chain. They were able to monitor the variability of these
parameters during different supply chain steps [97]. Moreover, they state that the system
enhanced the performance of the quality-relevant ambient parameters, resulting in a quality
loss decrease from 20–30% to 15% [97]. The market price per kg of product increased by
more than double. Still they discovered inefficiencies in their monitoring system that could
be improved, for example regarding data quality, energy costs or adaptability to supply
chain processes [97].

Some more examples of application studies are summarized in Table 2, together with
an overview of the most important characteristics of the communication technologies as
described above.

Table 2. Overview of advantages, disadvantages and example applications of wireless communication
technologies in the context of parameter monitoring in fresh fruit and vegetable supply chains.

Communication Technology Characteristics Studies Including Examples of
Applications References

NFC
Costs
Power consumption
Transmission range
Frequency
Standardization
Additional aspects

Low
Low
Very short (up to 10 cm)
Unlicensed, 13.56 MHz
Standard ECMA- 340,
ISO/IEC 18092
Easy integration
(smartphone readable)

Tracking of temperature information at
different process steps (test was carried out
in a meat supply chain, but concept is
applicable to other products)

[82,98,99]

RFID
Costs

Power consumption

Transmission range
Frequency

Standardization
Additional aspects

Low (passive/semi-passive tags)
High (active tags)
Low (passive/semi-passive
tags)High (active tags)
Short (up to 100 m)
Unlicensed, 125–148 KHz (LF);
13.56 MHz (HF), 433 MHz,
866–930 MHz (UHF), 2.45 GHz,
5.8 GHz (Microwave)
Lack of uniform global standards
Readability problems for UHF
(e.g., metal, high water
environment)

Monitoring of temperature, RH, vibration,
O2, CO2, ethylene in fresh garlic scape
supply chain (in combination with
cellular technology)
Monitoring of temperature and RH in
commercial fruit storage warehouses (in
combination with ZigBee)
Monitoring of temperature, RH, O2, CO2,
vibration/shock in sweet melon supply
chain (in combination with cellular
technology or Wi-Fi)
Monitoring of temperature in kiwifruit
supply chain (in combination with
cellular technology)

[10,13,85,96,96,97,100–103]
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Table 2. Cont.

Communication Technology Characteristics Studies Including Examples of
Applications References

ZigBee
Costs
Power consumption
Transmission range
Frequency
Standardization

Low
Low
Short (up to 100 m)
Unlicensed, 868/915 MHz;
2.4 GHz
Standard 802.15.4

Monitoring of temperature and RH in
commercial fruit storage warehouses (in
combination with RFID)
Monitoring of temperature, RH and
vibration during truck transport of lettuce

[13,81,83,90,95]

Bluetooth
Costs
Power consumption
Transmission range
Frequency
Standardization
Additional aspects

Low
Low
Short (10–100 m)
Unlicensed, 2.4 GHz
Standard 802.15.1
Easy integration
(smartphone readable)

Monitoring of temperature, RH and CO2
concentration in storage of oranges (in
combination with Wi-Fi)
Monitoring of ascorbic acid content in
fresh parsley

[81–83,104,105]

Wi-Fi
Costs
Power consumption
Transmission range
Frequency
Standardization
Additional aspects

Low
High (if sensors are connected
directly to Wi-Fi)
Short (up to 100 m)
Unlicensed, 2.4 GHz
Standard IEEE 802.11
Easy integration
(smartphone compatible)

Monitoring of temperature, RH, O2, CO2,
vibration/shock in sweet melon supply
chain (in combination with RFID)
Monitoring of temperature during land
transportation of iceberg lettuce

[81,83,96,106]

Cellular communication
Costs
Power consumption
Transmission range
Frequency
Standardization
Additional aspects

High
High (if sensors are connected
directly to
cellular communication)
Long (several km)
Licensed, 1.7–2.7 GHz (2G/3G4G);
3.4–3.6 GHz (5G)
Different standards, depending
on technology
Large coverage
Easy integration
(smartphone compatible)

Monitoring of temperature, RH, vibration,
O2, CO2, ethylene in fresh garlic scape
supply chain (in combination with RFID)
Monitoring of temperature, RH, O2, CO2,
vibration/shock in sweet melon supply
chain (in combination with RFID)
Monitoring of temperature in kiwifruit
supply chain (in combination with RFID)
Monitoring of temperature, RH and CO2 in
a simulated peaches and nectarine supply
chain (in combination with RFID)

[80,81,83,96,97,103,107–109]

LPWAN
Costs
Power consumption
Transmission range
Frequency
Standardization
Additional aspects

Low (operation in
unlicensed spectrum)
High (operation in
licensed spectrum)
Low
Long (several km)
Unlicensed and Licensed,
depending on technology
Different standards, depending
on technology
Coverage in suburban and rural
areas might be incomplete

Monitoring of temperature RH in tomato
greenhouses (LoRa in combination
with Wi-Fi)
Monitoring of temperature, RH and CO2
concentration in tomato greenhouse (LoRa)

[80,81,90,107,110,111]

5. Discussion

The rapid development in the field of IoT technologies facilitates wireless real-time
ambient parameter monitoring in fresh fruit and vegetable supply chains. This creates
possibilities for reducing the amount of products lost and wasted along the chain. Firstly,
an IoT-based monitoring system can be used for getting insight into the current product
status, performing weakness analysis on parameter profiles, and enhancing process control.
Secondly, the combination of a monitoring system with predictive food models enables
prediction of the remaining shelf life in each step of the chain on actual sensor data [112].
This approach facilitates optimization of storage and logistics [17,78,113]. For example,
instead of the conventionally used FIFO (first in first out) principle, the FEFO (first expired
first out) principle could be applied in warehouse management, which allows for shelf
life-driven distribution of products [17]. To realize this, shelf life models for respective
products are required [112,114]. If fresh fruit and vegetable supply chains should benefit
from the combined use of IoT-based sensors and dynamic shelf life, a range of specific and
accurate models is needed.

This is a challenging task, since fresh fruit and vegetables are a complex product group
with various quality and spoilage characteristics. It strongly depends on the product which
ambient parameters have most influence on the quality and hence should be monitored
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and controlled for achieving added value. Nevertheless, certain commonalities can be
identified. Quality loss and spoilage in fruit and vegetables are mainly driven by respiration,
transpiration, microbial decay, degradation of components and mechanical damage or
injury. Categorizations of products with similar storage requirements or ethylene sensitivity
are developed to facilitate multi-commodity transport and storage [18,115,116]. Clustering
approaches can deliver an important contribution to establish which ambient parameters
are most important to monitor for which products.

The complexity in choosing the relevant ambient parameters for each product is further
increased by a vast range of options for IoT technologies. Regarding the device layer, sensor
development is advanced, especially for monitoring of temperature and RH. Ready-to-
use devices or modules for prototype customization are cost-efficient and commercially
available on large scale. For the network layer, a variety of communication technologies
is available that offer fast and simple data transmission. Most important characteristics
include the data transmission range, the use of licensed or unlicensed spectrum, the
power consumption, the costs and the standardization. Selecting the right combination of
technologies is crucial for achieving added value with an IoT-based monitoring system.
It is disadvantageous that there are currently no guidelines for supply chain actors who
want to implement such a system on how to decide on appropriate technologies for their
specific use.

Additionally, other factors besides product-related ones influence the choices of whether
and which sensor and communication technology should be used. Particularly supply chain-
and process-related aspects are important: the mode of transport affects the type and number
of process steps involved and consequently the ambient conditions the product is exposed
to. Land transport is most used for fruit and vegetables with distances up to thousands of
kilometers [39]. Maintaining optimal conditions, especially temperature, is difficult during
such long transportation. Studies show that the temperature conditions can vary significantly
within a truck and even within a pallet, depending, among others, on the age and design
of the transport/storage unit or the packaging of the products [3,117–119]. Same applies for
air transport, which involves numerous handling steps that make the cold chain vulnerable
to interruptions [39]. For products being exported to remote markets, sea transport in reefer
containers is a standard part of the supply chain [120]. Interruption of the cold chain can
occur frequently during container handling at the port terminals [120]. Additionally, real-time
parameter monitoring during sea transport can be difficult because overseas connectivity is
often based on expensive satellite communication [6]. These aspects lead to the problem that
process-related requirements of implementing IoT sensor technology need to be established
newly for every specific supply chain. This includes, for example, requirements regarding the
placement of sensors, the minimum number of sensors and the measurement frequency.

The complexity of international, multi-actor supply chains of fresh fruit and vegetables
poses further challenges. For highest benefits regarding quality retention and reduction of
product losses, a monitoring system should not only cover part of the supply chain but should
be implemented cross-chain. Until now, operators in the supply chain are often reluctant
to share corresponding data along the chain due to various privacy concerns [3,39,79,92].
However, information exchange is a basic requirement to successfully implement new quality-
oriented concepts. Increased awareness among the actors regarding the (also monetary)
advantages of a cross-chain monitoring system could improve this [39], as well as further
information about the use of modern sensor and communication technology. It is important to
understand which requirements different supply chain actors pose on an IoT-based monitoring
system and the corresponding data platform, e.g., regarding data exchange, data storage,
applications and interfaces.

Even if actors are willing to share the information, simple data exchange along the
chain is not always possible. Standards regarding data formats, data exchange and technical
equipment are missing or mismatching [78,91,120,121]. Providers have generally been more
interested in selling their proprietary solution than in investing in open standards [91,117].
Compatibility and integration of the multiple heterogenic devices and communication
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technologies are a big challenge for IoT-based systems [10]. This hinders efficient infor-
mation exchange and data processing for quality and shelf life-related applications. The
rise of blockchain-based solutions integrated into agri-food supply chains has potential
to mitigate those aspects. Increased supply chain vulnerability and resulting security
concerns of actors can be addressed by the possibility of immutable data exchange and
privacy preservation [122–124]. Regarding interoperability, blockchain-based solutions can
facilitate automated information sharing between actors because all actors are required to
use the same data structure or standard [122,125]. Furthermore, combining IoT technologies
with blockchain includes improved traceability, enhanced collaboration between actors,
operational efficiencies and integration between systems of different actors [122,123,125].

Regarding monetary aspects, the costs and benefits of an IoT-based real-time monitor-
ing system can be distributed unequally along the chain. Jedermann et al. [117] describe
that the actor paying for installation and hardware costs is not necessarily the one who
benefits most from the system. This can be seen as critical if missing concepts for shar-
ing the costs and benefits along the supply chains might enhance already existing power
asymmetries between actors.

All these factors illustrate that the application of IoT-based sensor technology in
fresh fruit and vegetables’ supply chains is influenced by many aspects and faces specific
challenges. Accordingly, implementation of comprehensive real-time monitoring systems
including subsequent data processing in fresh fruit and vegetable supply chains is still
rare. Only few studies apply an extensive system in practice [97,103,106,117]. Establishing
a system that is genuinely scalable and easily transferable to other fruit and vegetables or
supply chains remains an unsolved challenge. Until now, solutions have to be customized to
each supply chain, because generic concepts for implementation are missing. This includes
guidelines on the choice of technology and knowledge of process-related, technical and
actor-related requirements, as discussed above. For exploitation of the full potential of
IoT-based ambient parameter monitoring systems, these knowledge gaps need to be filled.

Large scale implementation of IoT-based monitoring could also facilitate the appli-
cation of other quality-related technologies. Solutions are in development for directly
measuring product quality parameters. These include physical and chemical characteristics
such as the soluble solids content, dry matter or firmness [126]. Emerging technologies in
this field are near-infrared (NIR) spectroscopy, multi- and hyperspectral imaging, fresh-
ness sensors and E-noses which have already been studied for various products [126–130].
Direct measurement of quality parameters at specific processing steps can help in deter-
mining the optimum harvest time, in sorting of products to more uniform batches and in
supplying additional information on ripening status and shelf life [129,130]. Possibly, these
technologies could also routinely be used after an ambient parameter monitoring system
noticed a deviation, e.g., a temperature abuse, for determining certain quality parameters
and making logistic decisions. Further research on integration of these technologies with
an ambient parameter monitoring system could help to explore synergies and benefits
regarding quality retention and food loss prevention.

6. Conclusions

The ongoing progress in the field of IoT creates new possibilities in the fresh fruit and
vegetable sector. Suitable sensor and communication technologies for real-time monitoring
of ambient parameters relevant for quality and shelf life are available or in development.
Although fresh fruit and vegetables have various quality characteristics, many possible
applications for adding value to supply chains were identified. For managerial decision-
making, the improved transparency about the quality status of products can be used for
optimized logistic control. Decisions can be based on a solid data basis and instead of
rejecting batches with suboptimal quality, alternative distribution strategies or channels
can be considered. From a dietary perspective, a real-time monitoring system enables
products with high nutritional value, because the ambient conditions during storage and
transport are directly connected to the preservation of nutrients. Additionally, consistently
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high product qualities at the point of sale can benefit food marketing. Several studies show
the promising potential of applications for optimized product qualities and reductions
in products lost and wasted along the supply chain. However, there is still a lack of
studies implementing a comprehensive monitoring system including device, network and
application layers in a real scenario. The complexity and heterogeneity of fresh produce and
the supply chains as well as technical challenges hinder implementation. Until now, there
is no “one-size-fits-all” solution. Therefore, further knowledge on supply chain-specific
and process-related factors is needed, as well as generic concepts for implementing an
IoT-enabled monitoring system for fresh fruit and vegetables.
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