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Abstract: Breast cancer is the most common female malignancy in Taiwan, while conventional clinical
and pathological factors fail to provide full explanation for prognostic heterogeneity. The aim of the
study was to evaluate the feasibility of targeted sequencing combined with concurrent genes signature
to identify somatic mutations with clinical significance. The extended concurrent genes signature
was based on the coherent patterns between genomic and transcriptional alterations. Targeted
sequencing of 61 Taiwanese breast cancers revealed 1036 variants, including 76 pathogenic and 545
likely pathogenic variants based on the ACMG classification. The most frequently mutated genes
were NOTCH, BRCA1, AR, ERBB2, FANCA, ATM, and BRCA2 and the most common pathogenic
deletions were FGFR1, ATM, and WT1, while BRCA1 (rs1799965), FGFR2 (missense), and BRCA1
(rs1799949) were recurrent pathogenic SNPs. In addition, 38 breast cancers were predicted into
12 high-risk and 26 low-risk cases based on the extended concurrent genes signature, while the
pathogenic PIK3CA variant (rs121913279) was significantly mutated between groups. Two deleterious
SH3GLB2 mutations were further revealed by multivariate Cox’s regression (hazard ratios: 29.4 and
16.1). In addition, we identified several significantly mutated or pathogenic variants associated with
differentially expressed signature genes. The feasibility of targeted sequencing in combination with
concurrent genes risk stratification was ascertained. Future study to validate clinical applicability
and evaluate potential actionability for Taiwanese breast cancers should be initiated.

Keywords: concurrent genes; breast cancer; targeted sequencing; actionable mutations; Taiwan;
risk stratification

1. Introduction

Breast cancer is the most common female malignancy in Taiwan. Treatment outcomes
have improved enormously in the past decade, mainly with the wide spread of screening
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mammography and efficient systemic therapies [1–3]. Currently adjuvant therapies for
breast cancer are determined based on staging and pathological factors such as estrogen
receptor (ER) and human epidermal growth factor receptor II (HER2) status. These factors
not only guide treatment selection but also predict therapeutic responsiveness.

These clinical and pathological factors, however, do not provide full explanation of
prognostic heterogeneity within each breast cancer subgroup [4]. For example, one-fourth
of HER2 overexpressed breast tumors eventually develop resistance to trastuzumab, a
humanized monoclonal antibody to HER2 protein [5]. Sanger sequencing, gene expres-
sion (GE), and single-nucleotide polymorphism (SNP) microarrays have surveyed cancer
genomes, including sequence variants, DNA copy number variation (CNV), loss of het-
erozygosity (LOH), and whole transcriptome, leading to the discovery of several molecular
taxonomies, many of which have shown prognostic ability [6,7]. The Cancer Genome
Atlas Network (TCGA) demonstrated that GE-based intrinsic subtypes displayed alter-
ations across tumor DNA, DNA methylation, messenger RNA (mRNA), microRNA, and
protein expression hierarchy [8]. Breast cancer is heterogeneous in terms of molecular
aberrations. Oncogenesis may originate from single-nucleotide variations (SNVs) and
chromosomal structure abnormalities such as CNVs and may present phenotypically as
GE and protein expression profiles [9]. However, the relationships across DNA sequences,
mRNA transcription, and protein translation are not always linear and are intervened
through complex regulatory mechanisms. It is speculated that cancer results from the
progressive accumulation of genetic aberrations. Amplified regions contain dominant
oncogenes, whereas deleted regions harbor tumor suppressor genes.

It is not a coincidence that our published breast cancer concurrent genes signature
was based on genes with coherent patterns between chromosomal and transcriptional
variations [10]. Concurrent genes were identified through genome-wide characterization of
Taiwanese breast cancers by integrating comparative genomic hybridization (CGH) and GE
microarrays. Genes with concurrent gains and losses from the same subject may be better
candidates to compose prognostic biomarkers. A breast cancer risk predictive model was
built with distinct survival patterns observed between high- and low-risk group [11]. The
risk score was significantly higher for breast cancer patients with recurrence, metastasis, or
mortality than those remained disease-free (0.241 versus 0, p < 0.001).

The massive parallel sequencing, or next-generation sequencing (NGS), is advocated
for parallel sequencing of whole genome, exome, or transcriptome with enhanced accuracy
and efficiency without a priori sequence knowledge [12]. On the other hand, targeted
sequencing is especially suitable for solid tumors to identify somatic mutations associated
with therapeutic sensitivity or resistance. Most targeted agents, whether in development
or post-marketing, are portrayed to act against proteins and/or pathways commonly per-
turbed by tumor genetic changes. Thus, there remains an urgent need to identify actionable
mutations for wide clinical application of personalized and precision medicine [13].

The aim of the study was to perform NGS in combination with breast cancer concurrent
genes signature. Somatic mutations with clinical significance were identified. Accurate
risk assessment is essential for breast cancer effective treatment. This study evaluated the
feasibility of integrating targeted sequencing with gene expression-based risk stratification.
Clinically actionable mutations and predicted risk groups were evaluated for enrolled
Taiwanese breast cancers.

2. Materials and Methods
2.1. Overall Aims

We evaluated the feasibility of integrating targeted sequencing and the extended
concurrent genes signature [10]. Enrolled subjects underwent targeted sequencing of ac-
tionable mutations, and those who were also experimented with GE assays were predicted
into high- and low-risk group by the extended concurrent genes signature. The variants of
the whole cohort, as well as the predicted high- and low-risk groups, were reported and
compared. A schematic flowchart of the study is delineated in Figure 1. The study protocol
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was reviewed and approved by IRB of Cathay General Hospital with written informed
consent obtained from all participants. Significantly mutated genes between the high-
and low-risk breast cancers were revealed, and the interaction between tumor genomics
and transcriptome was deciphered through identifying variants-associated differentially
expressed signature genes.

Figure 1. Schematic flow chart of the study (BC: Breast cancer; NGS: Next-generation sequencing). Enrolled subjects
underwent targeted sequencing, and those who were also experimented with extended concurrent genes signature were
predicted into high- and low-risk group.

2.1.1. Breast Cancer Sample Recruitment

Breast cancer samples were collected during surgery, snapped frozen in liquid nitro-
gen, and stored under −80 ◦C between 2010 and 2014. Frozen samples were dissected
into slices of 1–2 mm thickness, and more than 70% of cancerous content was required.
Clinical information and follow-up status were ascertained from Cancer Registry through
subjects’ ID. Survival data were censored on 30 November 2019. Regarding pathological
features, ER positivity was defined as at least 10% of nuclei staining positive with im-
munohistochemistry (IHC) assay, and patients with low ER positivity (1–9% of nuclei with
positive staining) were not recruited. For HER2 status, the ASCO/CAP guidelines were
adopted. IHC 3+ and IHC 2+ with fluorescence in-situ hybridization (FISH) amplification
were considered HER2 overexpression. All pathological diagnoses were ascertained by a
qualified pathologist (CYL).

2.1.2. Nucleic Acid Extraction for GE Microarray and NanoString nCounter

Nucleic acid extracted from fresh samples was used for microarray experiments. Total
RNA was extracted from frozen specimens by TRIzol reagent (Invitrogen, Carlsbad, CA,
USA). Purification of RNA was performed with the RNeasy Mini Kit (Qiagen, Germantown,
MD, USA) according to manufacturer’s instructions. RNA integration was checked by gel
electrophoresis, while 2 bands of 18s and 28s represented satisfactory RNA quality.
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Additional samples underwent NanoString nCounter (NanoString Technologies, Inc.,
Seattle, WA, USA) as described elsewhere [14]. In brief, total RNA was isolated from
formalin-fixed, paraffin-embedded (FFPE) sections. RNA was quantified by the Qubit RNA
HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA), with quantity/quality deter-
mined by NanoDrop spectrophotometers (Thermo Fisher Scientific) using a wavelength
spectrum of 220—320 nm, evaluating the 260/280 ratio, and by separation on an Agilent
BioAnalyzer 2100 (Agilent Technologies, Inc., Santa Clara, CA, USA).

2.1.3. Nucleic Acid Extraction for Targeted Sequencing

Archived pathological slides were retrieved from Department of Pathology. Paraffin
blocks with cancer cells composing less than 70% of the section area were excluded,
and paraffin was removed by xylene extraction then by ethanol washes. Tumor DNA
was extracted from 10-µm sections using a High Pure FFPET DNA Isolation Kit (Roche
Applied Science, Indianapolis, IN, USA) with contaminated RNA removed by RNase.
DNA purity was verified by the Bioanalyzer, and DNA quality control was indicated by
OD260/280 > 1.8. The amount of extracted DNA was quantified by the NanoDrop ND-1000
Spectrophotometer (Wilmington, DE, USA).

2.1.4. Extended Concurrent Genes Signature

Our previous study had identified concurrent genes signature, highlighting the impli-
cation between CNV and GE for Han Chinese breast cancers [10]. An updated version of
the extended concurrent genes signature has been described elsewhere, with more samples
and public domain GE datasets incorporated to enhance generalizability and prognostica-
tion [14,15]. A brief description is given here. First, 31 CGH and 83 GE microarrays were
performed, with 29 breast cancers assayed from both platforms. Potential targets were
revealed by Genomic Identification of Significant Targets in Cancer (GISTIC) from CGH
arrays [16]. Concurrent genes and genes with significant GISTIC scores were used to derive
signatures. Signatures obtained consensus from leading-edge analysis across all studies,
and the supervised partial least square (PLS) regression predictive model of disease-free
survival was constructed [17].

2.1.5. Actionable Genes for Targeted Sequencing

Candidate actionable genes for targeted sequencing were determined in a priori
manner with the requirement of having been reported as breast cancer driver mutations,
coinciding with known or potential therapeutic agents, or being considered actionable
through bioinformatics analysis.

2.1.6. Library Preparation and NGS Experiments

The Agilent HaloPlex Target Enrichment System (Agilent Technologies, Inc.) for
Illumina Hiseq (Illumina, Inc., San Diego, CA, USA) paired-end sequencing was used
for library preparation. Tumor DNA was digested in 8 different restriction reactions
(225 ng DNA/reaction), with each containing 2 restriction enzymes. All restriction reaction
results were validated using the Agilent 2200 TapeStation (Agilent Technologies Inc.) with
High Sensitivity D1K ScreenTape (Agilent Technologies Inc.). The collection of DNA
restriction fragments was hybridized to the HaloPlex probe capture library (54 ◦C, 3 h).
The circularized target DNA-HaloPlex probe hybrids were captured on streptavidin beads
(HaloPlex Magnetic Beads, Agilent Technologies Inc.) and added DNA ligase to close nicks
in the hybrids. Captured DNA was eluted with NaOH, and the cleared supernatant was
transferred 20 µL from each tube to a PCR Master Mix tube held on ice. Target libraries were
amplified through 22 cycles of PCR, and the PCR product was purified using Agencourt
AMPure XP beads (Beckman Coulter, Brea, CA, USA). Finally, all samples were sequenced
on Illumina NextSeq500 (Illumina, Inc.) using 150PE protocol.
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2.1.7. Variant Annotation and Statistical Analysis

The sequences generated from NGS went through a filtering process to obtain qualified
reads. Trimmomatics was implemented to trim or remove the reads according to the quality
score [18]. The qualified reads data then went through a genomic alignment against hg19
using BWA to obtain basic sequence information [19].

For further interpretation of NGS results, variants calling and annotation were per-
formed by SureCall (Agilent Technologies Inc.), Partek Flow (Partek Inc, St. Louis, MO,
USA), and Ion Reporter (Thermo Fisher Scientific) for visualization. All statistical analyses
were performed using SAS statistical software (SAS Inc., Cary, NC, USA). Continuous vari-
ables were summarized as the number of observations, mean, standard deviation, and 95%
confidence interval (CI). Categorical variables were presented as counts and percentages.
Unless otherwise specified, all statistical assessments were performed at the significance
level of 0.05.

2.1.8. Data Availability

Raw data of individual targeted sequencing in fastq format will be deposited in NCBI
Sequence Read Archive (SRA, submitted BioProject: PRJNA731998) and will be publicly
available once the manuscript is accepted.

3. Results
3.1. Actionable Genes for Targeted Sequencing

The targeted sequencing panel was based and modified from the ClearSeq Cancer
(Agilent Technologies Inc.), which was a target enrichment panel designed specifically for
known genetic anomalies and cancer hotspots (Table S1). The original application targeted
a set of genes found to be associated with a broad range of cancer types, functionally
annotated with dbSNP, as well as therapeutic options with the COSMIC database as the
primary reference [20]. ClearSeq Cancer was also compatible with HaloPlex and the
HaloPlex HS Target Enrichment System (Agilent Technologies Inc.). In the current version,
there were 56 targets (genes) comprising 990 regions with a total size of 173.999 kbp,
resulting in a coverage rate of 99.75%.

3.2. Breast Cancers Assayed for Targeted Sequencing

In total, 61 breast cancers underwent NGS (Table 1). Among them, 38 breast can-
cers were also assayed with Affymetrix microarrays (Thermo Fisher Scientific, n = 33)
or NanoString nCounter (NanoString Technologies Inc., n = 5) and were predicted into
12 high-risk and 26 low-risk cases based on the extended concurrent genes signature [14,15].
The median follow-up was 3.4 years (range: 0.1 to 11.6 years), and 11 relapses and 10 all-
cause mortalities (including 6 breast cancer-specific mortalities) were observed during this
period. Figure 2 showed overall survival between the predicted high- and low-risk groups
(log-rank test: p = 0.06).

Table 1. Clinical features of 61 Taiwanese breast cancers with targeted sequencing.

Sample ID Follow-Up
Time (Year)

Relapse
Status *

Vital
Status * Age Stage Predicted Risk

Group HR HER2 Grade

#36 0.9 0 1 68 0 1 0 3
#38 0.7 0 1 55 1A 1 0 1
#46 4.8 1 1 47 3A High 1 1 3
#51 1.3 0 0 58 4 High 0 1 3
#52 6.8 0 1 55 3C Low 1 1 3
#53 6.7 0 1 34 1 Low 1 1 2
#55 5.0 0 1 47 0 High 1 0 2
#57 6.7 0 1 57 1 Low 1 0 2
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Table 1. Cont.

Sample ID Follow-Up
Time (Year)

Relapse
Status *

Vital
Status * Age Stage Predicted Risk

Group HR HER2 Grade

#61 0.8 0 1 48 3A Low 1 0 3
#62 3.9 1 0 56 3A 1 1 3
#63 0.8 0 1 55 2B 1 0 3
#64 0.9 0 1 61 2A Low 1 0 2
#65 0.7 1 1 67 3C Low 1 0 2
#511 6.1 0 1 38 2A Low 0 1 2
#513 6.0 0 1 55 1 Low 0 1 2
#514 5.8 0 1 44 0 Low 1 0 3
#515 5.7 0 1 47 2B High 1 1 3
#517 4.2 0 1 52 0 Low 0 1 3
#518 4.5 0 1 48 1 Low 1 0 2
#519 1.3 0 1 42 2B Low 0 1 3
#520 7.4 0 0 74 1 High 1 0 3
#521 1.9 0 0 44 2A High 0 0 3
#522 4.8 1 0 39 4 High 1 0 2
#523 5.3 0 1 53 2B Low 1 1 2
#31 1.0 0 1 45 2B 1 0 3
#32 1.0 1 0 46 4 High 0 1 3
#33 11.6 1 1 50 3B High 1 0 3
#35 0.9 0 1 70 2A 1 0 2
#37 0.8 0 1 51 1A 1 1 1
#39 0.8 0 1 44 1A 1 0 2
#41 5.8 0 1 50 1 Low 1 0 3
#42 1.6 1 0 50 4 Low 0 1 3
#43 7.6 0 1 33 2B Low 1 0 1
#44 7.3 0 1 54 3A Low 0 0 3
#45 5.9 1 0 69 2B Low 0 0 2
#47 3.4 1 0 42 2A Low 1 0 3
#48 3.8 0 0 57 2B High 0 1 3
#49 1.2 1 1 57 999 Low 1 0 2
#54 6.8 0 1 43 2A High 0 0 3
#56 6.6 0 1 46 2B High 0 1 3
#58 6.8 0 1 45 2A Low 0 0 3
#59 6.6 0 1 46 1 Low 1 1 2
#310 0.8 0 1 59 1A 0 0 3
#410 0.8 0 1 59 1A Low 0 0 3
#411 0.8 0 1 50 3C Low 1 1 3
#412 0.9 0 1 64 1A 0 1 3
#510 6.3 0 1 69 2A Low 1 1 2
#512 6.1 1 1 61 2A Low 1 0 2
#13 1.0 0 1 47 1A 1 0 2
#16 0.8 0 1 46 0 1 0 2
#19 0.3 0 1 56 1A 1 0 1
#18 0.9 0 1 45 2A 1 0 2
#14 5.3 0 1 39 2A 0 0 3
#12 0.1 0 1 62 3C 1 1 2
#110 6.0 0 1 63 0 1 0 1
#11 1.0 0 1 37 1A 1 0 1
#21 0.8 0 1 58 3A 1 0 1
#22 0.9 0 1 46 1A 0 0 3
#23 0.8 0 1 60 2A 1 0 1
#24 0.9 0 1 88 1A 1 0 2
#25 0.9 0 1 50 2B 0 0 3

* Relapse status (0: Disease-free, 1: Relapse), vital status (0: Dead, 1: Alive).
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Figure 2. Overall survival of 12 high- and 26 low-risk Taiwanese breast cancers predicted by the
concurrent genes signature who also underwent targeted sequencing. X-axis: Follow-up time in
years. Y-axis: survival probability.

Post-alignment QA/QC, including alignments breakdowns, average alignments per
read, and average base quality per position and read, were checked and satisfactory (data
not shown). Targeted sequencing of 61 Taiwanese breast cancers revealed 1036 variants,
including 76 pathogenic and 545 likely pathogenic variants based on the ACMG (American
College of Medical Genetics and Genomics) classification [21]. The most frequently im-
pacted genes were NOTCH, BRCA1, AR, ERBB2, FANCA, ATM, and BRCA2, harboring 57,
36, 30, 27, 27, 26, and 26 variants, respectively. The most common pathogenic deletions were
FGFR1, ATM, and WT1 (47, 47, and 37 patients, respectively), while BRCA1 (rs1799965, non-
sense mutation, p.C197C), FGFR2 (missense mutation), and BRCA1 (rs1799949, nonsense
mutation, p.S694S) were the most common pathogenic SNPs (44, 35, and 11 patients, respec-
tively, Table S2). Under stringent pathogenicity defined by dbSNP database, whole cohort
analysis showed that the most common mutations were ERBB2 rs28933370 (p.N857S),
PIK3CA rs121913279 (p.H1047L/R/P), and BRCA2 deletion (p.I605fs*9), impacting 46, 8,
and 6 patients, respectively [22] (Table 2).

Table 2. Pathogenic variants identified by dbSNP database.

Gene refSNP ID Type Function Class Cosmic Amino Acid Syntax Impacted Patients

ERBB2 rs28933370 SNP MISSENSE p.N857S 46
PIK3CA rs121913279 SNP MISSENSE p.H1047L,p.H1047R,p.H1047P 8
BRCA2 Deletion p.I605fs*9 6

TP53 rs11540652 SNP MISSENSE p.R248Q,p.R248L,p.R248P,p.R155Q,
p.R155P,p.R155L 3

CTNNB1 SNP NONSENSE 1
FGFR3 rs121913112 SNP MISSENSE 1
CSF1R SNP MISSENSE 1

JAK2 rs77375493 SNP MISSENSE p.V617F,p.V617I,p.V617_C618
> FR 1

HRAS rs104894228 SNP MISSENSE p.G13R,p.G13S,p.G13C 1
TP53 SNP NONSENSE p.R306* 1

TP53 rs28934578 SNP MISSENSE p.R175H,p.R175L,p.R43H,p.R82H,
p.R82L,p.R175P,p.R43L 1

RUNX1 SNP MISSENSE p.H85N 1
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For subgroup analyses, variant impacts were color-coded using the associated score
values with the heat map of each IHC subtype reported in Figures 3–6. Default scores
are unknown: 0, synonymous: 1, missense: 2, non-frameshift block substitution: 3, non-
frameshift insertion/deletion: 4, nonsense: 5, stop-loss: 6, frameshift block substitu-
tion/insertion/deletion: 7 and splice variant: 8. For 31 hormone receptor (HR)+/HER2−
breast cancers, there were two clusters: One with the co-occurrence of ATM, FGFR1, and WT1
frameshift mutations, and the other with JAK3 splice site and FGFR2 frameshift mutations
(Figure 3). The mutational profile of HR+/HER2+ displayed a major cluster of ATM, FGFR1,
and WT1 frameshift mutations (n = 10 for ATM1, FGFR1 and n = 7 for WT1, Figure 4). The
heatmaps of the 10 HR−/HER2+ breast cancers were homogeneous (Figure 5), while for
9 HR-/HER2− cases, a major cluster with ATM, FGFR1, and WT1 frameshift mutations
(n = 6 for ATM1, FGFR1 and n = 5 for WT1, Figure 6) and a minor one with JAK3 splice site
mutations were prominent (n = 3, Figure 6). Supplementary File S1 contained a MAF file
with all indicated variants.

Figure 3. Heat map for 31 HR+/HER2− subtype breast cancers. The variants impacted for 31
HR+/HER2− breast cancers were INDELs. Frameshift: ATM, FGFR1(20), WT1(16), PDGFRA(10),
PIK3R1(8), FANCA(1), DAB2IP(7), FGFR2(9), BRCA2(5), ERBB2(3), FANCG(1), RB1, ALK(2), AKT1(5),
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NOTCH1(3), SMO, RET(1), FGFR3(2), STK11(5), BSG, CSF1R, CDKN2A(1), ERBB4(6), AR(4),
RUNX1(7), IDH2(5), NRAS(3); non-frameshift: FGFR1(1), NOTCH1(1), RET(1), ABL1(9), CDKN2A(1),
AR(16), HRAS(1); SNPs splice: BRCA1(20), JAK3(9); missense: SMAD4, MAP2K4(1), ATM(7),
FGFR1, WT1(2), BRCA(8), PDGFRA(5), PIK3R1(6), EGFR(28), FANCA(28), DAB2IP(21), FGFR2(18),
ERBB2(25), FANCG(27), MET(26), RB1(23), JAK2(24), FLT3(22), ALK(21), PIK3CA(22), DAB2(20), KIT,
IDH1(19), TP53(18), SRC(2), KRAS(1), NOTCH1(5), SMO, JAK3(2), RET(7), FGFR3(2), STK11(6),
CTNNB1(3), BSG(5), CSF1R(13), ABL1(10), MAP2K2(4) CDKN2A(12), FANCA(13), ERBB4(4),
RUNX1(3), SH3GLB2(12), IHD2(1), HF1A(6), NRAS(1), FANCF(1), RUNX3(4), VHL(2), MAP2K1(1),
NPM1(1); and nonsense: ATM(2), ERBB2(1), MET(1), BRAF(2), CTNNB1(1), PTEN(2).

Figure 4. Heat map for 11 HR+/HER2+ subtype breast cancer. The variants impacted for 11
HR+/HER2+ breast cancers were INDELs. Frameshift: ATM, FGFR1(10), WT1(7), RUNX1(5),
PDGFRA, PIK3R1, NRAS(3), DAB2IP, FGFR2, NOTCH1, AKT1, BSG, ALK, IDH2, AR, ERBB4(1); non-
frameshift: ABL1(1), RET(1), AR(2); SNPs splice: BRCA1 (9), JAK3(1); stop loss: SMAD4(1); missense:
ATM, FGFR1, BRCA1, PDGFRA(2), DAB2, RB1, DH1(9), BRCA2, FANCG, FANCA, EGFR, MET(10),
DAB2IP(9), FGFR2(8), PIK3CA, JAK2, ERBB2 (9), ABL1(7), CDK2NA, KIT(8), FANCC, TP53(7), RET,
SMO, FGFR3, NOTCH1(1), JAK3, BSG(2), STK11(1), ALK(3), SH3GLB2, FLT3(5), MAP2K2, CSF1R(1),
HIF1A(2), NPM1(1).
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Figure 5. Heat map for 10 HR−/HER2+ subtype breast cancer. The variants impacted in 10 HR-
/HER2+ breast cancers were INDELs. Frameshift: BRCA2 (1), ATM, FGFR1(10), WT1 (7), PIK3R1 (4),
PDGFRA (3), RUNX1(3), NRAS(1); non-frameshift: CDKN2A (1), AR(4); SNPs splice: BRCA1 (10);
missense: ERBB2, FANCA, IDH1, DAB21P, FGFR2, MET, EGFR, RB1, FANCG, JAG2 (10), BRCA2 (9),
DAB2, KIT (8), CDKN2A, FLT3, SH3GLB2 (7), ABL1, FNACC, PIK3CA, TP53 (6), ALK (5), PDGFRA (3),
RET(1), CTNNB1(1), JAK3(2), BSG(1), CSF1R(3), FANCF(1).
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Figure 6. Heat map for 9 HR-/HER2- subtype breast cancer. The variants impacted in 9 HR-/HER2-
(TNBC) were INDELs: ERBB2 (frameshift: 1), DAB2IP (frameshift: 2), FGFR2 (frameshift: 3), BRCA2
(frameshift: 1), FANCA (frameshift: 1), IDH1 (frameshift: 1), ATM1 (frameshift: 6), FGFR1 (frameshift:
6), WT1 (frameshift: 5), PDGFRA (frameshift: 2), TP53 (frameshift: 1), SMO (frameshift: 1), STK11
(frameshift: 2), FGFR1 (frameshift: 1), NOTCH1 (frameshift: 1), PIK3R1 (frameshift: 1), IDH2
(frameshift: 2), AR (frameshift: 2, non-frameshift: 2), ERBB4 (missense: 2), RUNX1 (frameshift: 1),
HRAS (no-frameshift: 1), and SNVs: BRCA1 (splicesite_5: 6), TP53 (nonsense: 2, missense: 3), FGFR3
(missense: 1), NOTCH1 (missense: 1), AKT1 (missense: 1), CTNNB1 (missense: 1), RET (missense: 3),
JAK3 (splicesite_3: 3), KRAS (missense: 1), SRC (missense: 2), PIK3R1 (missense: 1), FLT3 (missense:
4), CSF1R (missense: 3), IDH2 (missense: 1), SH3GLB2 (missense:4), MAP2K2 (missense:2), ERBB4
(missense:1), RUNX1 (missense: 1), HIF1A (missense: 2), VHL (missense: 2), SMAD4 (missense: 1),
and RUNX3 (missense: 1).

3.3. Significantly Mutated Genes between the High- and Low-Risk Breast Cancers

Since transcriptome-based risk stratification was of major interest in the current study,
we compared mutation profiles between breast cancers predicted into the high- and low-
risk groups. There were 21 variants, collapsed into 14 genes, including 8 pathogenic/likely
pathogenic variants (7 missense, 5 silent SNPs and 1 deletion, collectively 5 genes). PIK3CA
rs121913279, with amino acid changes p.H1047L, p.H1047R, and p.H1047P, was reported
as being pathogenic from dbSNP (Table 3). Among them, PIK3CA, PDGFRA, CSF1R, EGFR,
SH3GLB2, ATM, ERBB2, BRCA1, BRCA2, and MAP2K2 were more likely to mutate in
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high-risk patients. Multivariate Cox’s regression was performed for these differentially
mutated genes with forward selection, and two SH3GLB2 variants with amino acid change
p.V223M were deleterious, with hazard ratios of 29.4 (95% CI: 5–173.9, p < 0.001) and 16.1
(95% CI: 2.7–96.7, p < 0.001) reported after controlling for clinical ER, HER2, and grade.

Table 3. Variants significantly mutated between the predicted high- and low-risk group of Taiwanese
breast cancer.

Gene Mutation
Type

refSNP
ID

ACMG
Category

Function
Class

p-Value
(χ2-Test)

PIK3CA SNP Category II MISSENSE 0.03
PIK3CA SNP rs121913279 Category II MISSENSE 0.02

PDGFRA SNP rs35597368 Category II MISSENSE 0.01
CSF1R SNP Category III 0.02
EGFR SNP Category III SILENT 0.02
MET SNP rs41736 Category III SILENT 0.05

FGFR1 SNP Category III 0.01
SH3GLB2 SNP Category III 0.02
SH3GLB2 SNP Category II MISSENSE 0.02

ATM Deletion Category I 0.04
BRCA2 SNP rs56403624 Category II MISSENSE 0.02
BRCA2 SNP rs169547 Category II MISSENSE 0.04
FANCA SNP Category III SILENT 0.01
FANCA SNP Category III 0.04
ERBB2 SNP Category III SILENT 0.02
ERBB2 SNP Category II MISSENSE 0.02
BRCA1 SNP rs55946644 Category III 0.01

BSG SNP Category III 0.02
BSG SNP Category III SILENT 0.04
BSG SNP Category III SILENT 0.01

MAP2K2 SNP rs10250 Category III SILENT 0.04

3.4. Variants-Associated Differentially Expressed Genes

We also evaluated genes whose expression was differentially impacted by tumor
mutations. Variants significantly mutated between the predicted high- and low-risk group
(Table 3) as well as those categorized as oncogenic, predicted, or likely oncogenic by
OncoKB were used as grouping variables [23]. Two-sample t-tests were conducted for
each of 48 constitutional genes of the extended concurrent genes signature under equal
or unequal variances assumption based on the equality of variances test with a reduced
α level of 0.01 corrected for multiple comparisons. Table S3 shows the exhaustive results
of 48 gene-level transcriptions tabulating 56 preselected variants. Expression of FBXO5
and CENPF was significantly upregulated with SH3GLB2 mutation (Figure 7A, parametric
p-values: 0.0003153 and 0.007465, respectively, both FDR < 0.2), while SERPINB3 expression
was significantly upregulated by SH3GLB2 p.V223M mutation (Figure 7B, parametric p-
values: 8.9e-06, FDR: 0.000427). Two patients harboring ERBB2 p.P107L reported greater
upregulated expression of SERPINB3 and GRB7 than wild-type (Figure 7C, parametric p-
values: 6.72e-05 and 0.0087323, both FDR < 0.2). Other variant-transcription combinations
with insignificant trends included: BSG mutation upregulated UBE2V2 expression (p-value:
0.0045538, FDR:0.219), BSG p.D181D mutation downregulated LACTB2 expression (p-value:
0.0087388, FDR > 0.2), ERBB2 p.L120 upregulated SERPINB3 expression (p-value: 0.0054249,
FDR: 0.26), and FANCA p.A430 downregulated KIF14 and CENPF (p-values: 0.002285 and
0.0095128, FDR: 0.11 and 0.205).
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Figure 7. (A) Clustered heatmap of differentially expressed genes FBXO5 and CENPF, with samples
grouped by class. Class 0: SH3GLB2 wild-type (31 samples), class 1: SH3GLB2 mutant-type (2
samples). (B) Clustered heatmap of differentially expressed gene SERPINB3, with samples grouped
by class. Class 0: SH3GLB2 wild-type (31 samples), class 1: SH3GLB2 p.V223M (2 samples). (C) Clus-
tered heatmap of differentially expressed genes SERPINB3 and GRB7, with samples grouped by class.
Class 0: ERBB2 wild-type (31 samples), class 1: ERBB2 p.P107L (2 samples).

4. Discussion

In current study, we evaluated the feasibility of targeted sequencing combined with
gene expression signature for Taiwanese breast cancers. Traditionally, multigene expression
signatures are used as a prognostic tool to identify a subset of low-risk breast cancer pa-
tients who might be spared cytotoxic chemotherapy, especially for luminal (HR+/HER2−)
breast cancers. NGS, especially the tumor-only targeted sequencing, was performed to
reveal actionable mutations corresponding to novel therapeutics. The combination of gene
expression-based prognostication and NGS-based predictive biomarkers was appraised for
Taiwanese breast cancers.

The merit of the extended concurrent genes signature was the discovery of candidate
biomarkers not readily identified by conventional GE-only data, for which phenotype-
correlation or gene variability was the criteria of gene filtering [10]. On the other hand,
high-throughput parallel massive sequencing could identify large numbers of variants
depending on both the size of the sequenced regions and the variant caller algorithm
utilized. For example, Meric-Bernstam et al. reported the experience with 2000 consecutive
patients with advanced cancers who underwent NGS, including the frequency of actionable
alterations across tumor types and subsequent enrollment into clinical trials [24]. Breast
cancer is among one of the most common cancer types diagnosed and assayed, constituting
one of the major components of completed comprehensive genomic sequencing.

Initially, an updated list of actionable genes for Taiwanese breast cancers was pursued.
Extensive literature reviews have shown some potential candidates. Arnedos et al. reported
targeted genomic alterations for metastatic breast cancers and highlighted that identifica-
tion of DNA damage repair (DDR) defects and mechanisms of immune suppression were
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potential uses of genomics for personalize medicine [25]. The development of precision
medicine for the treatment of breast cancer has several major challenges, including the low
frequency of targetable molecular alterations, feasibility of high-throughput technologies,
and availability of approved or investigated targeted therapy. Relling, M.V. and Evans,
W.E. also pointed out that somatically acquired variants might direct the choice of targeted
anticancer drugs for individual patients [26].

In contrast to whole-genome/exome sequencing, targeted sequencing was adopted in
current study, allowing the identification of somatic alterations for breast cancer pathogen-
esis. Although whole-genome sequencing was feasible, we preferred targeted sequencing
of specific actionable genes for current task. Targeted sequencing was more affordable,
yielded much higher coverage of genomic regions of interest and reduced sequencing cost
and time [27]. The merit of targeted sequencing comes from the fact that these panels
sequence only desired regions and eliminate most of the genome from analysis. Conse-
quently, these panels encompass hotspots for cancer-driver or relevant mutations, and the
identification of disease-targeted alterations could aid in therapeutic decision-making in
breast cancer therapy [28]. The ClearSeq Cancer platform is especially suited for clinical
samples such as preserved FFPE archives. Highly fragmented DNA usually results in
insufficient sequencing target coverage during FFPE preparation, while HaloPlex covers
each base with several amplicons and produces smaller fragments function as a backup for
longer fragments that might fail [29]. This allows for adequate sequencing target coverage,
even in highly degraded FFPE samples.

There were several recurrent aberrations reported from the 61 Taiwanese breast can-
cers. The ERBB2 rs28933370 missense mutation was reported as being pathogenic/likely
pathogenic from ovarian cancer with somatic allele origin, while neither ascertain cri-
teria nor alternative allele frequency from 1000 Genomes or the Taiwan Biobank were
provided [30,31]. Consequently, the clinical significance of this variant remains unknown
for Taiwanese patients. FGFR1 amplification (8p12) is one of the most common focal
amplifications in breast cancer (around 10%), especially for the ER-positive phenotype.
Overexpression of FGFR1 is induced by cyclin D1 via the pRb/E2F pathway, while cyclin
D1 is overexpressed in human malignancies and correlates with poor prognosis [32]. As
an oncogene, FGFR1 deletion is less understood, while FGFR2 (10q26) missense mutation
may be indicative of anti-FGFR2 inhibitor, as amplification or overexpression of FGFR2
was observed in 4% of triple negative breast cancers [33]. Some activating somatic point
mutations have been reported for both FGFR1 and FGFR2, which couple with an aberrant
signaling in a ligand-independent manner such that oncogenic activity exerts by amplifica-
tion or overexpression. One FGFR3 rs121913112 pathogenic mutation with germline allele
origin was also identified in current study. Although most FGFR SNPs remain variants of
unknown significance (VUS) under current knowledge, future studies to elucidate their
roles in disease susceptibility, prognosis (germline origin), and expressed quantitative trait
loci (eQTL) regulating cis/trans gene expression (somatic origin) are warranted during
biomarker discovery.

The BRCA2 p.I605fs*9 deletion, impacting six breast cancers in current study, was
predictive of treatment response of PARP (poly ADP ribose polymerase) inhibitors based
on the OlympiAD and EMBRCA trials. This deletion could have also been also predictive
of synthetic lethality if these advanced/metastatic breast cancers were HER2 negative
and germline mutations were ascertained from reflex testing as well [34,35]. On the other
hand, the two nonsense BRCA1 rs1799949 and rs1799965 mutations, although categorized
as pathogenic by SureCall, were synonymous from dbSNP database, which partially
explains the high prevalence among the Taiwanese population as evidenced by the much
higher minor allele frequency (MAF) of 0.38 for rs1799949 (Taiwan Biobank). The PIK3CA
rs121913279 (p.H1047R and p.H1047L) was among the hotspot mutations indicative of
the use of alpelisib, a PI3Kα-specific inhibitor while Figure 3 showed that 22 out of 31
HR+/HER2- breast cancers harbored PIK3CA missense mutations [36]. Quite a few TP53
pathogenic mutations (annotated with germline origin) were also reported in the current
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study. However, it is worth noting that TP53 variants rarely represent germline Li-Fraumeni
syndrome. Thus, routine reflex germline testing was not necessary for most patients with
tumor-only sequencing [37]. ATM deletion was also recognized as being pathogenic,
as the DDR signaling pathway was orchestrated by both ATM and ATR kinases, which
play the central regulatory role of this network, while the clinical significance of somatic
ATM mutation requires further evaluation [38]. PIK3R1 was also pathogenic, which is the
regulatory subunit p85α of the PI3K pathway, and somatic loss of PIK3R1 might be sensitive
to MAPK inhibitor [39]. It has also been reported that PIK3CA and PIK3R1 mutation is
mutually exclusive, leading to oncogenesis and hyperactivity of PI3K pathway [40].

Figure 3 to Figure 6 show clustering heat maps of 61 Taiwanese breast cancers based
on the scores 0 to 7, with higher weights designated for worse pathogenicity. Although heat
maps of each IHC subtype were constructed separately, the limited sample size prevented
pairwise comparisons. Co-occurrence of ATM, FGFR1, and WT1 frameshift mutations
were observed across all subtypes, which might reflect targeted panel design. At least
two clusters constituted both HR+/HER2− and HR−/HER2− subtypes, indicating more
heterogeneous molecular aberrations.

There were eight pathogenic/likely pathogenic variants from five genes differentially
mutated between predicted high- and low-risk breast cancers with the extended concurrent
genes signature. Of note, PIK3CA p.H1047L and p.H1047R were pathogenic and predictive
of alpelisib-targeted therapy [36]. Two SH3GLB2 variants (one with p.V223M amino acid
change), which encoded endophilin-B2 and interacted with SH3GLB1 and SH3KBP1, were
hazardous for overall survival [41]. Less is known about SH3GLB2, but endophilin B2 has
been reported to facilitate endosome maturation [42].

As both targeted sequencing and GE data were available in some subjects of current
study, it was quite intuitive to investigate the interaction between cancer genomics and
transcriptome. As shown in Figure 7A–C, both SH3GLB2 variants upregulated FBXO5,
CENPF, and SERPINB3, with the latter also being upregulated by ERBB2 p.P107L mutation,
which also enhanced the transcription of GRB7. These trans regulations from significantly
mutated genes (two SH3GLB2 variants) and OncoKB-defined oncogenic ERBB2 mutation
further highlight the complex network between genomic and transcriptional aberrations,
and the necessity of discovering biomarkers hierarchically. SERPINB3 overexpression is as-
sociated with high-grade, HR-negative breast cancers and poor survival [43]. GRB7 locates
in the long arm of chromosome 17 next to ERBB2, while co-amplification and co-expression
of these two genes have been described [44]. Increased expression of FBXO5 has been
shown to cause chromosomal instability and cancer initiation [45]. It is noteworthy that a
lack of evidence remains to directly claim that genetic mutation of A causes the transcrip-
tional alteration of gene B, and it is highly possible that the transcriptional alteration of
gene B is a secondary (indirect) effect of genetic mutation in A. Further functional assays
are required to elucidate the complex regulatory mechanisms.

Some limitations of the study should be considered. First, for some recurrent mu-
tations, such as those from CTNNB1, CSF1R, JAK2, HRAS, and RUNX1, an exhaustive
literature search showed that the clinical significance in breast carcinoma has rarely been
addressed. Second, tumor-only sequencing was performed, and it was difficult to dif-
ferentiate somatic mutations from those with germline origin, which might hinder the
clinical applicability, particularly for PARP inhibitors, as germline mutation of BRCA1 or
BRCA2 is the prerequisite for synthetic lethality. Third, not all cases of targeted sequencing
underwent GE assays due to limited fresh frozen or FFPE samples, and the estimated
mutation frequency might be biased. Although our previous study had ascertained mea-
surement invariance between microarray and NanoString nCounter, uniform and unbiased
GE assays are required in further studies [14]. To translate sequencing results into clinical
actionability, the most difficult aspects to overcome are accurate functional annotation,
reproducibility, and the immediate implementation of identified variants.
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5. Conclusions

Precise risk assessment is fundamental following the diagnosis of breast cancer. The
current study provides real-world evidence regarding the feasibility of targeted sequencing
combined with concurrent genes signature risk stratification. Targeted sequencing of
actionable genes is believed to provide clinical applicability, and future studies with more
prospectively enrolled samples are believed to provide substantial benefit for breast cancer
patients in terms of precision medicine. The purposed integrated approach could identify
potential therapeutic targets, which, in turn, would enhance breast cancer risk prediction to
identify subjects for whom increased risk of relapses or metastases will balance discomfort
and complications induced by adjuvant chemotherapy and/or targeted therapy. On the
other hand, those predicted with lower risk might be spared from potential harms of
adjuvant therapy. The current study provides real-world evidence regarding the feasibility
of such an approach, and future prospective studies are needed.
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10.3390/jpm11070613/s1, Table S1: Gene panels of targeted enrichment sequencing. Table S2:
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preselected variants with equal/unequal variances assumption based on equal variances testing and
reduced α level for multiple comparisons.
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