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Abstract: Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder characterized
by an insatiable appetite, leading to chronic overeating and obesity. Additional features include short
stature, intellectual disability, behavioral problems and incomplete sexual development. Although
significant progress has been made in understanding the genetic basis of PWS, the mechanisms
underlying the pathogenesis of the disorder remain poorly understood. Treatment for PWS consists
mainly of palliative therapies; curative therapies are sorely needed. Zebrafish, Danio rerio, represent a
promising way forward for elucidating physiological problems such as obesity and identifying new
pharmacotherapeutic options for PWS. Over the last decade, an increased appreciation for the highly
conserved biology among vertebrates and the ability to perform high-throughput drug screening has
seen an explosion in the use of zebrafish for disease modeling and drug discovery. Here, we review
recent advances in developing zebrafish models of human disease. Aspects of zebrafish genetics and
physiology that are relevant to PWS will be discussed, and the advantages and disadvantages of
zebrafish models will be contrasted with current animal models for this syndrome. Finally, we will
present a paradigm for drug screening in zebrafish that is potentially the fastest route for identifying
and delivering curative pharmacotherapies to PWS patients.
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1. Introduction

Prader-Willi syndrome (PWS) is a complex neurogenetic disorder, which results in cognitive
and neuroendocrine dysfunction. Individuals with PWS present a spectrum of clinically observed
phenotypes. Possibly the most debilitating symptom is insatiable appetite, which often leads to chronic
overeating and obesity. Between the ages of 4.5 and 8, children with PWS experience rapid onset of
hyperphagia and obesity [1–3]. While behavioral therapy can mitigate weight gain, complications
from obesity are the leading cause of morbidity in PWS [4]. Patients also suffer from growth hormone
(GH) deficiency resulting in decreased growth velocity and short stature if untreated. GH treatment
during childhood allows patients to reach full height [5]. Older children and adults have hypoplastic
genitalia and dysmorphic features including small hands and feet, flat surface of the ulnar side of hands
and inner legs, a narrow forehead, almond-shaped eyes and a downturned mouth. Sleep-disordered
breathing and daytime hypersomnolence are also associated with PWS. PWS individuals are cognitively
disabled, with an average IQ of 65 [1]. Finally, the disorder causes behavioral abnormalities such as
skin picking and tantrums. Comorbidity with neuropsychiatric disorders is high. Current treatment
options for PWS consist of hormone administration and behavioral therapy (Table 1) [1,4,6,7].

Diseases 2016, 4, 13; doi:10.3390/diseases4010013 www.mdpi.com/journal/diseases

http://www.mdpi.com/journal/diseases
http://www.mdpi.com
http://www.mdpi.com/journal/diseases


Diseases 2016, 4, 13 2 of 19

Table 1. Medical characteristics and treatment options.

Medical Symptom Age of Onset Treatment Options

hypotonia and
feeding difficulties 0–9 months feeding assistance,

nasogastric tubes

hyperphagia 4.5–8 years behavioral therapy

short stature puberty GH therapy, allows patients to
reach full adult height

hypoplastic genitalia birth hormonal replacement therapy

dysmorphic features birth none

sleep-disordered breathing
and daytime hypersomnolence

childhood to adolescence
(Nixon and Brouillette)

adenotonsillectomy, nocturnal
ventilation, weight control,

and behavioral interventions

cognitive disability childhood none

skin picking and
obsessive behavior 5 years behavioral therapy

oppositional behavior
and tantrums 5 years behavioral therapy and

psychiatric drugs

The genetic basis of PWS is an alteration in the paternally inherited allele of the imprinted
chromosome 15q11–q13 region. Although it remains unclear how genetic defects at 15q11–q13 result
in the clinical manifestations of PWS, it is likely that hypothalamic dysfunction underlies many of
these symptoms [4]. Studies of PWS biology are likely to bring about a deeper understanding of the
molecular, cellular, physiological and behavioral basis of this syndrome, and eventually bring targeted,
curative therapies to PWS patients. Already, several mouse models of PWS have been created, and
despite failure to recapitulate all aspects of PWS, they have proved very informative [6]. Several
mouse models, particularly those with inactivated genes implicated in PWS-like disorders, support
hypothalamic dysfunction as a major feature of PWS. However, notwithstanding the utility of mouse
models for understanding the pathobiology of PWS, mice are ill-suited for high-throughput screens.

Over the last few decades, zebrafish have emerged as an excellent model to study vertebrate
development and human disease. Zebrafish offer many advantages over other vertebrate species.
In particular, their fecundity and small adult body size allows them to be housed at high densities
in a laboratory setting. Furthermore, zebrafish reach sexual maturity at three months, akin to mice,
but embryonic development occurs more rapidly than in mice with most zebrafish organs and glands
developed by five days post-fertilization. As vertebrates, zebrafish have many of the same genes, cells,
tissues, glands, organs systems and body plans as their mammalian counterparts [8,9]. Moreover,
although they lack much of the highly developed mammalian cortical brain regions, evolutionarily
older structures including the neuroendocrine system are remarkably conserved. Zebrafish embryos
are capable of fitting into 96-well plates, in addition to their relative translucency, making them ideal
candidates for high-throughput screens and advanced imaging techniques. Finally, the zebrafish
genome-sequencing project, which began in 2001, found that approximately 70% of human genes
have at least one zebrafish ortholog with 82% of known human disease genes having a zebrafish
ortholog [10].

Here, we summarize progress in understanding PWS pathobiology in light of creating zebrafish
models for this syndrome. We discuss three investigative strategies commonly used in zebrafish
research, including: (1) the production of gene-knockout models paired with high-throughput screens
to pinpoint drug targets; (2) the use of large scale mutagenesis screens to identify and investigate
endophenotypes that are relevant to PWS; and (3) the use of high throughput drug screens to
identify compounds with activity specific to neuronal populations and behaviors affected by PWS
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(Figure 1). This last strategy may provide the fastest route for identifying curative pharmacotherapeutic
compounds when used to screen libraries of FDA approved drugs.Diseases 2016, 4, 13 3 of 19 

 
Figure 1. Overview of approaches for investigating PWS using zebrafish. (I) Genes and molecular 
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disease models and subjected to drug screening to identify potential pharmacotherapeutics.  

2. Discussion 

2.1. Genetics 

The genetic basis of PWS is the loss of imprinted genes in the 15q11–q13 region, which are 
exclusively expressed from the paternal chromosome. Loss of the paternally expressed genes 
associated with PWS can occur in multiple ways. In about two thirds of PWS cases, there is a deletion 
of 4–4.5 Mb in the paternal copy of the 15q11–q13 region. In about 25% of cases, the cause is 
uniparental disomy resulting in the inheritance of two copies of chromosome 15 from the mother. In 
fewer than 3% of cases, PWS is caused by a submicroscopic deletion or epimutation of a sequence 
known as the imprinting center (IC). Finally, rare cases result from chromosomal translocations or 
rearrangements [1]. Imprinted PWS-associated genes located in the 15q11–q13 region are subject to 
varying degrees of conservation in mouse and zebrafish. In mouse, chromosome 7 B/C is a syntenic 
imprinted region containing several orthologs of PWS-associated genes. The imprinted PWS gene 
cluster is absent in fish, likely arising in the mammalian lineage. Nonetheless, several genes have 
putative orthologs in zebrafish, including makorin ring finger protein 3 (MKRN3); MAGE family 
member L2 (MAGEL2); necdin, MAGE family member (NDN); and small nuclear ribonucleoprotein 
polypeptide N (SNRPN) (Table 2). 
  

Figure 1. Overview of approaches for investigating PWS using zebrafish. (I) Genes and molecular
pathways can be genetically or pharmacologically perturbed. (II) The effect of perturbations can be
evaluated using a variety of phenotypic analyses. PWS endophenotypes may then be utilized as disease
models and subjected to drug screening to identify potential pharmacotherapeutics.

2. Discussion

2.1. Genetics

The genetic basis of PWS is the loss of imprinted genes in the 15q11–q13 region, which are
exclusively expressed from the paternal chromosome. Loss of the paternally expressed genes associated
with PWS can occur in multiple ways. In about two thirds of PWS cases, there is a deletion of 4–4.5 Mb
in the paternal copy of the 15q11–q13 region. In about 25% of cases, the cause is uniparental disomy
resulting in the inheritance of two copies of chromosome 15 from the mother. In fewer than 3% of cases,
PWS is caused by a submicroscopic deletion or epimutation of a sequence known as the imprinting
center (IC). Finally, rare cases result from chromosomal translocations or rearrangements [1]. Imprinted
PWS-associated genes located in the 15q11–q13 region are subject to varying degrees of conservation in
mouse and zebrafish. In mouse, chromosome 7 B/C is a syntenic imprinted region containing several
orthologs of PWS-associated genes. The imprinted PWS gene cluster is absent in fish, likely arising in
the mammalian lineage. Nonetheless, several genes have putative orthologs in zebrafish, including
makorin ring finger protein 3 (MKRN3); MAGE family member L2 (MAGEL2); necdin, MAGE family
member (NDN); and small nuclear ribonucleoprotein polypeptide N (SNRPN) (Table 2).
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Table 2. Mouse and zebrafish PWS-related genes.

Human Mouse % aa Zebrafish % aa Chr.

FRAT1; Chr10 * Peg12 70 gbp + 63 16
MKRN3 Mkrn3 63 mkrn1 48 4
MAGEL2 Magel2 53 ndnl2 &,+ 48 23

NDN Ndn 82 ndnl2 &,+ 40 23
NPAP1 Pom121; Chr5 * 28 pom121 + 24 10
SNRPN Snrpn 100 snrpb 93 6

SNORD107 Snord 107 -
SNORD64 Snord 64 -

SNORD116@27 Snord116@27 -
SNORD115@41 Snord115@130 -

SNORD108 - -
SNORD109A - -
SNORD109B - -

% aa, percent amino acid identity to human; Chr., Chromosome; *, ortholog is located outside the PWS-associated
region; -, no identified orthologous gene; &, ndnl2 is orthologous to both MAGEL2 and NDN; +, zebrafish mutant
has been generated; @, copy numbers according to [11].

MKRN3, along with MKRN1, MKRN2, and MKRN4, is a member of a unique family of ring finger
containing proteins with ubiquitin ligase and transcriptional coregulatory functions. In mice, Mkrn3 is
highly expressed in the fetal arcuate nucleus, and in humans, MKRN3 mutations have been implicated
in precocious puberty, thus implicating this gene in hypothalamic function. MKRN3 in mammals likely
arose by retrotransposition of the paralogous MKRN1 gene [12,13]. Therefore, zebrafish lack the mkrn3
gene, with the most similar gene being mkrn1. Unlike the other zebrafish orthologs for PWS-associated
genes, this ancestral gene has extensive synteny with both mouse and human [14].

MAGEL2 and NDN code for MAGE proteins, a large family of poorly understood ubiquitin
ligase proteins. The MAGE family is unusual in mammals in that there have been multiple species
specific expansions of various MAGE family members, with over 50 genes in humans. In contrast,
non-mammalian species such as zebrafish have a single representative of the MAGE family. Thus,
in zebrafish, the singular MAGE family gene, ndnl2, is most similar to both MAGEL2 and NDN [15].

SNRPN encodes a bicistronic transcript. One product, Snrpn Upstream Reading Frame (SNURF),
is a non-coding RNA of unknown function. The other encodes SmN, a LSm family protein, which is
thought to be involved in pre-mRNA processing. The SNRPN gene also contains a sequence known as
the imprinting center (IC), which is required for silencing the maternal allele [16]. Zebrafish do not
have a snrpn gene, they do however have an ortholog of SNRPB, which likely gave rise to SNRPN by
duplication in the mammalian lineage [12]. The amino acid sequence conservation among zebrafish
snrpb and human SNRPN very high (93%; Table 2), especially in the LSm superfamily conserved
domain, which is involved in RNA processing.

There are some differences in the imprinted PWS region between mice and humans. In mice, an
imprinted gene known as Peg12 lies within the PWS region. Peg12 is a member of the glycogen synthase
kinase 3 binding protein (Gbp) family, with presumed functions in the regulation of Wnt signaling.
The most closely related human gene, Frequently Rearranged In Advanced T-Cell Lymphomas 1
(FRAT1), is located on chromosome 10, while the orthologous mouse Frat1 gene is located on
chromosome 19 and is not known to be imprinted. Knockout of either peg12 or Frat1 had no phenotype
so the physiological role of these genes is unclear. In zebrafish, only a single ancestral gene, gbp, is
present and, although a mutant exists, it has not yet been characterized.

An additional difference is that in humans, but not mice, the nuclear pore-associated protein
NPAP1 gene is found within the imprinted PWS region. NPAP1 likely arose in primates after several
rounds of retrotranspostion of the ancestral POM121 gene [17]. Thus, like mice, zebrafish do not have
an npap1 gene, however, they both do have the ancestral pom121 gene. Neither mouse nor zebrafish
pom121 mutants have been characterized.
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In addition to the protein coding genes discussed above, the PWS-region contains multiple
gene clusters, called SNORDs, encoding small nucleolar RNAs (snoRNAs) belonging to the C/D box
group [18,19]. For the SNORD107, SNORD64, SNORD115 and SNORD116 clusters, orthologous groups
exist in mouse, although copy numbers vary. However, no mouse orthologs have been identified for
SNORD108, SNORD109A or SNORD109B (Table 2). Although SnoRNA genes are typically conserved
sequences, those in the PWS region belong to a group of eutherian-specific imprinted SnoRNAs for
which homologs in non-eutherian vertebrates have yet to be identified [11]. While many SnoRNA genes
can be found in zebrafish, none identified thus far are likely to be orthologous to PWS-region SnoRNAs.

In summary, the genes within the PWS-region primarily fall into three classes, ubiquitin ligases,
RNA processing regulators and SnoRNAs. Genes in these classes regulate the expression of other genes,
controlling rates of protein and RNA turnover, and influencing alternative splicing events, functions
that are highly conserved in all vertebrate organisms. However, it appears that essentially all the
genes in the PWS-region have arisen, and rapidly diverged, in the mammalian lineage. Consequently,
although zebrafish have orthologs of the ancestral genes, they do not appear to have one-to-one
orthologs of the PWS-region genes. This fact begs the question of how zebrafish could be used as
models for PWS research if they don’t have PWS genes. The answer lies in the fact that dysregulation
of PWS genes result in alterations in highly conserved developmental pathways, particularly evident
in the hypothalamus. This is illustrated by studies of PWS-like syndromes, which implicate pathways
that are highly conserved in humans, mice and zebrafish.

2.2. PWS-Like Syndromes: 6q16 Deletions

Prader-Willi-like (PWL) syndromes share features of the PWS phenotype, however the genetic
basis of these rare disorders differs. The implication is that the gene functions disrupted in PWL
are likely to lie in genetic pathways that are important for the development of PWS phenotypes.
By extension then, drugs targeting these pathways may prove effective for PWS patients. Elucidation
of these conserved pathways and identification of potential drug compounds could greatly benefit
from zebrafish models.

Although a variety of deletions have been reported to cause Prader-Willi related phenotypes,
the most common PWL deletion is the 6q16 deletion comprising the bHLH-PAS family transcription
factor SIM1 [20–22]. Sim1 heterozygous mice display hyperphagic obesity and reduced oxytocin
expression in the hypothalamus [23,24]. Oxytocin neurons that project to the hindbrain have been
implicated in satiety [25,26]. Recently, a small 6q16 deletion that results in PWL as been identified.
The deletion leaves SIM1 intact but deletes another gene, POU3F2, in the oxytocin developmental
pathway [27]. Importantly, the entire sim1, pou3f2, oxytocin pathway has been shown to be conserved
in human, mouse and zebrafish [27–35]. Together, these findings suggest a role for the oxytocinergic
system in PWS symptoms and highlight the value of modeling phenotype in addition to genetic cause
to uncover the developmental underpinnings of PWS.

2.3. Non Imprinted PWS Genes

Along with the imprinted PWS genes there are several non-imprinted genes located within the
most common PWS chromosomal breakpoints. Four non imprinted genes, NIPA1, NIPA2, CYFIP1
and TUBGCP5, are located upstream of MKRN3. These four genes lie between the two most common
upstream PWS chromosomal breakpoints. Downstream of the PWS imprinted region are two paternally
imprinted genes associated with Angelman Syndrome, UBE3A and ATP10A. Five non imprinted genes,
GABRB3, GABRA5, GABRG3, OCA and HERC2, are then located before the most common downstream
PWS breakpoint. Haploinsufficiency of these genes could modify the pathobiology of PWS in cases
where they are deleted from the paternal chromosome.

Although all the non-imprinted genes appear to be important for neurological function, their
potential contribution to PWS has not been well-studied. Interestingly, in contrast to the mammalian
specific imprinted PWS genes, the Angelman Syndrome-related and the non imprinted PWS genes are
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highly conserved among vertebrates. These genes all have one-to-one orthologs between human and
zebrafish with highly conserved synteny. It appears as though the mammalian imprinted PWS genes
arose primarily by duplication and transposition of ancestral genes located elsewhere in the genome,
accumulating smack in the middle of this highly conserved group of neural related genes. Therefore,
it is tempting to speculate that these non imprinted genes influence PWS. Studies in zebrafish have
high potential for shedding light on the function of these genes as their expression could be easily
manipulated in this organism.

2.4. Mouse Models

In mice, the existence of a syntenic region containing orthologs of PWS-related imprinted genes
has allowed for the generation of mouse models with large deletions spanning the entire PWS region
in the hopes of recapitulating the complex phenotype of Prader-Willi patients. However, neonatal
death in these models has precluded the study of the hyperphagia phenotype, which is a leading
cause of morbidity in PWS. The first of these mutants harbored a deletion of the central portion of the
paternally inherited chromosome 7, and a duplication of the maternally inherited copy. These mice
began to fail and died within eight days after birth [36]. Similarly, in a large deletion of all imprinted
genes in the PWS-associated region in mice, offspring failed to thrive and died within a week [37]
(Table 3). Although these models come closest to replicating PWS in genotype, the severity of the
resulting phenotypes prohibit their use for extensive study of the disorder. Snrpn deletions of varying
sizes have been studied in an attempt to clarify the role of SNRPN in PWS, and locate the region
of this gene that is critical for imprinting [38]. Several of these models in which much or all of the
Snrpn sequence has been deleted have produced mice that fail to thrive and die early on, precluding
phenotypic analysis. Some smaller deletion models in which only parts of the Snrpn gene have been
removed showed improved survival, however they did not display observable abnormal phenotypes
(Table 3). Zebrafish are not amenable to this analysis as they lack a comparable PWS imprinted region.

Table 3. Phenotypic characteristics of chromosomal deletion mouse models of PWS.

Failure to Thrive/Early Fatality No Observable Abnormal Phenotype

Maternal duplication and paternal deletion in PWS region [36] Deletion of exon 1 of Snrpn [39]
6.8 Mb deletion spanning PWS and AS regions [37] Deletion of Snrpn exon 2 [40]

Deletion spanning from Snrpn to Ube3a [40] Double deletion of Snrpn exon 2 and Ube3a [40]
Deletion of Snrpn exons 1–6 and distal portion of IC [41] Deletion of Snrpn exon 6, parts of exons 5 and 7 [41]
4.8 kB deletion removing exon 1 of Snrpn and most of the

differentially methylated region 1 (DMR1) [39]

Single gene deletion models in mice have been more successful in achieving PWS-like phenotypes
that can realistically be studied. Although these gene knockouts are much less extensive than the lack
of expression of the paternal ch15q11–q13 region observed in PWS, the resulting mice display a variety
of endophenotypes that are reminiscent of the disorder (Table 4). Unique to the Magel2 knockout was
impaired fertility and alterations in circadian rhythm, while the Ndn knockout mice suffered from
respiratory distress [42–44]. Interestingly, the Ndn knockout had decreased oxytocin expression in the
paraventricular nuclei of the hypothalamus [43]. Magel2 and Snord116 knockouts displayed growth
retardation early in life, as is observed in PWS patients. In later life, the Snord116 knockout model
was hyperphagic, while the Magel2 knockout had increased fat mass [45,46]. However, no model
has recapitulated the concomitance of increased appetite and obesity, which is a prominent feature
of PWS. A number of behavioral phenotypes have also been identified in the single-gene knockout
models. The Magel2 and Snord116 knockouts had increased anxiety, and the Ndn-deficient mice showed
improved spatial learning and memory as well as skin-scraping—a behavior commonly observed
in PWS patients [43–45]. While these phenotypes are abnormal, the extent of their similarity to the
cognitive, behavioral and psychiatric components of PWS remains unclear.
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Table 4. Phenotypic characteristics of single gene or gene cluster deletion mouse models of PWS.

Endo-Phenotype Ndn [43] Magel2 [42,44,46] Snord116 [45]

Reduced oxytocin expression Yes - -
Postnatal growth retardation X Yes Yes

Increased anxiety - Yes Yes
Respiratory distress Yes - -

Skin scraping Yes - -
Improved spatial memory and learning Yes X X

Altered circadian output - Yes -
Impaired fertility X Yes X

Increased fat mass X Yes X
Hyperphagia - X Yes

Yes, phenotype was present; X, phenotype was absent; -, phenotype was not assessed.

While relevant endophenotypes appear in mouse models with partial genetic replication of PWS,
models with full PWS deletions do not survive long enough to display the main characteristics of
the disorder. This suggests that differences between mouse and human PWS-regions may preclude
generation of mouse models that fully recapitulate PWS. On the other hand, single-gene knockout
studies in mice have begun to uncover the role of several PWS-related genes.

Zebrafish do not have one-to-one orthologs of the imprinted PWS-associated genes so direct
PWS single gene knockout models cannot be generated in this organism. However, zebrafish do have
orthologs of the ancestral precursors of the PWS genes. Studies of the ancestral genes in zebrafish
may be highly informative for PWS pathology, as many of the PWS genes are members of multigene
clusters with potential for redundant function. Because zebrafish often have a single ancestral gene,
the effects of gene manipulation on neurodevelopment and function may be easier to discern.

Genes that are outside of the PWS-region but result in PWS-like phenotypes, and are thus
implicated in important pathways in PWS pathobiology, present additional fruitful avenues of research.
For example, mutations in SIM1, leptin receptor (LEPR), pro-opiomelanocortin (POMC), melanocortin
4 receptor (MC4R), and more recently, POU3F2 have all been associated with severe obesity, suggesting
a convergence on the leptin-melanocortin pathway in association with oxytocin [25,27]. Mutations
in zebrafish lepr, mcr4, and pou3f2 have been generated, although few obesity-related studies have
been performed as of yet. Zebrafish however, are powerful models for investigating molecular
developmental pathways so we anticipate rapid progress in this area. Knowledge gained from these
studies will likely reveal important new targets for pharmacotherapies.

Identifying drugs that could rescue PWS phenotypes would provide a promising way forward in
developing curative therapies for this disorder. However, mice are impractical for large-scale drug
discovery. On the other hand, models generated in zebrafish, either by gene-knockouts or mutagenesis
screens, which display PWS-like endophenotypes, provide ideal drug discovery platforms.

2.5. The Zebrafish Model: Conserved Neuroanatomy and Physiology

The last common ancestor of zebrafish and human was the lobe-finned fish. These fish were
already highly sophisticated animals with extensive behavioral repertoires and exquisite ability to
respond to environmental changes to maintain physiological homeostasis. Therefore, the human
brain evolved upon this complex substrate resulting in the conservation of much of the underlying
neuroendocrine and autonomic function. This observation gave rise to the idea of the primitive
“reptilian brain”, an idea that was generally discarded when it became evident that the so-called
primitive brain areas were extensively interconnected to higher cortical brain regions, and critically
important for higher brain function. In fact, most neuromodulatory systems, which are critical targets
of neuropsychiatric pharmacotherapies, arise from primitive brain areas. Conservation in primitive
brain neuroanatomy and physiology is apparent in the neuroendocrine hypothalamus, and thus, has
important implications for the usefulness of the zebrafish model for PWS research.
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Many of the characteristics associated with PWS, including hyperphagia, temperature instability,
high pain threshold, sleep-disordered breathing, and endocrine abnormalities such as growth hormone
deficiency, central adrenal insufficiency, central hypothyroidism, and hypogonadism, are linked to
hypothalamo-pituitary axis (HPA) dysfunction [1,47]. The evolutionarily conserved HPA, consisting
of the hypothalamus and pituitary gland (hypophysis), serves as the connection between the central
nervous system (CNS) and the endocrine system, which together regulate whole-body homeostasis
and reproduction [48].

The mammalian neuroendocrine hypothalamus is composed of several nuclei that contain distinct
clusters of neurons that project to the pituitary. The magnocellular system consists of large AVP
and OXT producing neurons located in the supraoptic nucleus (SON) and paraventricular nucleus
(PVN) that project to neurohemal sites in the posterior pituitary (neurohypophysis) where these
hormones are released directly into the systemic circulatory system. The parvocellular system
consists of smaller neurons that control the anterior pituitary (adenohypophysis). The major nuclei
of the parvocellular system are the PVN, arcuate nucleus (AR), anterior periventricular nuclei (aPV)
and preoptic area (POA). Parvocellular neurons from these nuclei project to a small portal blood
system releasing one or more of the following six hormones, thyrotropin releasing hormone (TRH),
corticotropin releasing hormone (CRH), growth hormone-releasing hormone (GHRH), somatostatin
(SST), gonadotropin-releasing hormone (GnRH), and dopamine (DA). These hormones each initiate
the release of distinct hormones from the adenohypophysis into the blood stream.

The nuclei of the hypothalamus are extensively interconnected and receive diverse input from
multiple CNS regions. In addition, these cells have extensive extrahypophysial projections, releasing
their peptide hormones as modulatory neurotransmitters within the brain, presumably to coordinate
behavior with maintenance of physiological homeostasis. This Gordian entanglement of neuronal
circuitry likely ensures the exquisite control of physiologic homeostasis that is achieved by the
hypothalamus. Understanding how the highly complex chemoarchitecture and circuitry of the
hypothalamus coordinates brain-body communication presents an exciting challenge, and is not
only important for identifying potential therapeutics for PWS, but will contribute to a wide range
of neuropsychiatric conditions, such as autism, obesity, anorexia, affective, obsessive-compulsive,
and anxiety disorders [49]. The multifaceted experimental advantages of zebrafish for genetic and
pharmacological analysis, visualizing and manipulating brain circuits, and behavioral analyses will
help meet this challenge.

A fundamental tenet of evolutionary biology is that critical structures are not reinvented, instead
they are built upon [50,51]. What this means for comparison between fish and humans is that the
“primitive brain”, representing the brain of the last common ancestor of teleosts and mammals, should
largely be the same, particularly for core functions. Layered on top of the core functions would be
extensive adaptations acquired during the incredible brain expansion that defines the path of human
evolution. This is illustrated by the extensive reciprocal connectivity between the higher cortical brain
regions and the hypothalamic nuclei. As the hypothalamus and other brain stem regions were already
highly complex and absolutely required for survival, the underlying organization and functions of
these regions would be highly conserved. On the other hand, each species must adapt to its specific
environmental pressures. Therefore, one finds, as expected, specific differences between species. Along
these lines, an expanding use of the zebrafish model is to help differentiate between core functions
and species specific adaptations when evaluating mouse studies. If a process can be shown to occur
the same way in zebrafish and mice, it is likely to be a core function, and therefore, also function in
humans [27,52].

Extensive studies over the past 15 years have demonstrated remarkable conservation of brain
architecture, neuroendocrine cell type, function, and molecular control of hypothalamic development
between zebrafish and mammals. These studies have been recently reviewed [8,48]. In short, zebrafish
have similar neuroendocrine cells producing OXT, AVP, TRH, CRH, GHRH, SST, GnRH, and DA
as are seen in mammals. These neurons project similarly to the pituitary where they control the
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release of the same pituitary hormones as seen in mammals. In addition to the neuroendocrine
cells, many other hypothalamic peptidergic neurons have been characterized in zebrafish including,
melanocortin, hypocretin, and somatostatin [53–55] Remarkably, the functions and regulation of the
various endocrine axes are largely the same, taking into consideration obvious lifestyle differences.
Moreover, many aspects of hypothalamic circuitry are conserved. For example, recent data suggests
that a key part of the essential hypothalamic circuit controlling energy homeostasis in mammals, the
melanocortin system, is conserved zebrafish [8]. Overall, zebrafish appear well suited for modeling
PWS, at least based on hypothalamic endophenotypes.

2.6. Technologies for Phenotypic Analysis: PWS Endophenotypes

A variety of strategies for phenotypic analysis in zebrafish enable the study of PWS
endophenotypes resulting from genetic or pharmacologic manipulations. These include ‘omics
analyses, such as RNAseq transcriptomics, quantification of fluorescence or luciferase in transgenic
reporter fish, analysis of morphology using high-throughput hyperdimensional screens, and even
behavioral assays [56–69].

Perhaps the most well documented endophenotypes in PWS are deficits in hypothalamic
development and function. The numbers of oxytocin producing neurons, as well as circulating levels
of oxytocin peptide are decreased in PWS patients. GH production is likewise reduced. In fact, GH
replacement is one of the only therapies shown to improve PWS symptoms. GnRH, follicle-stimulating
hormone (FSH) and luteinizing hormone (LH) perturbations are also strongly implicated in PWS.
Hypocretin is involved in promoting wakefulness and regulating appetite, and the melanocortin pathway
is critical for appetite control and energy expenditure. Given the high evolutionary conservation
of the hypothalamus, this brain region may provide an especially fertile substrate for developing
zebrafish models of PWS. Therefore, the following discussion mostly focuses on hypothalamus
based endophenotypes.

Transgenic zebrafish are well suited to the detection of abnormalities in the development and
regulation of neuronal populations. Especially relevant to PWS are the hypothalamic nuclei, for which
several transgenic zebrafish models already exist. Zebrafish larvae expressing GFP driven by an
oxytocin promoter have been used to study the effect of fetal ethanol exposure on brain development,
and as a model for fetal alcohol syndrome [70]. Also, POMC producing cells, an important component
of the HPA, have been tagged in transgenic zebrafish lines [71,72]. In addition, zebrafish have been
generated that express fluorescent proteins in GnRH, FSH, LH, and prolactin (PRL) secreting cells,
which are deficient in PWS [73,74]. Likewise, hypocretin transgenic lines have been developed and
effectively used for opticogenomic studies of wakefulness in zebrafish [75]. Transgenic models can
be used to investigate molecular pathways involved in hypothalamic function and to discover drugs
that effect endocrine output. A recent study screened zebrafish with fluorescently marked pancreatic
β-cells using automated reporter quantification in vivo (ARQ-iv) combined with robotics. In this study,
24 FDA-approved drug candidates were identified that modulated β-cell numbers [68]. Conceptually
similar strategies may prove highly productive for identifying potential pharmacotherapeutics for
PWS. Although there are several transgenic lines that would potentially be useful for high throughput
drug screening, new lines specifically designed for this purpose might be more productive in the end.
As transgenic zebrafish are relatively easy to make, optimized designs should be pursued.

Zebrafish morphology is another potential output in PWS-related mutational or drug screening.
Abnormalities in growth and body fat can be easily quantified in fish. In studies on body fat accumulation,
anesthetized fish were weighed, and their body fat was quantified by computed tomography. The ratio
of body fat to weight provided a measure of obesity across treatment groups [76]. Developmental
deformities also represent relevant PWS endophenotypes. However, zebrafish morphology has been
a problematic output for high-throughput screens since it is typically assessed by non-quantitative
means. Subjective assessment of morphology may not be sensitive enough to detect minor defects in
tissue architecture. Recently, however, an automated phenomics technique has been developed for
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high-throughput screens based on vertebrate morphology. Optical projection tomography (OPT) is
capable of quickly generating and analyzing three-dimensional images of zebrafish embryos using an
automated fluidics-based system. Proof of concept was illustrated by the characterization of craniofacial
abnormalities in response to teratogenic chemicals [66]. As morphology screens continue to advance in
sophistication, they will become valuable tools for analysis of zebrafish models of PWS resulting from
genetic manipulation, and may provide informative readouts for large-scale drug screening.

Behavioral problems are a particularly challenging aspect of PWS. A variety of behavioral traits
can be rapidly assessed in the zebrafish model, which has already been used to study neuropsychiatric
and drug-related disorders [77,78]. In a recent study, recordings of zebrafish larvae placed in multilane
plates facilitated the assessment of responses to a visual stimulus displayed on a screen. Assessed
responses include avoidance behavior, thigmotaxis as measured by preference for the edge of the lane,
swim speed, resting behavior, and social distance between larvae [57,79]. Optogenetic manipulation
now provides direct control over behavioral circuits [75,80]. Social behavior can be further investigated
by preference of adult zebrafish for the conspecific portion of a tank containing a live or virtual
zebrafish, as compared with an empty sector. Fear can be measured by avoidance of the Indian leaf
fish, a known zebrafish predator. Preference for the bottom of the tank, diving behavior, and preference
for the dark portion of a tank, all measured by video cameras, have been used as measures of fish
anxiety. Cognitive tasks can be developed similarly to mouse assays with the use of T-maze-shaped
tanks. Activity monitoring can also be used to measure circadian rhythms and habituation [77]. Even
food seeking and digestive physiology can be directly measured [81]. Food-seeking, tantrums, and
skin-picking are all problematic PWS-associated behaviors for which no effective drug treatment
has been routinely helpful. Additionally, PWS is often accompanied by mood disorders. The ability
to rapidly quantify behavior in zebrafish with high sample size provides an array of additional
phenotyping options for PWS models in this organism.

2.7. Strategies for Targeted Gene Manipulation

Reverse genetics in zebrafish is a promising approach to examine the complex range of phenotypes
associated with PWS. One strategy is to disrupt orthologs of PWS-associated genes, and study the
resulting phenotypes. As zebrafish have orthologs of the ancestral PWS-related genes, often in a
much simplified context (e.g., a single MAGE gene compared with 50 human genes), zebrafish may
inform the basic function of these complex genes. In addition, the contribution of the non-imprinted
genes in the PWS region could be investigated. Beyond simple gene mutations, the ease of genetic
manipulation makes zebrafish an ideal model for the study of gene function by knock-out, knock-in,
over/mis expression, and knock-down [82].

A majority of zebrafish genes have already been mutated through the efforts of several large
mutagenesis programs. The Zebrafish Mutation Project (ZMP), at the Sanger Institute identified
mutant genes by Targeting Induced Local Lesions in Genomes (TILLING) libraries of ENU induced
mutations. These mutant fish are available from the Zebrafish International Resource Center (ZIRC)
and/or European Zebrafish Resource Center (EZRC). Another large scale genome wide screen has
been done using insertional mutagenesis, and these fish are available from ZIRC [83]. In addition to
these large scale genome wide collections, many labs have been generating and identifying mutations
for the past twenty years, most all of which are available from the resource centers or from individual
labs. Zebrafish investigators are traditionally quite open and generous.

To create new mutant lines, genome editing has been routinely accomplished using transcription
activator-like effector nucleases (TALENs), and can now be achieved with greater efficiency using
clustered regularly interspaced short palindromic repeats (CRISPR) technology. While TALENs require
protein engineering and are time-consuming, they can be designed to specifically target any region of a
gene of interest. Although somewhat more limited by sequence requirements, the CRISPR system can
introduce specific mutations quickly through alteration of the sequence of the guide RNA associated
with the Cas9 enzyme. This strategy facilitates the study of neurological phenotypes with a selected
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genetic basis [77]. For example, CRISPR-mediated knockdown of carbonic anhydrase related proteins
(CARPs) that are highly expressed in the CNS has revealed a role in regulation of movement. Abnormal
movement patterns were detected by video tracking of zebrafish embryos [84]. Importantly, the knock-in
approach in which exogenous DNA is incorporated into the genome is also possible with CRISPR
technology. This strategy has already been used to insert transgenic markers, loxP sites and small affinity
tags such as HA at specific loci in zebrafish [85–87]. Additionally, single nucleotide polymorphisms
have been rescued by CRISPR-mediated homology directed repair [88]. The incorporation of DNA
sequences with disease-specific SNPs has been accomplished in mouse and cell culture, suggesting that
this approach to the study of genetic disorders is possible in zebrafish as well.

Mutations are often associated with compensatory events that counteract the effect of the
lesion [89]. Antisense morpholino oligonucleotides (MOs) do not trigger the same compensatory
mechanisms, so they provide a complement to genome editing and can be used to modulate gene
expression. On the other hand, MOs are subject to significant off target effects, so MO experiments
must be well-controlled and interpreted with caution [90,91]. Translation blocking MOs bind
near the AUG start codon of target transcripts, thereby blocking ribosome entry and translation
initiation. Alternatively, splice blocking MOs can be designed to bind to splice donor or acceptor
sites to prevent normal splicing, often resulting in nonsense transcripts that are rapidly degraded
in the embryo. Morpholinos enable rapid targeting of PWS-associated genes, as well as genes
associated with hypothalamic development and regulation, resulting in endophenotypes relevant
to PWS. Several studies have used these techniques to investigate genes implicated in PWS-like
disorders demonstrating a startlingly high degree of conservation in the molecular control of brain
development [27,28,30,31,92–94]. Although MOs are an important tool for investigating early brain
development, they become essentially inactive by four to five days post-fertilization, making them less
useful for behavioral analyses.

2.8. Approaches for Gene Discovery in Zebrafish

Zebrafish were originally selected for development as a model organism based on the ability to
efficiently perform genetic analyses in this organism [95]. In the past, mutagenesis screens focused
on embryonic development where they have had a major impact on our understanding of vertebrate
development. More recently, mutagenesis screens have been utilized to study myriad aspects of
biology. The discovery of disease genes is rapidly becoming a major focus for mutagenesis screens.
Several approaches have been utilized including chemical mutagenesis, insertional mutagenesis, and
protein trapping [96–102]. The standard technique for chemical mutagenesis involves exposure to
ethylnitrosourea (ENU), which induces point mutations in the germline. Although highly efficient,
the random nature of this technique complicates location of the mutation and identification of the
mutated gene. Insertional mutagenesis involves the incorporation of exogenous DNA by injection of a
retrovirus or transposon. In contrast to the ENU approach, mutated genes can be rapidly identified
due to the inserted DNA, however, the mutagenesis throughput is much smaller. Similar ease of
identification is possible using protein-trapping techniques, in which integration of a splice acceptor
into a transcriptionally active locus results in a truncated protein and expression of the reporter
construct. Throughput levels are comparable with other insertional strategies [102]. Mutagenesis has
already yielded zebrafish models for a variety of CNS disorders, including Alzheimer’s disease, Dravet
Syndrome, Schizophrenia and addiction [79,103,104]. A few of these models have been further utilized
for drug screening, identifying promising new pharmacotherapies for their targeted disorders [58,79].
This suggests that forward genetics can also generate PWS-associated endophenotypes with an
identifiable genetic basis that can be rescued in large-scale drug screens to identify therapeutic targets.

2.9. Pharmacogenomic Methods in Zebrafish

Zebrafish are increasingly being utilized for drug discovery and toxicological studies due to their
small size and the high concordance of drug response between this organism and mammalian systems.
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In addition, dosing is straightforward as compounds are simply added to the embryo water. A major
advantage of zebrafish derives from the fact that bioactive compounds can be identified based on
their effects on embryonic phenotype [64,105]. Therefore, no a priori knowledge of disease genes or
pathways is required for identifying bioactive compounds. Likewise, phenotype based screens are
agnostic to target organ, meaning that a drug may target a seemingly unrelated process but it will
still be identified in these screens. For identifying compounds that effect hypothalamic development
and function, as could be done for PWS endophenotypes, this facet of zebrafish phenotype screening
would be particularly advantages, since the neuroendocrine system is regulated by myriad, complex,
poorly understood, feedback mechanisms.

A variety of chemical screen designs have been utilized over the past 15 years since the first
demonstration of this approach in zebrafish. Screens have utilized numerous phenotypic endpoints
including: developmental morphology, whole-mount in situ hybridization (WISH) for mRNA
expression patterns, whole-mount immunohistochemistry (IHC) for protein expression patterns,
survival, apoptosis, and behavior [63,64,68,69,79,105–125]. Several different compound collections
have been utilized for zebrafish screening projects ranging from highly diverse chemical backbone
libraries to FDA approved drug collections. For projects aiming to identify potential chemical
backbones for developing new drug classes, libraries consisting of a high diversity of quality drug-like
and lead-like compounds have been used, for example, Chembridge DIVERSet-EXP collection of
synthetic compounds. Alternatively, if the goal is to identify genetic pathways and pharmacological
targets involved in the disease process, then libraries of highly characterized compounds, such as
The Library of Pharmacologically Active Compounds (LOPAC) collection of 1280 well-characterized
pharmacologically active compounds, or, collections such as MicroSource spectrum, which contains
1040 US clinical trial stage drugs, 240 additional drugs marketed internationally and 800 natural
products, could be used. More recently, repurposing FDA approved drugs and compounds in clinical
trials has been the focus of several screens. Compound libraries for repurposing include collections
such as: Enzo SCREEN-WELL® FDA approved drug library V2; the Johns Hopkins Drug Library
(JHDL) consisting of 2290 drugs approved for use in humans by the FDA or international counterparts,
775 drugs at various stages in clinical trials, and 66 rare drug compounds; and the National Center
for Advancing Translational Sciences (NCATS) collection of 2500 small molecular entities approved
for clinical use by U.S., European Union, Japanese and Canadian authorities, along with about 1000
additional investigational compounds [64,68,105,107].

2.10. Fast Track to PWS Pharmacotheraputics

According to the NCATS, discovering new uses for approved drugs provides the quickest possible
transition from bench to bedside. The recent success of using zebrafish for phenotypic screens,
particularly for repurposing FDA approved drugs presents an opportunity for fast track identification
of potential pharmacotherapeutics for PWS. Perhaps the simplest approach would be to use changes in
PWS-relevant hypothalamic hormone producing cells types as endpoint endophenotypes. For example,
one could assay for FDA approved compounds that are capable of increasing fluorescence of
oxytocin:EGFP transgenic embryos, indicating either an increase in the number of oxytocin expressing
cells or an increase in oxytocin expression. The same could be done using GH, FSH or LH, all of which
are deficient in PWS patients. The power of the screen would likely benefit from using several of these
assays. This approach of simply screening zebrafish embryos for compounds that increase numbers
or expression of normal cell types, which are relevant to adult disease states, has recently proved to
be highly successful [68,118]. A further step could be to perform these screens using zebrafish with
PWS-related genetic deficits, such as sim1 mutant embryos. The endpoint would then be to rescue the
endocrine defects in the mutant embryos. The power of these phenotypic screens derives from the
fact that they are molecular target blind and tissue agnostic so it doesn’t matter if the reduction in
oxytocin expression is a direct result of PWS pathology or if oxytocin is unrelated to PWS symptoms.
If a compound increases oxytocin in zebrafish embryos, the chances are good that it will also do so
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in people, regardless of whether the mechanism is targeted or pleiotropic. Such bioactivity has a
reasonable chance of helping to alleviate PWS symptoms. Since the screens are performed using FDA
approved drugs, identified compounds could be immediately used by PWS patients.

3. Conclusions

Although the genetic basis of PWS is known, how the PWS-associated chromosomal anomalies
drive neurodevelopmental deficiencies underlying this disorder is poorly understood. Mouse models
have been generated that closely recapitulate PWS genetic defects, however, differences between
mouse and humans appears to preclude phenocopy of this disorder between the species. On the
other hand, the majority of PWS-related genes are highly conserved in mammals so a number of
mouse models are providing important insight into the genetic underpinnings of PWS. Examination of
potentially orthologous genes in zebrafish indicates that the imprinted PWS region has newly arisen
in the mammalian lineage, within a highly conserved cluster of non-imprinted neural related genes.
Thus, zebrafish models of PWS genes would focus on the ancestral precursors of the imprinted genes
or on the non-imprinted genes. In contrast, the genes and pathways controlling development, which
are presumably disrupted in PWS, are highly conserved and thus can be productively modeled in
zebrafish. This is particularly true in the hypothalamus where neuroendocrine cell types that are
effected in PWS are highly conserved. Therefore, forward and reverse genetic approaches in zebrafish
accompanied by phenotypic analysis technologies can be used to identify drug targets and lead to
a deeper understanding of the pathways underlying PWS-associated phenotypes, complimenting
ongoing studies in mice. An important advantage of zebrafish is that potential PWS models can be
utilized for high-throughput drug screening, a feature not found in any other vertebrate model system.
Given our current understanding of the molecular genetic underpinnings of PWS and the long lead
times for drug development, a phenotypic screening program for FDA approved drugs in zebrafish
may represent the fastest path to identifying potential curative therapies.
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