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Identification of novel alleles associated with insulin resistance
in childhood obesity using pooled-DNA genome-wide
association study approach
P Kotnik1,7, E Knapič1,2,7, J Kokošar3, J Kovač4, R Jerala5, T Battelino1,6 and S Horvat2,5

BACKGROUND: Recently, we witnessed great progress in the discovery of genetic variants associated with obesity and type 2
diabetes (T2D), especially in adults. Much less is known regarding genetic variants associated with insulin resistance (IR). We
hypothesized that novel IR genes could be efficiently detected in a population of obese children and adolescents who may not
exhibit comorbidities and other confounding factors.
OBJECTIVES: This study aimed to determine whether a genome-wide association study (GWAS), using a DNA-pooling approach,
could identify novel genes associated with IR.
SUBJECTS: The pooled-DNA GWAS analysis included Slovenian obese children and adolescents with and without IR matched for
body mass index, gender and age. A replication study was conducted in another independent cohort with or without IR.
METHODS: For the pooled-DNA GWAS, we used HumanOmni5-Quad SNP array (Illumina). Allele frequency distributions were
compared with modified t-tests and χ2-tests and ranked using PLINK. Top single nucleotide polymorphisms (SNPs) were validated
using individual genotyping by high-resolution melting analysis and TaqMan assay.
RESULTS:We identified five top-ranking SNPs from the pooled-DNA GWAS analysis within the ECE1, IL1R2, GNPDA1, HLA-J and PYGB
loci. All except SNP rs9261108 (HLA-J locus) were confirmed in the validation phase using individual genotyping. The SNP rs2258617
within PYGB remained statistically significant for both recessive and additive models in both cohorts and in a merged analysis of
both cohorts and present the strongest novel candidate gene for IR.
CONCLUSION: We report for the first time a pooled-DNA GWAS approach to identify five novel SNPs or genes for IR in a paediatric
population. The four loci confirmed in the second validation phase study warrant further studies, especially the strongest SNP
rs2258617 within PYGB, and provide targets for further basic research of IR mechanisms and for the development of potential new
IR and T2D therapies.
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INTRODUCTION
Obesity in adults and children is one of the largest worldwide
health-care problems. A recent comprehensive analysis of over-
weight and obesity in 195 countries between 1990 and 2015 has
revealed sobering trends in that the rate of increase of obesity in
children has been greater than the rate of increase in adults.1

Obesity is defined as the accumulation of excess body fat, in
addition to the accumulation of adipose tissue in the liver, skeletal
muscle and pericardial region, all of which can lead to the
development of obesity’s complications.2 Insulin resistance (IR)
occurs early and is possibly the main mechanism leading to the
metabolic complications of obesity, such as type 2 diabetes
mellitus (T2D), dyslipidaemia, early atherosclerosis and cardiovas-
cular disease.3

Environmental and genetic factors contribute to IR. The main
environmental factors are obesity, sedentary behaviour, stress,
nutritional factors (such as excessive intake of fructose in liquid
form and branched-chain amino acids) and sleep deprivation.4 IR

is associated with certain well-known human monogenic
disorders.5 The first single gene mutation responsible for severe
IR was discovered in the insulin receptor gene (INSR) in 1988.6,7 A
comprehensive review of monogenic forms of IR is given by
Semple et al.,8 and we will list here only a few monogenic genes
causing severe IR. Directly functionally connected to INSR are
mutations in HMGA1, a transcription factor binding to the INSR
promotor. Downstream of insulin signalling, mutations were
identified in AKT2 and AS160. Lipodystrophy disorders have also
resulted in severe IR such as certain alleles in CAV1, PTRF, CIDEC
and BSCL2. Digenic mutations in PPARG and PPP1R3A have
revealed that a combination of mutations in genes of lipid or
carbohydrate metabolism can result in IR. Moreover, several
complex syndromes primarily due to severe obesity and
hyperphagia have also been associated with severe IR (see also
Semple et al.8). In addition, several genetic variants have been
associated with IR in humans using candidate gene and genome-
wide association study (GWAS) approaches.5,9 There is a higher
incidence of IR with the simultaneous presence of obesity and
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associated genetic variants.10 This implies that genetic predis-
position to IR does not necessarily lead to IR, but IR develops as
the genetic predisposition interacts with environmental factors,
especially excessive body weight. However, it could also be that
excessive body weight and IR are both consequences of the same
(environmental) exposure.
Several genetic loci have been associated with T2D and are

collated in the GWAS catalogue (https://www.ebi.ac.uk/gwas). This
catalogue is manually curated in a quality-controlled manner and
collects data from the literature of published GWAS assaying at
least 100 000 single nucleotide polymorphisms (SNPs) and all
SNP–trait associations with P-valueso1.0 × 10− 5.11 As of 5
October 2017, 179 significant GWAS loci in 21 studies for a term
insulin resistance were recorded, but essentially all of these were
derived from studies of adult populations. Only three GWAS
studies reported associations also in children: an LEPR gene
variant,12 a common variant in the FTO gene in a European
population,13 and several genetic loci in Hispanic children for T2D
and IR.14

The above-mentioned studies, therefore, refer to the identifica-
tion of genes associated with IR in fully developed T2D, mostly in
adults. Much less is known about the genetic factors important in
the early phases of T2D and in the relationship between obesity
and IR. One large-scale meta-analysis study in adults identified six
previously unknown loci associated with IR, implying that IR loci
can function in different ways than T2D genes.15 There are no
similar studies in children and adolescents specifically designed to
identify IR loci. However, the authors of one study demonstrated
the cumulative role of several genetic variants linked to T2D (in
genes TCF7L2, HHEX, SLC30A8, WFS1, KCNJ11, KCNQ1, MTNR1B, FTO
and PPARG) in the development of prediabetes in adolescents. A
greater number of variants was associated with a higher likelihood
of prediabetes in this population.16 In another study, the authors
linked genetic variants in genes TCF7L2, IGF2BP2, CDKAL1 and
HHEX1A with oral glucose tolerance test results in adolescents,
identifying reduced insulin secretion as an important pathophy-
siologic factor.17 In the study of Xi et al.,18 two SNPs in or near the
GNPDA2 and KCTD15 genes were significantly associated with the
risk of IR in Chinese children. In a cross-sectional cohort of Greek
children and adolescents of European descent, a significant
association was detected between CDKAL1 SNPs and IR. Recently,
a candidate gene approach study demonstrated that the Pro12Ala
polymorphism in PPARG was associated with IR in Mexican

children and suggested that this relationship was modified by
dyslipidaemia.19 Therefore, genetic studies of T2D in adults and
epidemiological, as well as non-genetic (such as nutritional and
physical activity), studies of IR and T2D in children are numerous,
whereas genetic studies specifically aiming to identify novel genes
predisposing to IR in children and adolescents are lacking.
GWAS is an approach that allows examination of common

genetic variants throughout the genome. Several studies have
demonstrated that DNA pooling can detect the most promising
candidate SNPs or genes, with considerable savings in time and
costs.20–24 Based on a comprehensive review, theoretical calcula-
tions and experimental validations comparing classical GWAS
studies using individual genotyping to GWAS with DNA pooling
suggested that pooling-based GWAS is a much more efficient
strategy for identifying genetic associations with diseases or
traits.25 Perhaps the most important advantage of pooled-DNA
GWAS is its efficiency of study design, which requires three orders
of magnitude less financial input than GWAS strategies based on
individual genotyping in the first phase. In addition, pooled-DNA
GWAS can be effectively applied to studies involving smaller
populations. Specifically, in rare diseases or in smaller populations
such as the Slovenian paediatric population, it is difficult to obtain
an appropriately large sample for GWAS using individual
genotyping. In the present study, GWAS was performed using
DNA pools from cases and controls of obese children and
adolescents with and without IR.

MATERIALS AND METHODS
Patients
Prior to inclusion in the study, all participants or their legal guardians
signed an informed consent. The study protocol was approved by The
Slovenian National Medical Ethics Committee (no. 25/10/09). The study
included the first cohort of 198 obese children and adolescents managed
by the Department of Endocrinology, Diabetes and Metabolism, University
Children’s Hospital, Ljubljana, Slovenia for obesity. Characteristics of the
subjects are shown in detail in Table 1. For the purposes of the replication
of molecular genetic analysis of identified SNPs in an independent
population, the second cohort of additional 157 obese children and
adolescents, managed by the same department, matched for age, gender
status, degree of overweight and IR status to the primary cohort was
included. Cohort was divided into an IR+ group (39 boys, 40 girls; mean
age= 13.9 ± 2.6 years, mean standardized body mass index (BMI-SDS) =
2.9 ± 0.5) and IR− group (38 boys, 40 girls; mean age= 13.8 ± 2.9 years,

Table 1. Cohorts of obese adolescents with (IR+) and without (IR− ) IR

Cohort 1 Cohort 2 Whole tested population

IR+ IR− IR+ IR− IR+ IR−

Gender, n
Males 48 50 39 38 87 88
Females 50 50 40 40 90 90

Age (years) 13.8 (13.3–14.3) 12.6 (12.0–13.1) 13.9 (13.3–14.5) 13.8 (13.2–14.4) 13.8 (13.5–14.2) 13.1 (12.7–13.5)
BMI-SDS (kg m−2) 3.03 (2.93–3.14) 2.85 (2.76–2.94) 2.88 (2.77–2.98) 2.82 (2.72–2.92) 2.96 (2.89–3.04) 2.84 (2.77–2.90)
HbA1c (%) 5.20 (5.15–5.26) 5.19 (5.13–5.24) 5.15 (5.10–5.21) 5.13 (5.08–5.19) 5.18 (5.14–5.22) 5.16 (5.12–5.2)
HOMA-IR 4.62 (4.22–5.02) 1.85 (1.70–1.99) 4.57 (4.08–5.06 1.81 (1.63–1.98) 4.60 (4.29–4.91) 1.83 (1.72–1.94)
WBISI 2.23 (2.11–2.36) 5.58 (5.08–6.08) 2.28 (2.15–2.42) 5.93 (5.35–6.51) 2.26 (2.16–2.35) 5.73 (5.36–6.11)
Systolic blood pressure (mm Hg) 128.8 (126.2–131.3) 123.5 (121.0–126.1) 126.5 (123.8–129.2) 124.6 (122.2–127.1) 127.7 (125.9–129.6) 124.0 (122.2–125.8)
Diastolic blood pressure (mm Hg) 68.8 (66.6–71.0) 64.8 (63.0–66.5) 65.7 (63.7–67.7) 64.5 (62.8–66.3) 67.4 (65.9–68.9) 64.7 (63.4–65.9)
Total cholesterol (mmol L− 1) 4.11 (3.98–4.25) 4.24 (4.09–4.40) 4.26 (4.06–4.46) 3.99 (3.83–4.15) 4.18 (4.06–4.30) 4.13 (4.02–4.24)
LDL (mmol L− 1) 2.49 (2.37–2.60) 2.57 (2.44–2.71) 2.62 (2.45–2.80) 2.38 (2.24–2.52) 2.55 (2.45–2.65) 2.49 (2.39–2.59)
HDL (mmol L−1) 1.11 (1.06–1.16) 1.20 (1.15–1.26) 1.10 (1.04–1.15) 1.17 (1.11–1.22) 1.11 (1.07–1.14) 1.19 (1.15–1.23)
Triglycerides (mmol L−1) 1.39 (1.26–1.53) 1.07 (0.97–1.18) 1.31 (1.18–1.44) 1.04 (0.94–1.14) 1.36 (1.26–1.45) 1.06 (0.99–1.13)

Abbreviations: BMI-SDS, standardized body mass index; CI, confidence interval; HbA1c, glycated haemoglobin; HDL, high-density lipoprotein; HOMA-IR,
homeostatic model assessment—insulin resistance; LDL, low-density lipoprotein; WBISI, whole-body insulin sensitivity index. Values are represented as mean
(95% CI), except for gender where it is presented as number.
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mean BMI-SDS= 2.8 ± 0.4) using criteria identical to that used for the
pooled-DNA GWAS cohort.
Pubertal status of the subjects was determined in both cohorts

according to Tanner26,27; it was, however, not used as a matching criterion.
Characteristics of the subjects are also shown in detail in Table 1. The two
cohorts were comparable regarding the pubertal status ratios. In the
original first cohort, there were 17/42 (40%) prepubertal, 23/56 (41%)
midpubertal and 59/101 (58%) postpubertal subjects in IR+ group. In the
IR− group, there were 25/42 (60%) prepubertal, 33/56 (59) midpubertal
and 42/101 (42%) postpubertal subjects. In the replication (second) cohort,
there were 8/19 (42%) prepubertal, 30/65 (46%) midpubertal and 39/73
(53%) postpubertal subjects in IR+ group. In the IR− group, there were
11/19 (58%) prepubertal, 35/65 (54%) midpubertal and 34/73 (47%)
postpubertal subjects.
Height (cm) and weight (kg) of participants were measured by trained

medical staff using validated wall-mounted stadiometers (Quick Medical,
Issaquah, WA, USA) and electronic digital scales (Alba, Vojnik, Slovenia).
BMI values were calculated as weight (kg)/height2 (m2). Obesity was
defined as a BMI-SDS42.28

IR assessment
Oral glucose tolerance test was performed in all subjects after an overnight
fast. Blood samples were taken before (0 min) and 30, 60 and 120 min after
glucose ingestion (1.75 g kg− 1; maximum, 75 g).29 The concentration of
glucose was measured using a routine hexokinase-based protocol and an
Olympus AU400 Chemistry Analyser (Olympus, Tokyo, Japan). The plasma
insulin concentration was assessed with the Immulite 2000 Insulin solid-
phase enzyme-labelled chemiluminescent immunometric assay using an
Immulite 2000 analyser (Siemens, Berlin, Germany).
IR was determined using the whole-body insulin sensitivity index (WBISI)

and homeostatic model assessment—IR (HOMA-IR). WBISI values were
calculated using this formula:

WBISI ¼ 10 000
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cfasting glucose ´Cfasting insulin ´ Cmean glucose during OGTT ´ Cmean insulin during OGTT

p �;

with glucose concentrations in mmol l− 1 and insulin concentration in
pmol l− 1.30 HOMA-IR values were calculated using this formula:
HOMA- IR ¼ Cfasting glucose ´Cfasting insulin

22:5 , with the glucose and insulin concentra-
tions in the same units as for WBISI.31 The WBISI threshold was set at o3
and the HOMA-IR threshold was set at 42.5.

Genome-wide association study
GWAS was performed on pooled samples of the first cohort of obese
children and adolescents to search for genetic variants. Obese adolescents
matched for gender, age and BMI-SDS were divided into two groups based
on IR status (Table 1). The group of obese children and adolescents with IR
(IR+) included 48 boys and 50 girls (mean age= 13.5 ± 2.6 years, mean BMI-
SDS= 3.0 ± 0.5) and the group of obese children and adolescents without
IR (IR− ) included 50 boys and 50 girls (mean age= 12.6 ± 2.9 years, mean
BMI-SDS= 2.8 ± 0.5). Genomic DNA was isolated from whole blood samples
using the FlexiGene DNA Isolation Kit (Qiagen, Hilden, Germany). Before
pooling, genomic DNA was diluted to 100 ng l− 1 to ensure equal
representation of each sample. GWAS was conducted by the Beijing
Genomics Institute (BGI, Hong Kong, Hong Kong) using SNP-chip Ilumina
HumanOmni5-Quad v1.0 (Illumina Inc., San Diego, CA, USA). Each IR+ or
IR− pool was assessed three times, generating three replicates per each
IR group.

Data normalization and quality control
To compute the allele frequency estimates from the pooled data, the raw
two colour (green/red) bead scores were extracted from the
HumanOmni5-Quad (v1.0) array scans. The raw intensity scores, as
reported by the Illumina GenomeStudio software (v1.9.4), require
calibration before further processing to correct for manufacturing and/or
assaying properties that could bias allele frequency estimations.22,32,33 The
green/red ratio tends to systematically differ between different arrays and
array strips.32,33 Calibration of the raw intensity data was performed on a
strip-by-strip basis by rescaling the red bead score signal to achieve a
mean pooling allele frequency (PAF) value of 0.5 for all SNPs on a given
strip. The PAF values were computed as the scaled red intensity value
divided by the total corrected red plus green intensity value. SNPs for
which the mean PAF value was supported by less than four individual
beads on a chip (for any given sample) were excluded from further

processing. Altogether, on the basis of PAF, we excluded 495 884 SNPs,
which represents 11.5% of all SNPs on the microarray. Normalized PAF
values were then used for principal component analysis, as implemented
in scikit-learn (http://scikit-learn.org), to confirm the clustering of replicate
samples. Mean pooling variances and statistical tests of nine comparisons
between IR+ and IR− pools are shown in Supplementary Table 1.

Statistical analysis of GWAS data
A linear model-based approach22,32,33 was applied using a set of PAF
estimates for the IR+ and IR− group comparisons. For each pair of test and
control samples, a binominal sampling variance was calculated as V using
this formula: V_(t,c) = (〖PAF〗_t(1−〖PAF〗_t))/(2n_t)+(〖PAF〗_c
(1−〖PAF〗_c))/(2n_c), in which PAFt and PAFc were the pooling allele
frequencies for the test and control samples, respectively, and n was the
number of SNPs in a sample. Pooling variance related to the construction
of pools from non-identical samples (for example, test and control pools)
was estimated as var (epooling-2) according to this formula33: var(e_
(pooling-2)) = 1/(n− 2)∑_(i= 1)n 〖[〖〖(PAF〗_(t,i)−〖PAF〗_(c,i))〗2− V_
(t,c,i)]/2〗. Pooling variance was calculated for each case–control pair of
technical replicates separately and then averaged across all comparisons.
The estimated pooling variances were used in χ2 test as previously
described22: T =〖(〖PAF〗_t−〖PAF〗_c)〗2/V_(t,c) × V_(t,c)/(V_(t,c)+2var
(e_(pooling-2))). Prioritization of SNPs that differed significantly between
groups was performed using a modification of the sliding window method,
as described previously.5

Individual genotyping and replication
GWAS results were evaluated by two independent genotyping assays, the
high-resolution melting (HRM) analysis and TaqMan test. HRM analysis was
performed using MeltDoctor master mix (ThermoFisher Scientific, Wal-
tham, MA, USA) and appropriate oligonucleotide primers (Eurofins
Scientific, Luxembourg, Luxembourg) on a 7500 Fast Real-Time PCR
System (ThermoFisher). For segment sequencing, a 3500 Genetic Analyser
(ThermoFisher) was used. Genotyping using TaqMan assays (ThermoFisher)
was also conducted on a 7500 Fast Real-Time PCR System.

Statistical analysis of SNP genotyping data
Fisher’s exact test for 2 × 2 contingency tables was used to analyse data
obtained from SNP genotyping. Online tool VassarStats (Vassar College,
Poughkeepsie, NY, USA) enables calculation of P-values, odds ratios (ORs)
and 95% confidence intervals (95% CIs). Based on these calculations, the
allele distribution between two cohorts could be evaluated. The post hoc
statistical power (1− β) of Fisher’s exact test for an α of 0.05 was calculated
with the G*Power calculator v3.1.34 A P-valueo0.05 and statistical power
450% and a P-valueo0.05 and statistical power 480% were criteria to
include SNP in further analysis. Following the Cochran–Armitage trend test,
the combined set of P-values by recessive, dominant and additive model
were analysed for false discovery rate (FDR) using the two-stage Benjamini,
Krieger and Yekutieli FDR procedure.35 The q-value was optimized in such
a way that a set of »discoveries« did not include any potential false positive
result (q=0,11), consequently only the P-values below a threshold of
0.0239 were considered as statistically significant results.

RESULTS
Genome-wide association analysis of pooled DNA for
identification of novel IR loci in paediatric Slovenian population
We employed a pooled-sample GWAS instead of GWAS on
individual DNAs as a cost-effective and feasible method for
analysing smaller populations to reduce genetic variability. The
underlying hypothesis was that the IR+ DNA pool (participants
with IR) would contain more susceptibility alleles for IR than the
IR− DNA pool (participants without IR), which could be detected
as a difference in allele frequencies or in relative allele signal
intensities.
In the first step, allele frequency estimates were computed from

the raw pooled data of the HumanOmni5-Quad (v1.0) SNP array
scans. Following extensive calibration, the mean PAF was
calculated and the normalized PAF values were employed in a
principal component analysis. Figure 1 shows the principal
component analysis plot of the distribution of three IR+ pools
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and three IR− pools. The three replicates within each group are
highly correlated, suggesting low technical variability and, hence,
validity of the experimental procedures. The amount of variance
explained by the first two component, PC1 and PC2, is 42% and
16%, respectively. Given this relatively low amount of explained
variance in the PC2 compared with the PC1 component, the
spread along the y axis alone is not indicative of the high within-
group sample variability. IR+ and IR− clusters are far apart
indicating a low correlation between the two groups and,
therefore the existence of true global genetic differences
(biological variance).
Following computation of the pooling variance, SNPs were

ranked by increasing P-values derived from the χ2 test results. For
each SNP, a mean rank in a sliding window of 10 consecutive
neighbouring SNPs was calculated (Supplementary Table 1). The
sliding window method was used to identify regions that show
consistent differences between allele frequencies of SNPs in the
case and control groups. The obtained SNP mean rank values were
normalized (divided by the number of all tested SNPs) and − log10
transformed before plotting. Supplementary Figure 1 shows
Manhattan plots of the top five significant SNPs: rs212540 at
Chr1:21266624, rs3218888 at Chr2:102014739, rs252111 at
Chr5:142005685, rs9261108 at Chr6:30007810, and rs2258617 at
Chr20:25274318. Genomic coordinates for these and other SNPs

are displayed along the x axis, with the negative logarithm of the
SNP’s association P-value on the y axis. The strongest associations
have the smallest P-values and hence their negative logarithms
are the greatest. The most significant SNPs in the pooled-DNA
GWAS analysis were then evaluated in the next step.

Evaluation of top SNPs from pooled-DNA GWAS analysis on
individual DNA samples of the first cohort
The five candidate SNPs (Supplementary Figure 1) identified
during GWAS analysis of pooled IR+ and IR− DNA cohorts were
selected for re-evaluation on individual DNA samples (first cohort)
constituting the DNA pools: 98 children and adolescents from the
IR+ group and 100 from the IR− group. To achieve high accuracy
and efficiency of genotyping, two different scoring approaches
were employed, HRM analysis and TaqMan assay. Table 2A
displays the SNP genomic coordinates, associated genes and
allelic ratios from the global HapMap project,36 European 1000
genomes37 and allele frequency ratios from our study. Allelic ratios
for all five SNPs from our study are very similar to HapMap and
especially to European values, which is expected given the
geographical location of the studied Slovenian paediatric popula-
tion. Table 2B displays minor allelic frequencies in each individual
pool with averages and s.e. given separately for IR+, IR− and
combined IR+ and IR− populations. Minor allelic frequencies do
not deviate much between replicates within IR+ or IR− pools,

IR +
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Figure 1. Principal component (PC) analysis plot of distribution of
three IR+ pools and three IR− pools. The amount of variance
explained by the first two component, PC1 and PC2, is 42% and
16%, respectively. As the percentage of explained variance in the
PC2 compared with the PC1 component is low, the spread along the
y axis alone does not indicate the high within-group sample
variability (that is, low technical variance).As IR+ and IR− clusters are
far apart, this indicates true global genetic differences (biological
variance) between the groups.

Table 2A. Top five candidate SNPs from GWAS-pool analysis on individual samples that composed the pools

SNP Location (GRCh38.p2) Gene Allele ratio (HapMap) MAF (European 1000 Genomes) Mean allele frequencies (our study)

rs212540 1:21266624 ECE1 A:G= 0.588:0.412 A:G= 0.600/0.400 A:G= 0.592/0.408
rs3218888 2:102014739 IL1R2 C:T= 0.108/0.892 C:T= 0.116/0.884 C:T= 0.113/0.887
rs252111 5:142005685 GNPDA1 C:T= 0.195/0.805 C:T= 0.178/0.822 C:T= 0.129/0.871
rs9261108 6:30007810 HLA-J G:A= 0.960/0.040 G:A= 0.949/0.051 G:A= 0.931/0.069
rs2258617 20: 25274318 PYGB C:T= 0.562/0.438 C:T= 0.569/0.431 C:T= 0.515/0.485

Abbreviations: GWAS, genome-wide association study; MAF, mean allele frequency; SNP, single-nucleotide polymorphism. In Table 2A, we show SNP
chromosome location, associated gene, mean allele frequencies (MAFs) from HapMap (35), 1000 genomes from the European population (34) and from
our study.

Table 2B. Top five candidate SNPs from GWAS-pool analysis on
individual samples that composed the pools

Sample rs212540 rs3218888 rs252111 rs9261108 rs2258617

1. IR+ 0.358 0.147 0.922 0.913 0.477
2. IR+ 0.352 0.138 0.895 0.874 0.462
3. IR+ 0.355 0.160 0.944 0.909 0.493
Average IR+
pool

0.355 0.148 0.920 0.899 0.477

S.e.m. 0.003 0.011 0.025 0.021 0.015
4. IR− 0.476 0.084 0.828 0.964 0.570
5. IR− 0.451 0.085 0.774 0.949 0.541
6. IR− 0.457 0.065 0.865 0.980 0.545
Average IR−
pool

0.462 0.078 0.823 0.964 0.552

S.e.m. 0.013 0.011 0.046 0.016 0.016
Mean IR+ and
IR−

0.408 0.113 0.871 0.931 0.515

S.e.m. 0.059 0.040 0.063 0.040 0.043

Abbreviations: GWAS, genome-wide association study; IR, insulin resis-
tance; SNP, single-nucleotide polymorphism. In Table 2B, we show
frequencies of the B allele in each pool-array experiment with averages
and s.e. separately for the pools IR+, IR− and combined IR+ and IR−
together. Our frequency data are essentially similar to global mean allele
frequency (MAF) and EUR 1K MAF, and the variability between the pools is
very low.
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suggesting low technical variability in our array experiment.
However, the mean minor allelic frequencies between the IR+ and
IR− pools (Table 2B) become apparent, suggesting that true
genetic differences between the IR+ and IR− pools exist.
Following HRM and TaqMan genotyping, we performed

statistical analyses for significant differences between the IR+
and IR− groups for each SNP. Results based on HRM identified
statistically significant differences between analysed cohorts for a
dominant inheritance model for rs212540 and rs252111 (rs212540:
P-value = 0.010, (1− β) = 0.742, OR= 2.315, 95% CI = 1.258–4.260;
rs252111: P-value = 0.014, (1− β) = 0.670, OR= 0.421, 95% CI =
0.217–0.816) and a recessive inheritance model for rs3218888
and rs2258617 (rs3218888: P-value = 0.014, (1− β) = 0.670, OR=
2.500, 95% CI = 1.216–5.141; rs2258617: P-value = 0.006,
(1− β) = 0.803, OR= 2.795, 95% CI = 1.349–5.790). Analysis of
rs9261108 did not return statistically significant results and was
thus eliminated from further analysis.
The four SNPs exhibiting significant results after HRM genotyp-

ing of individuals comprising the GWAS pools were re-genotyped
on individual DNA samples using TaqMan probe assays (Table 3)
to verify the results obtained by the HRM method. Table 3
presents results of testing the dominant, additive and recessive
models of inheritance and provides P-values, ORs and 95% CIs. A
two-stage Benjamini, Krieger and Yekutieli FDR procedure for FDR
was used and P-values less than a threshold value of 0.0239 were
considered as significant. For SNP rs2258617, a recessive and
additive models showed significant associations in the first cohort.
SNP rs212540 was significant for a recessive model. For SNP
rs252111, we cannot exclude dominant or an additive model
though an additive model fits the data best (P40.0062). SNP
rs3218888 reached suggestive significance (P40.0397) for a
recessive model.
Locus zoom plots for these four SNPs are shown in Figure 2. Top

significant SNPs lie in a relatively narrow regions on chromosomes
1, 2, 5 and 20. A closer examination of these regions tagged by
these SNPs revealed that they were located within genes ECE1,
IL1R2, GNPDA1 and PYGB that have not yet been associated with IR
but have roles and functions that can be associated with IR (see
Discussion section).

Replication of top SNPs in a second independent cohort and in a
combined analysis of the first and second cohorts
Although our pooled-DNA GWAS results were confirmed by
genotype analysis of individual DNA samples from IR+ and IR−
cohorts, we aimed at testing the four statistically significant SNPs
for replication in an additional independent cohorts of IR+ and
IR− obese children and adolescents (Table 1) and in a combined
analysis of the first and second cohorts (Table 4). For this
replication study, a TaqMan genotyping assay was employed. The
participants of the second cohort, who were not related to the
members of the pooled-DNA GWAS constituting the first cohort,
were divided into an IR+ group (39 boys, 40 girls; mean
age= 13.9 ± 2.6 years, mean BMI-SDS= 2.9 ± 0.5) and an IR−
group (38 boys, 40 girls; mean age= 13.8 ± 2.9 years, mean BMI-
SDS = 2.8 ± 0.4) using criteria identical to that used for the pooled-
DNA GWAS cohort. Analysis in this second cohort showed
suggestive significant differences between groups (Table 4) for
rs2258617 located in the PYGB gene using the recessive
inheritance model (P-value = 0.039, (1− β) = 0.533, OR= 2.330,
95% CI = 1.085–5.003). The other three SNPs failed to return
statistically significant results in the second independent cohort
(data not shown). Additionally, analysis of all four SNPs was
performed on data from a merged first and second cohorts. This
combined analysis included 177 obese children and adolescents
in the IR+ group (87 boys, 90 girls; mean age = 13.9 ± 2.6 years,
mean BMI-SDS = 3.0 ± 0.5) and 178 obese children and adolescents
(88 boys, 90 girls; mean age = 13.1 ± 2.9 years, mean BMI-Ta
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SDS= 2.8 ± 0.4) in the IR− group. The SNP rs2258617 within PYGB
again remained statistically significant for both recessive and
additive models and associations were stronger than the
association in either of the two cohorts individually (Table 4).

DISCUSSION
Since its first theoretical studies20,38 and experimental tests,22,32

GWAS analysis using DNA-pooling methodology has proven to be
a very time- and cost-effective strategy compared with larger-
scale conventional GWAS requiring individual genotyping of the
entire study population. Using pooled-DNA GWAS, both known
and novel genetic variants have been identified in various
diseases or traits.39,40 Of relevance to our study, the pooled-DNA

GWAS approach has been successfully used in studies including
smaller numbers of participants.41–43 Altogether, the aim of our
study was to determine whether GWAS using DNA-pooling
methodology could identify genetic variants associated with IR
in obese children and adolescents.
Some already known but also novel IR-related loci have been

identified in our study following our GWAS-pool analyses. All loci,
calculated as sliding window of 10 consecutive neighbouring
SNPs, that surpassed statistical significance threshold are shown in
Supplementary Table 1. Our single-nucleotide variant rs2237447
(chr7:50640147) maps to the GRB10 gene very close to the GRB10
SNP rs10248619 that was significantly associated with fasting
glycaemic traits and IR in a GWAS study of Manning et al.15

Additionally, another risk allele at rs2237457 was shown to be

a b

c d

Figure 2. Locus zoom plots for genome-wide significant IR loci that were replicated in individual genotyping of the first cohort. Locus
zoom plots are shown for regions with top SNPs within the genes ECE on chromosome 1 (a), IL1RA on chromosome 2 (b), GNPDA1 on
chromosome 5 (c), and PYGB on chromosome 20 (d). Top candidate IR genes are shown on the top of the panel with the most significant SNP
indicated within the plot. Closely linked genetic map with the chromosomal physical map are shown on the x axis. The unbroken blue line
indicates the recombination rate within the region (right y axis). Each filled circle represents the log10 P-value (left y axis), with the top SNPs in
red, and other SNPs in the vicinity are coloured based on their degree of correlation (r2) with the top SNP.
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associated with T2D and glucose excursion during oral glucose
tolerance test in the Old Order Amish Study.44 GRB10 interacts
with insulin receptors and inhibits their signalling45 and hence is
functionally well connected to the traits in our study. Another
single-nucleotide variant rs227070 from our study, is located
closely to rs11212617, which was identified as T2D-related locus
with both variants mapping to intronic regions of the ATM gene.46

In this GWAS study examining glycaemic response to metformin
in T2D, common variants within the ATM gene were reported. ATM
has been known to cause Ataxia Telangiectasia (A-T; OMIM no.
208900), which is a neurodegenerative disorder but patients also
develop marked IR and have increased risk of diabetes.47

Additionally, loss-of-function mutation of Atm in mice leads to
diabetes.48 As the third gene, RNF14, which was significant in our
pooled-sample GWAS analysis, was significant in a GWAS study of
associations with amyotrophic lateral sclerosis.49 Impaired glucose
tolerance in patients with amyotrophic lateral sclerosis has been
documented decades ago,50 which was confirmed also in several
follow-up studies.51,52 Apart from comparing SNP gene-based hits
from our list of statistically significant SNPs (Supplementary Table
1), we also compared locations of closely linked regions around
our SNPs with studies not reported in the GWAS catalogue. In a
recent exome-chip study of genetic variants on diabetes-related
metabolic traits,53 rs272893 was found significant that is located in
SLC22A4, a gene found associated with T2D already in previous
GWAS studies and closely linked to our significant SNP rs2522052
(Supplementary Table 1). For further detailed analyses on
individual analyses in two independent cohorts, we have chosen
the five top SNPs because they have not been previously
described and because they showed the highest mean rank
values. However, the significant candidate SNPs in Supplementary
Table 1 present potential new genetic variants to be explored
further especially because some of the IR loci detected here in a
paediatric population might not show up in similar studies in the
adults.

Candidate SNPs after pooled-DNA GWAS analysis of the first
cohort
The pooled-DNA GWAS analysis was performed on pooled
samples divided into IR+ and IR− cohorts. Three technical
replicates per cohort were used to minimize pooling errors, and
the SNP-chip Ilumina HumanOmni5-Quad v1.0 platform was used,
which was previously shown to be robust and able to extract
maximal available information from pooled DNA.54 Additionally,
the pooling study design was specifically chosen to reduce further
variability not attributable to biological variance of the IR+ group
versus IR− group. Individuals constituting the IR+ and IR− groups
were carefully selected by matching them for gender, age and
BMI-SDS; we consider this to be an important strength of our
study. As IR increases physiologically during puberty5 and with the
degree of overweight,55 our matching strategy should have
decreased the probability of detecting SNPs associated with the
confounding effects of gender, age and degree of obesity instead
of IR status.
Five candidate SNPs with the highest statistical significance

scores were identified in the pooled-DNA GWAS analysis of the
first cohort. None of these five SNPs have been previously
associated with IR or any other traits according to the GWAS
catalogue database (accessed on 2 February 2017 ). Four SNPs
(rs212540, rs3218888, rs252111 and rs2258617) remained sig-
nificant after HRM analysis of individual genotypes. These four
SNPs were also re-genotyped with the TaqMan assay, as this is
more accurate than HRM. Although eventually only one SNP
(rs2258617) withstood two further, stringent verification steps, the
four significant SNPs after the first-phase pooled-DNA GWAS
analysis nevertheless warrant some discussion.Ta
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The rs212540 SNP is located in an intron region of the
endothelin converting enzyme 1 (ECE1) and has been associated
with cardiovascular complications of diabetes,56 as well as with
adult human height57 and childhood obesity-related traits in a
Hispanic population.14 The rs3218888 SNP is located in an intron
of the interleukin 1 receptor type 2 (IL1R2). This gene is from a
family of interleukins that are frequently linked to causes of
obesity-associated complications.58 The rs252111 SNP that is
located in glucosamine-6-phosphate deaminase 1 (GNPDA1) has
an important housekeeping function in carbohydrate derivative
metabolism (Gene Ontology database). In addition, its important
paralogue, GNPDA2, has been significantly associated with the risk
of IR in Chinese children.18 SNP rs9261108 is located in the 6p22
region where HLA-J, ZNRD1-AS1 and RNF39 overlap. HLA-J is a
pseudogene of HLA-A,59 a gene associated with Graves’ disease,60

an autoimmune-metabolic disorder of the thyroid gland while
RNF39 SNP has recently been associated with non-obstructive
coronary artery disease.61

Although four out of five significant SNPs in our pooled GWAS
analysis continued to be significant in the follow-up validation
analysis of individual DNA samples, only SNP rs2258617 within
PYGB remained significant in the independent second cohort and
the merged first and second cohort analysis. The level of
association of all four SNPs diminished following the second-
phase validation step. Possible explanations for the reduced
association in the second cohort may be pool-based or array-
based experimental errors or variation in allele frequency because
of the relatively small pool sample size. However, we surmise that
a major factor may be the relatively small size of the second
cohort. Given the high level of statistical significance in the first
cohort analysis and the potential functional relevance of the
associated genes or regions as discussed above, our results for the
aforementioned four SNPs justify further analyses in larger cohorts
of Slovenian or other populations.

rs2258617 (PYGB) is the strongest novel candidate IR SNP
The most robust result of our study was identification of a
candidate SNP rs2258617 located in an intron of the glycogen
phosphorylase, brain form (PYGB) at the 20p11 region. This SNP, as
well as neighbouring SNPs, gave high significant values in our
pooled-DNA GWAS analysis (Figure 2, Supplementary Table 1).
This association was also validated in the same cohort through
individual genotyping and confirmed in an independent replica-
tion cohort of IR+ and IR− obese children and children and
adolescents in Slovenia (Table 4). Statistical analysis for rs2258617
was additionally performed on merged data from the first and
second cohorts. Higher statistical values were obtained with this
larger population, indicating that our study indeed identified a
strong candidate region associated with an increased causal
likelihood for IR (Table 4).
SNP rs2258617 resides within the PYGB gene,62 coding the

enzyme that catalyses the rate-determining step in glycogen
degradation by releasing glucose-1-phosphate from a terminal
alpha-1,4-glycosidic bond. This enzyme thus has a key role in
glucose homeostasis. Its activity is regulated allosterically and by
reversible phosphorylation.62 Mammals have three isozymes of
glycogen phosphorylase: liver, muscle, and brain. Liver and muscle
isozymes ensure a steady supply of energy to the liver and skeletal
muscles, respectively. The brain form is responsible for ensuring
glucose supply to the brain, especially under stressful
conditions.63 Although the name implies specificity for brain
tissues, several transcriptome studies clearly demonstrate its
expression and possible function in several other tissues, with
some tissues (for example, epithelial cells, thyroid, heart, colon)
exhibiting even higher expression than in the brain.64

In the GWAS catalogue database, no results were found for the
rs2258617 SNP, thereby suggesting that we potentially identified a

novel candidate gene for IR. However, one GWAS65 aimed at
identifying genetic variants for serum calcium concentrations
found a hit for a closely linked SNP within the PYGB gene. The
effects of serum calcium levels on insulin release were established
decades ago,66 and subsequent population studies confirmed that
perturbed calcium homeostasis correlates with abnormalities of
fasting serum glucose, IR and pancreatic beta-cell function.67 Such
studies indicate that PYGB very likely has functional relevance in
IR, possibly through its actions in other tissues besides the brain.
Further support for this comes from tissue and developmental
stage-specific data collated in the mouse. The mouse studies
demonstrate that expression of Pygb is high during embryogen-
esis and in the adult nervous, visceral, endocrine, liver and biliary
systems. One other study also found significant differential protein
expression of Pygb in T2D mice treated with rapamycin for cardiac
dysfunction.68 Moreover, in an in vitro study of pancreatic cancer
cells, inhibiting PYGB increased the sensitivity of cells to glucose
starvation, partially explaining the manner in which glucose is
restricted in tumour cells.69 Although the PYGB gene has not been
comprehensively studied, especially in dedicated analyses of
insulin and glucose homeostasis, the above studies that collat-
erally found associations between PYGB and glucose metabolism
and IR imply that PYGB may act as a pleotropic gene that is not
necessarily connected with a brain-specific function, despite
its name.

CONCLUSIONS
Using pooled-DNA GWAS analyses, we identified five SNPs and
corresponding genes significantly associated with IR in a
population of obese children and adolescents: rs212540 (ECE1),
rs3218888 (IL1R2), rs252111 (GNPDA1), rs9261108 (HLA-J), and
rs2258617 (PYGB). Significant associations were validated for four
SNPs (rs212540, rs3218888, rs252111 and rs2258617) on follow-up
analyses of individual DNA samples, whereas rs2258617 (PYGB)
continued to be significant in an independent cohort and in a
merged analysis of the first and second cohorts. To our knowl-
edge, the five SNPs from the pooled-DNA GWAS analysis have not
been previously reported in GWAS studies as being associated
with IR or related traits. For these five regions, and especially the
four that were validated in a replicative individual DNA analyses, it
would be of interest to further investigate their possible
association with IR in genetic studies of larger cohorts and other
functional studies.
The main result of our study is the identification of rs2258617 in

the PYGB gene as being associated with significant differences in
frequencies of alleles between the IR+ and IR− groups. This SNP
was significant in the pooled-DNA GWAS analysis, validation
analyses of individual genotypes, replication study in an
independent cohort and merged analysis of the first and second
cohorts. A recessive or additive mode of inheritance was
supported by a high OR and low P-value. As the HapMap and
European population frequencies show very close to intermediate
frequencies for the C:T SNP rs2258617, such frequencies are likely
expected also in the background (Slovenian) population. In the
large first cohort, allele C was much more frequent in the IR−
group (60%) than in the IR+ group (48%). This suggests that this
SNP is a common and frequent allele in the population, which can
potentially serve as an informative diagnostic genetic marker for
early detection of IR in obese children and adolescents. Much
research remains to be conducted to explore the mechanism by
which PYGB genetic variants affect IR, which could lead to the
development of novel preventative or therapeutic strategies to
combat IR. This, in turn, offers the prospect of personalizing
treatment based on genotype and opens a route for exploring
novel drug treatment opportunities.
In conclusion, we report for the first time a pooled-DNA GWAS

analysis of IR and insulin-sensitive obese children and adolescents
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in the Slovenian population identifying five significant SNPs or
genes. Strongest support in validation and replication studies was
found for the rs2258617 SNP, suggesting that the PYGB gene may
be involved in the genetic control of IR and thereby providing a
new target for further basic research of the mechanisms under-
lying IR and for the development of potential new therapies for IR
and T2D.
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