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Near-infrared spectroscopy (NIRS) measurement of regional cerebral tissue oxygen

saturation (rcStO2) has become a topic of high interest in neonatology. Multiple studies

have demonstrated that rcStO2 measurements are feasible in the delivery room during

immediate transition and resuscitation as well as after admission to the neonatal intensive

care unit. Reference ranges for different gestational ages, modes of delivery, and devices

have already been published. RcStO2 reflects a mixed tissue saturation, composed

of arterial (A), venous (V), and capillary signals, derived from small vessels within

the measurement compartment. The A:V signal ratio fluctuates based on changes in

oxygen delivery and oxygen consumption, which enables a reliable trend monitoring

of the balance between these two parameters. While the increasing research evidence

supports its use, the interpretation of the absolute values of and trends in rcStO2 is

still challenging, which halts its routine use in the delivery room and at the bedside. To

visualize the influencing factors and improve the understanding of rcStO2 values, we

have created a flowchart, which focuses on the three major physiological components

that affect rcStO2: oxygen content, circulation, and oxygen extraction. Each of these has

its defining parameters, which are discussed in detail in each section.

Keywords: regional cerebral tissue oxygen saturation, near-infrared spectroscopy, oxygen content, circulation,

oxygen extraction, neonate

INTRODUCTION

Near-infrared spectroscopy (NIRS) measurement of the regional cerebral tissue oxygen saturation
(rcStO2) in neonates enables continuous non-invasive assessment of oxygen delivery (cDO2) to
and oxygen consumption (cVO2) of the frontal brain region. RcStO2 reflects a mixed saturation of
the measured microcirculatory compartment, composed of arterial (A), venous (V), and capillary
signals (1), whereby the A:V signal ratio fluctuates based on changes in cDO2 and cVO2 within the
compartment (2).

NIRS technology relies on the changes in attenuation of light at two or four different wavelengths
and their conversion into changes in the concentration of the three chromophores (oxyhemoglobin,
deoxyhemoglobin, and cytochrome oxidase) (3). Therefore, NIRS devices measure only relative
changes and not absolute concentrations of the chromophores. A new parameter, rcStO2, was
introduced in 1999. By using one emission probe and multiple detection probes, the slope
of light attenuation vs. distance allowed for the calculation of absolute saturation value (4).
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Nevertheless, each device on the market has its means of
correction for scattering effects and attenuation of the light by
superficial tissues, but none of the devices can measure these
quantities. It is therefore impossible to express absolute rcStO2
values for an individual patient. Although the measured values
of different devices do not display identical numbers, they show
a fairly good correlation over time (5), which enables reliable
trend monitoring. Normal ranges for the term and preterm
neonates at different time points have been established for many
of the used devices, respectively (6–10). Furthermore, different
manufacturers use different abbreviations for regional cerebral
tissue oxygen saturation, as does the published literature. Within
this manuscript, we will use the abbreviation rcStO2 to avoid
association with any specific manufacturer.

While the increasing research evidence supports the NIRS
measurements, there is still a discussion on its clinical use
(11). The interpretation of absolute values of and trends in
rcStO2 is still challenging, which halts its routine use at the
bedside. For the decision of whether clinical actions should be
introduced based on NIRS monitoring, many influencing factors
have to be considered. To support those clinical considerations,
a comprehensive visualization might be helpful. Therefore, we
have created a flowchart, which focuses on the three physiological
components that influence rcStO2: Oxygen Content, Circulation,
and Oxygen Extraction (OE) (Figure 1).

THREE PHYSIOLOGICAL COMPONENTS

Oxygen Content
Arterial Oxygen Content (CaO2)
The most common surrogate for CaO2 is arterial oxygen
saturation (SaO2), which can be measured directly in an arterial
blood sample by a hemoximeter or continuously non-invasively
by pulse oximetry (SpO2). SpO2 reflects the percentage of
hemoglobin (Hb) saturated with oxygen, which represents∼99%
of total oxygen vs. 1% of oxygen dissolved in the blood. The
measured SpO2 is determined by arterial partial oxygen pressure
(paO2) and the position of the oxyhemoglobin dissociation curve
(ODC) for a given paO2 (12).

In the case of anemic hypoxia, an increase in CaO2 can be
achieved by an increase in total Hb (e.g., by transfusion of adult
packed red blood cells-RBCs). Multiple studies demonstrated
that rcStO2 increases and cerebral OE decreases after RBCs
transfusions in anemic preterm neonates. Since transfusion
combines several effects (increase in Hb, changes in HbF/HbA
ratio and pH, increase in total plasma volume), it is difficult
to reliably interpret the most influential parameter (13–
16). In addition, there is strong evidence that placental-to-
fetal autotransfusion, using delayed cord clamping, increases
postnatal rcStO2 (17). This effect combines both an increase in
oxygen-carrying capacity (Hb) and an increase in preload, which
is a result of the rise in systemic venous return and of the fall
in pulmonary resistance (18). In the case of hypoxic hypoxia,
improvement of CaO2 can be achieved by an increase in paO2
(e.g., by changing the FiO2 and ventilation settings).

Changes in the ODC position define not only SpO2 values but
theOE in the tissues as well. Factors affecting the position of ODC
are depicted on the left and right sides of the flowchart (Figure 1).

ODC shift to the left increases Hb oxygen affinity and
decreases OE. This can be the result of

1. High fractions of fetal hemoglobin (HbF) in preterm neonates
2. Increase in pH of the blood or decrease in partial carbon

dioxide pressure (pCO2) as seen in hyperventilation
3. Lower body temperature (e.g., during therapeutic

hypothermia), or
4. Lower concentrations of 2,3-biphosphoglycerate (2,3-BPG)

(12, 19).

On the contrary, the shift of the ODC to the right lowers Hb
oxygen affinity and increases OE. It is most commonly the
result of

1. Adult RBC transfusions with a rapid decline in HbF and rise
in adult hemoglobin (HbA) concentration

2. Respiratory acidosis or
3. Increased body temperature (12, 19).

Circulation
Cerebral Blood Flow-CBF
CBF is defined as the blood volume that flows per unit mass
per unit time in brain tissue and is typically expressed in
mlblood/ 100 gtissue min. There are great inter-individual and
periodical differences in CBF in human neonates, which makes
an establishment of normative values not feasible (20–23).

CBF is regulated on the one hand by cerebral perfusion
pressure (CPP) and on the other hand by a cerebrovascular
resistance (CVR) or the resistance of the entire cerebral
vasculature, whereby small arteries and pial arterioles,
which can regulate their radius through vasodilatation and
vasoconstriction, account for most of the CVR changes (24).
CVR is determined by vascular smooth muscle tone, which is
under the influence of neural, chemical, metabolic, and physical
factors (25) (Figure 1).

Cerebral Vascular Resistance-CVR
The two most important parameters that regulate CVR are
changes in the partial pressure of carbon dioxide (paCO2) and, to
a lesser degree, in the partial pressure of oxygen in arterial blood
(paO2) (26). Higher paCO2 (hypercapnia) leads to vasodilatation
(lower CVR) and an increase in CBF, whereas lower paCO2
(hypocapnia) generates vasoconstriction (higher CVR) and a
decrease in CBF (27–29). Lower CaO2 during hypoxia, on the
other hand, has a similar effect as hypercapnia and causes a
dilatation of pial vessels which increases CBF (30). Furthermore,
it is important to note that the changes in paO2 and paCO2
influence both ventilation rate and CBF, whereby these vary
inversely in response to paCO2 and paO2 levels. Hypoxia and
hypercapnia induce the activation of peripheral chemoreceptors,
which leads to hyperventilation, reduction in pCO2, and cerebral
vasoconstriction (25). The final effect on CVR depends on the
paO2 to paCO2 ratio. A low paO2 to paCO2 ratio results in a
greater degree of hypoxic vasodilatation for a given hypocapnic
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FIGURE 1 | Three physiological components that influence NIRS measurement of regional cerebral tissue oxygen saturation. cDO2, cerebral oxygen delivery; cVO2,

cerebral oxygen consumption; CaO2, arterial oxygen content; CBF, cerebral blood flow; CBV, cerebral blood volume; CVR, cerebral vascular resistance; CPP, cerebral

perfusion pressure; OE, oxygen extraction; FOE, fractional oxygen extraction; FTOE, fractional tissue oxygen extraction; Hb, hemoglobin; SaO2, arterial oxygen

saturation; paO2, arterial partial oxygen pressure; pCO2, partial carbon dioxide pressure; HbF/HbA, fetal to adult hemoglobin ratio; 2,3-BPG, 2,3-biphosphoglycerate;

HP, hydrostatic pressure; MABP, mean arterial blood pressure; ICP, intracranial pressure; SVR, systemic vascular resistance; CO, cardiac output; CVP, central venous

pressure; HR, heart rate; SV, stroke volume. Factors 1 shear stress and stretch; 2 paCO2, paO2; 3 glucose, adrenaline, ATII- angiotensin II, adenosine; 4 sympathetic,

parasympathetic; 5 pH, NO- nitric oxide, ET-1- endothelin-1, EDHF- endothelium-derived hyperpolarizing factor, CNP- C–natriuretic peptide, O2- superoxide.

vasoconstriction (31). The affection of CBF by hyperoxia (paO2
> 15 kPa/113 mmHg) was studied in preterm and term infants
and a reduction in CBF as well as a reduced vasoreactivity
in preterm compared to term neonates could be demonstrated
(32, 33).

The effect of paCO2 is mediated through changes in pH
(i.e., H+ concentrations). Hypercapnia leads to an increase in
H+ concentration in the perivascular space, which increases
K+ outflow from smooth muscle cells of cerebral arteries and
arterioles and causesmuscular relaxation, i.e., vasodilatation (34).
The molecular mechanism which regulates the paO2 effect on
CBF is quite different and it requires an intact endothelium
and nitric oxide (NO) production. Newer studies suggest that
deoxyhemoglobin (associated with changes in CaO2), rather
than paO2, serves as the primary biological regulator of CBF
and induces the release of NO metabolites and adenosine
triphosphate with consequential vasodilatation (35). However,
hypoxia can also induce tissue lactacidosis, and the resulting
increase in H+ concentrations provides a link between CO2- and
O2-mediated regulation of CVR and CBF (21). In addition, CBF
is also influenced, in the long term, by other hypoxia-induced
changes (e.g., increased capillary density using angiogenesis,
increased hematocrit, and viscosity) (25).

CBF varies inversely with hematocrit in many species in
both acute (i.e., acute anemia) and chronic conditions (i.e.,
erythropoiesis). There are two possible mechanisms involved
both resulting in changes in CVR. In acute anemia, a
decrease in CaO2 induces a cerebral vasodilatory response to
maintain a constant cDO2 (36). In conditions of hyperviscosity,
shear stress/stretch mechanisms induce adaptations of CVR to
maintain a constant CBF (37).

Another parameter that influences CBF is blood glucose.
In preterm neonates, a compensatory increase of CBF during
uncomplicated hypoglycemia could be demonstrated (38, 39).
The described mechanism behind it could be the capillary
recruitment, which can be measured by NIRS as an increase in
the cerebral blood volume (CBV) during hypoglycemia and a
decrease in CBV after intravenous glucose infusion (40).

Other factors play a minor role in the regulation of CVR and
affection of CBF and are therefore only listed in the flowchart, but
not discussed in detail (Figure 1).

Cardiocirculatory Parameters
The mean arterial blood pressure (MABP) is influenced by the
volume state that determines central venous pressure—CVP, by
systemic vascular resistance (SVR) of the arterial tree, and by
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cardiac output (CO), which is a product of heart rate (HR) and
stroke volume (SV).

In a healthy neonate, CO is mostly determined by the
metabolic rate of the peripheral tissues (41). The adaptation of
CO to meet the metabolic demands includes changes in SV and
HR. Although there is a common belief that neonates cannot
alter SV and that tachycardia is the primary mean of increasing
CO, several studies have demonstrated the opposite. According
to studies performed in healthy term neonates during and after
transition, SV and not HR was the main determinant of neonatal
left ventricular output (42–44). This can be explained by a
postnatal increase in the left ventricular preload in combination
with ductal left-to-right shunting, due to a decrease in pulmonary
vascular resistance. Furthermore, a study, which established
normative values for non-invasive measurement of CO using
electrical cardiometry, demonstrated an increase in SV and
CO with increasing birth weight and gestational age. The best
model to describe the relationship between SV, CO, and birth
weight or gestational age was exponential (45). Another study
conducted in healthy term neonates during the first postnatal
days found that SV and CO decrease in response to a short
duration of prone positioning, while HR, SpO2, and rcStO2 do
not change significantly (46). In preterm neonates who have
a high resting HR and an intrinsic diastolic dysfunction, an
increase in CO is also determined mainly by changes in SV
(47, 48). Moreover, excess tachycardia (due to pain or agitation
and caffeine citrate administration) as well as bradycardia
(due to sleep apnea and immaturity) can both reduce CO in
preterm neonates.

SV is determined by preload, afterload, and myocardial
contractility. Preload represents the initial stretching of the
cardiac muscle fibers before contraction (mostly referred to as
an end-diastolic ventricular volume), whereas afterload can be
best described as the force resisting the ejection of blood by the
heart (49).

Preload depends on venous return, which is determined
by the circulating volume, venous capacitance, and ventricular
compliance. The fetal myocardium contains specific isoforms of
fetal connection which renders its higher compliance compared
to the adult heart (50). This allows the fetal heart to generate
adequate CO despite low-filling pressures in utero. In addition,
an early increase in preload after delayed cord clamping increases
CO during transitional circulation and results in higher rcStO2 at
4 and 24 h after birth in preterm neonates (17, 18).

The afterload largely depends on ventricular dimensions,
MABP, SVR, and vascular compliance. Echocardiographic
studies showed that the neonatal heart has a higher basal
contractile state and that myocardial performance is more
sensitive to afterload in the immature heart (51, 52). Therefore,
a rapid increase in SVR due to clamping of the umbilical cord at
the beginning of fetal to neonatal transition results in a reduced
CO immediately after birth. These changes can lead to cerebral
hypoperfusion even if MABP remains in the perceived normal
range (53, 54).

Regulation of SV by an increase in contractility is limited in
fetuses and neonates due to myocardial immaturity (55). The
increase in contractile force (secondary to an increase in calcium

influx) is age-dependent and improves during the early postnatal
period (49).

Many studies in the adults have found a positive relationship
between CO and CBF (56, 57). The left CO is positively correlated
to CBF in neonates as well (58). An impaired cardiac function
can, therefore, result in CBF reduction, and consequentially, in
decreased cDO2.

Cerebral Blood Volume-CBV
CBV can be derived from a NIRS measurement as 1CBV
and expressed in mlblood /100 gbraintissue if the changes in
the total Hb during the measurement and Hb concentration
from a large vessel are known (59). With the time-resolved
NIRS devices, it is possible to measure the absolute value
of CBV (60). CBV is sensitive to changes in paO2 and
paCO2, similarly to CBF (59, 61). An increase in CBV after
functional obstruction of the homolateral jugular vein has also
been reported (62, 63). CBV is thus related to CBF on the
arterial side, and to CVP on the venous side and can be used
as a surrogate for the assessment of cerebral hemodynamics
in neonates.

Cerebral Autoregulation
Under stable conditions, CBF is maintained over a wide range of
MABP as a result of cerebral autoregulation. The driving pressure
of CBF is CPP or the difference between MABP and intracranial
pressure (ICP), i.e., the pressure of the cerebrospinal fluid in the
subarachnoid space (24).

CBF is coupled to cerebral oxygen metabolism to ensure
appropriate cDO2 at baseline and in response to cortical
activity (64). This metabolic coupling mechanism is one type of
cerebral autoregulation. Another type of cerebral autoregulation
enables cerebral arteriolar caliber to adjust and ensure stable
CBF relatively independently of changes in MABP (65). This
phenomenon can be illustrated by a flat sigmoidal curve with
stable CBF over a wide range of tolerable MABP and impairment
at either extreme (66).

The CBF independency of MABP was described in several
studies in clinically stable mechanically ventilated neonates
(67), where constant cerebral perfusion was maintained in
MABP ranges of 25–40 mmHg (68). Other works, however,
described a linear relationship between CBF and MABP in
ill neonates, independently of the severity of their postnatal
condition (23, 69, 70).

The terms pressure-passive circulation and impaired
autoregulation were introduced to describe the failure of the
preterm cerebral vasculature to maintain uniform CBF over a
range of MABP. The frequency of impaired autoregulation is
associated with low gestational age and birth weight as well as
with systemic hypotension. An impaired autoregulation results
in unstable CBF, generating the cycle of ischemia–reperfusion,
which is the main mechanism of preterm brain injury (66).
There is also a direct link between increased periods of impaired
autoregulation and adverse neurological outcome such as
intracranial hemorrhage (71).
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Oxygen Extraction-OE
OE Depends on a Tissue Metabolic Activity
OE is the amount of oxygen removed from the arterial circulation
by tissue within a certain period. It can be best defined as a
difference between CaO2 and CvO2 (venous oxygen content).
The extraction of oxygen from a hemoglobin molecule to a tissue
depends on the difference between paO2 in the vessels and local
partial oxygen pressure in the tissue and is hence determined by
the position of ODC. The amount of extracted oxygen depends
mainly on tissue metabolic activity in a state of sufficient cDO2
(64). The CaO2 range, over which a normal OE can be sustained,
varies from one tissue group to another, depending on their
metabolic activity and priority (vital vs. non-vital organs) (65).
The tissue metabolic activity differs considerably also within
organ systems, depending on factors such as circadian rhythm
(heart, endocrine tissue), feeding (gastrointestinal system),
thermoregulation (fat tissue), and muscular activity (heart, lungs,
muscles). NIRS studies mostly report cerebral OE in terms
of cerebral fractional tissue OE (cFTOE), which represents
the difference between SpO2 and rcStO2 (mixed saturation).
Some studies preform the calculation of cerebral fractional OE
(cFOE), which represents the difference between the arterial
and venous compartment and its measurement requires partial
jugular venous occlusion (72).

Microcirculation
As already mentioned above, rcStO2 reflects a mixed saturation
derived from small vessels (<0.1mm in diameter) within
the measurement compartment. The A:V signal ratio
fluctuates based on changes in cDO2 and cVO2 within
this microcirculatory compartment (2). As long as cerebral
autoregulation is within limits, resting global cDO2 can be
considered as a constant variable and cVO2 changes in response
to brain metabolic demand. Although the A:V contribution
to rcStO2 is commonly rounded to the 25:75 ratio, the largest
in vivo study conducted in neonates and young children
showed an average, relatively constant ratio of 15:85 in different
experimental conditions (normoxia, hypoxia, and hypocapnia)
(73). Nonetheless, the A:V ratio differed significantly among
individual patients and was unaffected by their demographic
and physiological characteristics. There seems to be a biological
variation in the A:V ratio, which does not change substantially
during hypoxia or hypocapnia (73). One has to be aware of
this important fact when interpreting rcStO2 values in an
individual patient.

DISCUSSION

In this article, we schematically present the three physiological
components that influence the measurement of rcStO2. An
important aim was to improve the understanding of the
relationships between the parameters, in order to interpret
rcStO2 easily in the clinical routine. Very recently, a paper
focusing on critical appraisal of methods used for the assessment
of cerebral oxygenation has been published (11). The authors
presented a mechanistic model of variables affecting the local
tissue partial oxygen pressure. This model partially resembles our

flowchart, since it depicts the same parameters that affect CO,
MABP, SaO2, and end-capillary-hemoglobin-oxygen saturation.
However, the focus of the paper was not on describing the
physiological components, but rather on the discussion of the
benefits and risks involved in using electric cardiometry, invasive
blood pressure measurements, pulse oximetry, and cerebral NIRS
to assess the latter. We think that both presentations may
complement each other very well.

Numerous studies showed the affection of rcStO2 by different
parameters of our flowchart. Regarding those which focused on
immediate fetal to neonatal transition, the findings are rather
specific and not always as per the later periods. For instance,
rcStO2 and SpO2 were positively correlated in several studies
in preterm neonates, as expected (74–76). Higher pCO2 was,
however, unexpectedly associated with lower rcStO2 in preterm
in contrast to no associations in term neonates, suggesting
a less pronounced vasodilatory effect of pCO2 in preterm
neonates during the transition (77). Higher blood glucose
concentrations were, as expected, associated with lower rcStO2
in both preterm and term neonates (78). Furthermore, no
significant correlations between rcStO2 and MABP in preterm
and term neonates were described (79). Interestingly, in term
neonates with uncomplicated neonatal transition after Cesarean
section, rcStO2 did not correlate with CO (80).

Concerning cerebral perfusion, it is important to keep inmind
that CO cannot be used as a direct surrogate for systemic or
cerebral blood flow in neonates because of a high incidence of
shunts through the ductus arteriosus and atrial septum. However,
flow measurements in the superior vena cava (SVC) can assess
blood returning from the upper body and brain (81). The
following two studies were conducted in VLBW neonates during
the first days after birth and without detectable brain pathology:
(i) the first study described a positive correlation between rcStO2
and SVC flow, but a poor correlation between rcStO2 and CO
during the first postnatal day (82); (ii) the second study, however,
reported a negative correlation between rcStO2 and SVC flow
at 6 h after birth and no relevant correlations of rcStO2 with
either SVC flow or CO during the following 48 h after birth. Both
the SVC flow and CO increased during this period, but rcStO2
decreased at 12 h of age.

Although the evidence of a direct correlation between
rcStO2 and CO in stable neonates is lacking, an important
finding is a positive correlation between rcStO2 and CO in
neonates who develop IVH at 24 h after birth (83). Namely,
lower rcStO2 as well as CBF passivity to systemic blood flow,
reflected in the correlation between rcStO2 and MABP or CO
have been predictors of several neurological adverse effects,
such as intraventricular and periventricular hemorrhage (IVH,
PVH) and periventricular leukomalacia (PVL) (84–87). These
correlations, both positive and negative, indicate an impaired
cerebral autoregulation in preterm neonates (88, 89). Moreover,
in term neonates with hypoxic-ischemic encephalopathy treated
with therapeutic hypothermia, rcStO2 and CBF correlate
predominantly with right ventricular function (90). These
findings further stress the complexity of CBF regulation in both
preterm and term neonates. It can be concluded that CBF can
be independent of MABP and CO and that this indicates intact
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cerebral autoregulation. This can also explain how even very low
CBF can be consistent with healthy survival.

For MABP independent CBF, changes in CPP are either
a result of the changes in HP or ICP. Several NIRS studies
have described significant changes in NIRS-derived CBV
measurements as a result of changes in HP after head tilting in
healthy and in preterm neonates with PVL (91, 92). However,
rcStO2 was not affected or changed only minimally during the
maneuver (93, 94). The affection of rcStO2 by the changes in
ICP was examined in very few studies. Preterm neonates with
hydrocephalus accompanied by intracranial hypertension had
significantly lower rcStO2 in a study that compared invasive ICP
measurements with NIRS parameters (95). Ventricular drainage
with ICP reduction after post-hemorrhagic hydrocephalus led to
an increase in rcStO2 or to an improvement in CBF in several
studies (96–98).

Regarding rcStO2 and the pulse-oximetry parameters, rcStO2
was positively correlated to SpO2 and HR during the first 72 h in
healthy preterm neonates (99, 100). However, a lower percentage
of significant cross-correlations were observed in patients with
IVH or PVH compared to healthy controls (99). As for the
associations with the parameters of CaO2 or cVO2 depicted
on the left and the right of our algorithm, there is evidence
of higher rcStO2 at 24 h after birth in association with delayed
cord clamping and higher hematocrit or Hb in preterm neonates
(17). On the contrary, elevated OE is reported as an adaptation
to anemia of prematurity (101). Additionally, RBC transfusions
improve rcStO2 and lead to a decrease in cFTOE in anemic
preterm neonates (13–16). There is still no evidence that the
ODC shift to the right is related to lower fractions of HbF
after the RBC transfusions, and results in higher rcStO2, as
physiologically expected, but there are also very few studies
currently available (102).

Although there are many benefits of rcStO2 monitoring, a
clinician has to be aware of the limitations of NIRS technology.
RcStO2 monitoring has to be continuous to have an impact on
clinical outcomes. However, the repeated measurements within
the subject showed a standard deviation of 5 to 6% (103), and a
systematic bias between sensors from INVOS 5100 andNIRO 300
was reported (104). Furthermore, although most NIRS devices
estimate the rcStO2 every 5 s, the clinical interpretation should be
based on the trend over minutes and hours. Since the first week
after birth is the most vulnerable period concerning low CBF and
high risk of adverse outcomes, NIRS monitoring may be initiated
immediately or within hours after birth to be most efficient (105).
Although it is a very safe method, local skin irritation, sores, and
redness have been reported as adverse effects of NIRS devices
(106).

Nevertheless, the clinical value of continuous NIRS
monitoring is still under discussion (11). Two randomized
interventional studies were undertaken to investigate possible
short- and long-term benefits. The interventional studies
instead of two interventional studies defined rcStO2 ranges,
either during immediate transition and resuscitation after birth
(COSGOD) or during the first 72 h after birth (SafeBoosC).
Both phase II studies reported short-time benefits regarding
the cerebral burden of hypoxia, but evidence for long-term
benefits is still lacking. The SafeBoosC II trial, which aimed

to keep rcStO2 within the 55–85% range (107), demonstrated
that the evidence-based treatment guideline vs. a blinded
collection of rcStO2 and treatment as usual, significantly reduced
the burden of cerebral hypoxia (108) without affecting the
electroencephalographic (EEG) outcomes, blood biomarkers of
cerebral injury (109), or the incidence of severe cerebral injury
as assessed with imaging methods (110). Moreover, a follow-up
neurodevelopmental study at 2 years of corrected age showed
no long-term benefits or harm for the experimental group (111).
The trial also showed a higher prevalence of bronchopulmonary
dysplasia and retinopathy of prematurity in the experimental
group (112). Similarly, the COSGOD II trial could demonstrate
a reduction of the burden of cerebral hypoxia during immediate
transition and resuscitation after birth, whereas the cerebral
injury rate and neurologic outcome at term age were not different
between the experimental and control group (74). The results of
the SafeBoosC III trial, with the primary objective to decrease
a composite of either death or severe brain injury detected on
any of the serial cranial ultrasound scans in preterm neonates
<28 weeks’ gestation and COSGOD III trial, with the primary
objective to increase survival without cerebral injury in preterm
neonates <32 weeks’ gestation, are still awaited (112, 113).

In summary, continuous rcStO2 monitoring in human
neonates enables a reliable trend monitoring of cerebral oxygen
metabolism and early recognition of compromised cerebral
oxygen delivery and consumption. The interpretations of
changes of rcStO2 may be a challenge for clinicians, as it is
difficult to be aware of all the potential influencing factors.
Nevertheless, predefined actions directed to respiratory and
cardiovascular stabilization in case of low rcStO2 values were
able to reduce the cerebral burden of hypoxia in randomized
intervention studies. The present concept of three influencing
compartments may be helpful to guide clinical actions in
association with the use of NIRS monitoring.
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