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Skeletal muscle and adipose tissues are both involved in regulation of metabolism. In the
skeletal muscle-adipose tissue crosstalk, exosomes may play an important role but the
main components of exosomes are not clear. In this study, we found skeletal muscle-
derived exosomes can inhibit adipogenesis of porcine preadipocytes. We identified
microRNA expression profiles of muscle exosomes and adipose exosomes by high-
throughput sequencing. There were 104 (both novel and known microRNAs) microRNAs
differentially expressed (DE miRNAs) between M-EXO (muscle-derived exosomes) and
A-EXO (adipose–derived exosomes) groups. A total of 2,137 target genes of DE
miRNAs for M-EXO and 2,004 target genes of DE miRNAs for A-EXO were detected.
Bioinformatic analyses revealed that some DE miRNAs of M-EXO (especially miR-
221-5p) were mainly enriched in lipid-related metabolism processes. The findings may
serve as a fundamental resource for understanding the detailed functions of exosomes
between the skeletal muscle-adipose crosstalk and the potential relationship between
skeletal muscle atrophy and obesity.

Keywords: pig, muscle, adipose, exosome, microRNA

INTRODUCTION

Muscle cell and adipose cell both belong to the mesodermal cell lineage. This same origin implies
there may exist a special interaction between muscle and adipose. Fat ectopic accumulation can
cause muscle atrophy (Teng and Huang, 2019). Chronic high fat feeding impairs the ability of
murine skeletal muscle to cause hypertrophy, and then muscle hypertrophy accelerates white
adipose tissue to brown and decreases adipose tissue deposition (Sitnick et al., 2009). Studies has
shown that proteins of Wnt family may play an important role in muscle-to-adipose interaction,
and Wnt/β-catenin signal transduction promotes growth of muscle cells and inhibition of
intramuscular fat synthesis. This leads to muscle building and fat loss (Luo et al., 2008). Aydin et al.
(2014) reports that irisin, a kind of myokines secreted by muscle tissue, could convert white adipose
tissue into brown adipose tissue, enhancing energy expenditure. Leptin directly induces fatty acid
oxidation (FAO) in skeletal muscle by AMPK pathway (Koo et al., 2019). A study has demonstrated
adiponectin increases glucose uptake, enhances mitochondrial oxidation and modulates lipoclastic
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capacity via coupling fibroblast growth factor 21 (FGF21) actions
from adipocytes to skeletal myocytes (Lin et al., 2013).

MicroRNAs (miRNAs) are also involved in the crosstalk
between muscle and adipose tissues. MiRNAs are endogenous
small non-coding RNAs (18–25 nucleotides) that post-
transcriptionally regulate gene expression (Almeida et al.,
2011). Some miRNAs, such as miR-222, miR-195, miR-103, and
miR-10b are found to regulate glucose metabolism in muscle
cells (He et al., 2007; Guay and Regazzi, 2017). Microvesicle-
shuttled miRNA-130b is found to suppress adipogenesis and
fat deposition in recipient adipocytes by targeting peroxisome
proliferator-activated receptor-gamma (PPAR-γ) (Indrakusuma
et al., 2015). More and more studies have shown that miRNAs
are very important in the interaction between muscle cells
and adipose cells.

In the last decade, exosomes are found to transport proteins,
mRNAs, miRNAs to recipient cells (Kosaka et al., 2010). They are
firstly identified in reticulocytes and were originally thought to
be involved in the selective excretion of cellular waste (Colombo
et al., 2014; Sagini et al., 2018). These small vesicles (50 to
150 nm) are related to endosomal pathway and are released
in the extracellular space via merging multivesicular bodies
(MVBs) from the cell membrane. Environmental stressors,
disease and cell type can impact the sort of exosomal miRNA
cargo, which suggest an active sorting and metabolic mechanism
(Wahlgren et al., 2016).

Until now, there were few reports about exosomes from
muscle (M-EXO) and adipose (A-EXO). Our study is aimed to
identify miRNA profiles in M-EXO and A-EXO, and explore
which miRNAs in M-EXO and A-EXO may be involved in
communication of muscle and adipose tissues.

MANUSCRIPT FORMATTING

Materials and Methods
Ethical Approval
All the animal experiments contained in the article were
conducted by Institutional Animal Care and Use Committee
(IACUC) of South China Agricultural University.

Animals and Sample Collection
Four healthy 5-day-old piglets were selected from Guangzhou
thoroughbred farm (Guangzhou, Guangdong, China) and
exsanguinated by electric stunning. Longissimus dorsi muscle
tissues and subcutaneous adipose tissues were dissected and
transported to the laboratory, and transferred to DMEM-F12
medium (Gibco, New York, NY, United States).

Culture and Induction of Primary Porcine
Preadipocytes
The preadipocytes were acquired according to our previous study
(Wu et al., 2016). First of all, four samples of subcutaneous
adipose tissue were cut into sections of 1 mm3 and transferred
to DMEM-F12 medium. Minced tissues were digested with 0.2%
type-II collagenase (Gibco, New York, NY, United States) for
2 h at 37◦C with shaking. Then the digested tissues were filtered

through a 150 µm mesh, and the filtrates were centrifuged at
600 g, 10 min. The pellets were resuspended by erythrocyte lysis
buffer (Sangon Biotech, Shanghai, China) and stood for 10 min
to lyse erythrocytes. Then the mixture was centrifuged at 800 g,
10 min. Subsequently, the pellets were resuspended with DMEM-
F12. The resuspended liquids were filtered through a 40 µm mesh
and then centrifuged at 800 g, 5 min. The pellets containing
preadipocytes were resuspended and cultured in DMEM-F12
medium with 10% fetal bovine serum (FBS, Gibco, New York,
NY, United States) at 37◦C, 5% CO2. The preadipocytes were
induced to mature adipocytes with an induction medium (10%
FBS, DMEM-F12, 50 µM oleic acid, 0.5 M Octoic acid, 50 nM
insulin, 50 nM dexamethasone). The first day of induction was
designated as Day 0. In the induction, 10 µg exosomes were
added to per well at Day 0 and treated for 24 h.

Culture of Skeletal Muscle Satellite Cells
The skeletal muscle satellite cells were obtained as described in
our previous reports (Wang et al., 2012). Four muscle samples
were cut into small pieces and transferred to DMEM-F12. The
minced tissues were digested for 1 h with 0.2% type-II collagenase
(Sangon Biotech, Shanghai, China). Then the digested tissues
were centrifuged at 1,500 g, 4◦C, 10 min. The pellets were
resuspended in DMEM-F12 and centrifuged at 800 g, 4◦C,
10 min for 3 times. Then cell resuspension solutions were filtered
through a 200 mm cell strainer. The filtrated supernatants were
centrifuged at 800 g, 4◦C, 5 min. The underlying pellets were
resuspended in DMEM-F12 medium and incubated in a cell
culture flask at 37◦C, 5% CO2 for 1 h. The fibroblasts were
quickly adhered to the bottom of cell culture flask, whereas the
skeletal muscle satellite cells remained in the supernatant. Finally,
the skeletal muscle satellite cells were cultured in DMEM-F12
(10%FBS) at 37◦C, 5% CO2.

Isolation of Exosomes
After reaching 80% confluency (about 6 × 106 cells), cells were
washed with phosphate buffer saline (PBS, Sangon Biotech,
Shanghai, China) three times and incubated with fresh DMEM-
F12 medium for 48 h. The supernatant was collected and
centrifuged at 1,500 g for 15 min to remove dead cells and cell
debris and mixed with ExoQuick precipitation solution (System
Biosciences, Palo Alto, CA, United States) at an 1:1 ratio and
incubated overnight at 4◦C, and then the mixture was centrifuged
at 1,500 g, 4◦C, 30 min to precipitate exosomes. The supernatant
was removed carefully, and then the pellet containing exosomes
was resuspended in PBS and stored at −80◦C. BCA Protein
assay kit (Bioteke, Beijing, China) was used to determine protein
concentration of exosome.

Western Blot Assay
Western blot was performed to identify exosome special marker.
Cell and exosome sample were lysed by RIPA (Solarbio, Beijing,
China). Equivalent amounts of protein were separated by
10% SDS-PAGE and the samples were transferred onto PVDF
membranes (Bio-Rad, CA, United States). The proteins were
reacted with follow primary antibodies: rabbit anti-Alix (Sangon
Biotech, Shanghai, China, D262028) and rabbit anti-TSG101
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(ZenBio, Chengdu, China, 381538). Blocked with Blocking Buffer
(NCM biotech, Suzhou, China, P30500) and incubated with the
primary antibody overnight at 4◦C. Then incubated with the
secondary antibody for 1 h at room temperature.

Oil Red O Staining
On induction day 8, adipose cells were harvested and rinsed with
PBS twice. Then they were fixed in 4% polyoxymethylene for
30 min at room temperature. Afterward the cells were stained
with oil red O solution (Sangon Biotech, China) for 1 h at
room temperature. The stained samples were washed by PBS and
photographed with microscope (Nikon, Tokyo, Japan).

TG Assay
Cells were washed with PBS twice and then 1 ml PBS was
added to each well. Ultrasonication of cells was performed by
ultrasonic processor (Scientz, Ningbo, China). The products
were centrifuged at 7,000 g, 4◦C for 1 min. The supernatants
were analyzed by TG assay by Triglyceride Assay Kit (Abcam,
United Kingdom). TG level was normalized by total protein level,
which was measured by BCA assay (Bioteke, Beijing, China).

Small RNA Library Construction and RNA Sequencing
Trizol Reagent (Invitrogen, Carlsbad, CA, United States) was
used to extract total RNAs according to previous protocol (Rio
et al., 2010). A total of 2 µg RNAs of each sample was collected
to prepare the miRNA sequencing library using NEBNext R©

Multiplex Small RNA Library Prep Set for Illumina R© (NEB,
Ipswich, MA, United States). Briefly, T4 RNA ligase 1 and T4
RNA ligase 2 (truncated) were used to ligate adapters to the 3′
and 5′ ends of RNAs. Then RNAs were reverse transcribed to
cDNA and amplified by PCR. Subsequently, the amplification

products were purified on polyacrylamide gel electrophoresis.
The library was denatured as single-stranded DNA molecules,
captured on Illumina flow cells, amplified in situ as clusters and
finally sequenced applied 50 cycles on Illumina HiSeq sequencer
at Cloud-Seq Biotech (Shanghai, China).

Bioinformatics Analysis
Raw data were generated after sequencing, image analysis,
base calling and quality filtering on Illumina sequencer. Firstly,
Q30 (Q30 content represents the percentage of bases with
Phred value greater than 30 in the total base) was used to
perform quality control. The adaptor sequences were trimmed
by cut adapt software (v1.9.3) (Martin, 2011). Then, trimmed
reads from all samples were collected, and miRDeep2 software
(v2.0.0.5) (Friedlander et al., 2012)was used to predict novel
miRNAs. The trimmed reads were aligned to the merged
pig pre-miRNA databases (known pre-miRNA from miRbase
(v21) (Kozomara et al., 2018) plus the newly predicted pre-
miRNAs) using Novoalign software (v3.02.12) with at most
one mismatch. The numbers of mature miRNA mapped tags
were defined as the raw expression levels of that miRNA.
The read counts were normalized by TPM (tag counts per
million aligned miRNAs) approach. Differentially expressed
(DE) miRNAs between M-EXO and A-EXO groups were
filtered through Fold change and false discovery rate (FDR)
in OmicShare Tools1. Then, top DE miRNAs were chosen
to predict their target genes using popular miRNA target
prediction software (TargetScan v6, miRanda) (Enright et al.,
2003; Grimson et al., 2007). Among all target genes, we
chose the top 100 targets (Ranked from high miRanda

1http://www.omicshare.com/tools

FIGURE 1 | Muscle derived exosomes inhibited adipogenesis in porcine preadipocytes. (A) Oil Red O staining at induction day 8. NC: Treated with PBS Exosome:
Treated with muscle exosome. Scale bars, 50 µm. (B) Triglyceride Assay was performed at induction day 8. TG level was adjusted by protein content. Each sample
was assayed in duplicate (n = 6), *P < 0.05; **P < 0.01. (C) mRNA expression levels of CD36, PPARγ, FABP4, C/EBPα, and ACC. NC: Treated with PBS Exosome:
Treated with muscle exosome (n = 6), *P < 0.05; **P < 0.01.
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structure score to low structure score) to map the miRNA-gene
network. All targets were chosen if less than 100. MiRNA-
target networks were plotted by cytoscape software (v2.8.0)
(Betel et al., 2010; Smoot et al., 2010), while the Gene

Ontology (GO) (Huang et al., 2008) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Minoru and Susumu, 2000)
pathway analysis were performed based on the differentially
expressed miRNAs.

FIGURE 2 | Heatmap of miRNAs in M-EXO and A-EXO group.
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FIGURE 3 | Validation of DE miRNAs by qPCR. Muscle-derived exosome: M-EXO; adipose-derived exosome: A-EXO. **P < 0.01. Left: Expression of miRNA of
sequence data; Right: Expression of miRNA of qRT-PCR.

FIGURE 4 | Enriched GO terms of genes targeted by the significant differentially expressed miRNAs. (A) Target genes of M-EXO (miR-183, miR-425-3p, miR-1249,
miR-451, miR-146a-5p, miR-221-5p); (B) Target genes of A-EXO (miR-28-5p, miR-145-5p, miR-149, miR-186, miR-499-5p).

FIGURE 5 | KEGG enrichment analysis of differentially expressed miRNAs. (A) Target genes of M-EXO (miR-183, miR-425-3p, miR-1249, miR-451, miR-146a-5p,
miR-221-5p); (B) Target genes of A-EXO (miR-28-5p, miR-145-5p, miR-149, miR-186, miR-499-5p).
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Real-Time RT-PCR Analysis
Total RNA was reverse-transcribed into cDNA by MLV reverse
transcriptase (Promega, M1701-10000U). RT-PCR analysis
was performed on Agilent stratagene Mx3005P (Agilent,
United States) with the Go Taq qPCR Master Mix (Promega,
Madison, WI, United States). All reactions were run in triplicate.
The cycle threshold (Ct) method was used to calculate expression
values. Ct values were normalized to the reference gene (U6 for
miRNA, GAPDH for mRNA) as an endogenous control. The
information of primers was listed in Supplementary Table 1.

Statistical Analysis
Statistical analyses were achieved by the SPSS software (v20).
Differences between groups were analyzed by independent
two-sample t-test. P < 0.05 indicates the difference is
statistically significant.

Results
M-EXO Inhibit Proliferation and Adipogenesis in
Porcine Preadipocytes
First at all, Exosome special protein markers Alix and TSG101
were identified by Western blotting to prove the accuracy
of exosome (Supplementary Figure 1). Then we treated
adipose cells with M-EXO. At Day 8 of induction, M-EXO
significantly suppressed adipogenesis of adipocytes (Figure 1A).
Furthermore, TG assay demonstrated that adipogenesis was
significantly suppressed by M-EXO treatment (Figure 1B). The

expression levels of various adipocyte markers were decreased
when treated with M-EXO (Figure 1C). Together, these
findings indicate that muscle exosomes inhibited adipogenesis of
porcine preadipocytes.

Differentially Expressed miRNAs Profiles
A total of 5,634,600 and 4,938,001 raw reads (≥15 nt) were
obtained from the A-EXO and M-EXO libraries, respectively.
After removing contaminant reads (adaptor sequences, rRNA,
virus etc.), we obtained 3,553,685 (A-EXO) and 3,078,361 (M-
EXO) reads for subsequent analyses. The raw data was uploaded
to SRA database (PRJNA665545). The length of all reads (both
M-EXO and A-EXO) were distributed in a range of 16∼30 nt.

Consequently, a total of 191 miRNAs (52 novel miRNAs
and 139 known miRNAs) were identified in A-EXO and
M-EXO. There were 30 miRNAs counting more than 1000TPM
(Transcripts Per kilobase Million) in M-EXO, and 40 miRNAs
counting more than 1000TPM in A-EXO. Comparing all those
identified miRNAs (both novel and known miRNAs) in A-EXO,
78 were downregulated and 26 were upregulated in M-EXO
group, (Fold Change > 2) (Figure 2).

RT-PCR Validation of the Sequencing Data
To validate the reliability of high-throughput sequencing data,
RT-PCR were performed. Five miRNAs with different expression
levels were selected randomly, of which miR-146a-5p and miR-
129a-3p were upregulated in M-EXO, and miR-125a, miR-24-3p,

FIGURE 6 | Comparison between M-EXO and MUS groups. (A) DE miRNAs in M-EXO vs. MUS (GSM2350364); (B) DE miRNAs in M-EXO vs. MUS (GSM2350367);
(C) DE miRNAs in M-EXO vs. MUS (GSM2935442); (D) DE miRNAs in M-EXO vs. MUS (GSM2935443).
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miR-193a-5p were upregulated in A-EXO. The results showed
that the regulation of those miRNAs expression was basically
consistent with the miRNA-sequencing results (Figure 3). Next,
we determine the 4 miRNAs expression in adipocytes after the
treatment with M-EXO, miR-146a-5p upregulated significantly
(Supplementary Figure 2).

Integrated Analysis and Functional Annotation
Target genes of the DE miRNAs were predicted to identify
candidate biological processes in which the DE miRNAs may be
involved in. In M-EXO group, a total of 2,137 genes were found
to be potentially targeted by the most significantly DE miRNAs
(miR-183, miR-425-3p, miR-1249, miR-451, miR-146a-5p, miR-
221-5p), including AKT2, IPPK, IRAK2, which are associated
with adipogenesis and lipogenesis. As for A-EXO group (miR-
28-5p, miR-145-5p, miR-149, miR-186, miR-499-5p), 2,004 targets
were detected, including CRTC2, FOXO1, SLC2A4, which are
the key regulatory factors in glucose and lipid metabolism
(Supplementary Figure 3).

To characterize the regulation of those DE miRNAs, GO
enrichment and KEGG pathway analyses were performed in
this study. GO analysis showed that all those target genes
in M-EXO group were enriched in many processes, such
as RNA transport, nucleus mRNA export, protein binding,
cellular metabolic process, receptor activator activity, and protein
heterodimerization activity. In A-EXO group, they were enriched
in regulation of cyclin-dependent protein serine/threonine
kinase activity, glucose transmembrane transporter activity,
phosphatidylinositol binding, and endocytic vesicle membrane
(Figure 4). KEGG pathway analysis showed M-EXO group was
enriched in inositol phosphate metabolism, phosphatidylinositol
signaling system, mRNA surveillance pathway, GABAergic
synapse, adherence junction, VEGF signaling pathway, glyoxylate
and dicarboxylate metabolism, and actin cytoskeleton regulation
(Figure 5). As for A-EXO group, target genes were enriched
in spliceosome, FoxO signaling pathway, insulin resistance, and
AMPK signaling pathway (Figure 5). Those data showed those
miRNAs and their targets may associated with cell proliferation,
carbohydrate metabolism, fat deposition, which all correlated
with the crosstalk of muscle and adipose.

Differential Expression Between Tissues and
Exosomes
We downloaded four raw high-sequence data of pig muscle tissue
(MUS) from NCBI GEO database). Then we examined miRNAs
profiles in each MUS groups (GSM2350364, GSM2350367,
GSM2935442, GSM2935443). Volcano plot showed DE miRNAs
profiles of M-EXO as compared to MUS (Figures 6A–D).
Compared with all four MUS groups, 31 miRNAs were
upregulated in M-EXO, of which miR-146a-5p and miR-221-5p
were upregulated in every M-EXO vs. MUS group (Figures 6A–
D). Then, we filtered KEGG pathway of miR-146a-5p (Table 1)
and miR-221-5p (Table 2), and data showed targets of miR-
221-5p were enriched in adipocytokine signaling pathway, PI3K-
Akt signaling pathway, FoxO signaling pathway, and insulin
signaling pathway.

Discussion
Both adipose tissue and skeletal muscle are recognized as
endocrine organs secreting many bioactive factors, such as
myokines and adipokines being involved in intercellular
communication. Amongst these, myostatin (a myokine) is a
negative regulator of muscle growth. Previous studies indicated
depleting myostatin induces skeletal muscle hypertrophy and
inhibits body fat accumulation (Argilés et al., 2005). Some
previous articles also suggested erythropoietin as a myokine,
Hojman et al. (2009) found overexpression of erythropoietin in
obese mice resulted in a weight reduction. Adipokines, such as
leptin and adiponectin are involved in the regulation of muscle
(Carvalho et al., 2018). Recent findings showed exosome is an
additional vehicle in intercellular communication (Guay and
Regazzi, 2017). Exosome and exosomal miRNAs are new and
more selective and specific approaches for the crosstalk in adipose
tissue and muscle tissue. Exosomal miR-130b inhibits expression
of PGC-1α in C2C12 myotubes (Wang et al., 2013). MiR-200a
can block TCS1 expression and promote muscle hypertrophy
(Fang et al., 2016).

We identified the DE miRNAs between M-EXO and
A-EXO, of which 6 miRNAs were upregulated in M-EXO.
Moreover, we compared the miRNAs profiles of M-EXO with

TABLE 1 | Summary of KEGG pathways associated with miR-146a-5p.

ID Term P-value Genes

ssc04620 Toll-like receptor signaling pathway 0.000873 MAP3K8|IRAK1|TRAF6

ssc04010 MAPK signaling pathway 0.002261 MAP3K8|IRAK1|ERBB4|TRAF6

ssc03440 Homologous recombination 0.00292 RAD51B|RAD50

ssc05168 Herpes simplex virus 1 infection 0.004082 ZNF471|ZNF169|IRAK1|TRAF6

TABLE 2 | Summary of KEGG pathways associated with miR-221-5p.

ID Term P-value Genes

ssc04920 Adipocytokine signaling pathway 0.001985 CPT1A|IKBKB|PRKAB1|G6PC3|TNFRSF1A

ssc04151 PI3K-Akt signaling pathway 0.002692 ITGA8|BRCA1|CCND1|CSF1|G6PC3|IKBKB|LAMC2|MCL1|COL4A1|LPAR2|FLT4

ssc04068 FoxO signaling pathway 0.005385 TGFB2|PRKAB1|CCND1|S1PR1|G6PC3|IKBKB

ssc04910 Insulin signaling pathway 0.024613 IKBKB|HKDC1|CRKL|G6PC3|PRKAB1
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4 miRNA profiles of porcine muscle tissues (Downloaded
from NCBI GEO). We found miR-146a-5p and miR-221-
5p were upregulated in M-EXO as compared to MUS
groups. KEGG analysis showed miR-146a-5p and miR-221-5p
were associated with MAPK signaling pathway, adipocytokine
signaling pathway, PI3K-Akt signaling pathway, FoxO signaling
pathway, and insulin signaling pathway. Studies have shown
that activation of FoxO pathway inhibits lipogenesis through
suppression expression of sterol regulatory element binding
protein 1c (SREBP-1c) and glucokinase (Xiong et al., 2013), and
activation of PI3K-Akt pathway promotes brown adipogenesis
mediated by GDF5 (Hinoi et al., 2014). Meerson et al.
(2013) have also indicated that expression of adipose miR-
221 is positively correlated with increasing BMI in the Pima
Indian population. In human preadipocytes, proteomic analysis
showed miR-221 overexpression upregulates several proteins
(AKR1C1, FASN, and HADHB) involved in fat metabolism,
mimicking activation of PPAR (Meerson et al., 2013). Associating
those results with our data, we suggest that muscle derived
exosomal miR-221-5p is probably associated with adipose
tissue metabolism.

MiR-146a are potentially involved in adipocyte differentiation
by targeting C/EBP beta and Apo E (Chartoumpekis et al.,
2012). A study showed that miR-146a-5p inhibits TNF-α induced
adipogenesis via targeting insulin receptor in primary porcine
adipocytes (Wu et al., 2016). Wang et al. examined miRNA
profiles of porcine muscle and adipose tissues in different
developmental stage. Interestingly, miR-146a-5p is upregulated
in adipose tissue on30d, 90d, 240d (Wang et al., 2017).
This implies that miR-146a-5p may play an important role
in development of adipose tissue. MiRNAs and exosomes
can play important role in muscle tissue to other tissue
communication (Guay and Regazzi, 2017; Lam et al., 2019).
Thus we speculated part of miR-146a in adipose was derived
from muscle cells via transportation of M-EXO. Exosomes from
human skeletal myoblasts are shown to promote myogenesis
of human adipose stem cells in vitro (Lam et al., 2019).
Kuang et al. (2009) showed that miR-146a inhibits satellite
cell differentiation via targeting Numb. The differentiation
of C2C12 cells was rescued after inhibition of miR-146a
(Kuang et al., 2009). Exosomal miR-27a can induce insulin
resistance in skeletal muscle via repressing PPARγ (Yu et al.,
2018). Zhou et al. (2010) found miR-122, miR-323 and miR-
130a were upregulated in longissimus muscle tissue of pigs
at embryonic day 90. Our data showed that miR-27a (1.8
foldchange) and miR-323 (2.2 foldchange) were upregulated in
A-EXO. These results support previous findings and indicate
that exosomes may serve as messenger between adipose tissue
and muscle tissue.

Ropka-Molik et al. obtained miRNAs profiles between Pietrain
and Hampshire breeds, muscle-specific miR-206 was identified
as DE miRNAs in Pietrain and Hampshire pigs differing in
muscle weight (Katarzyna et al., 2018). They suggested that
miR-206 may play an important role in muscle growth and
development. Inhibition of miR-206 leads to skeletal muscle
hypoplasia (O’Rourke et al., 2007). Deletion of miR-206 in
mice delays muscle regeneration induced by cardiotoxin injury

(Liu et al., 2012). Muscle-specific miR-206 is described to
be involved in proliferation and differentiation (Lam et al.,
2019). Chen et al. (2019) reported miR-1, miR-206 and miR133
family are DE miRNAs in skeletal muscle tissue of Guizhou
miniature pig. But in our study, miR-206 was not detected
as a DE miRNA in M-EXO. The difference may be due to
the mechanisms responsible for the upload of the exosomal
miRNAs and difference of breed. The mechanisms remain largely
unknown. Previous studies showed some miRNAs seemed to be
sorted into exosomes preferentially, while others preferred to
be retained in parental cells. Moreover, environmental stressors,
cell type, and disease also contributed to sorting mechanism
(Guay and Regazzi, 2017).

To the best of our knowledge, this is the first study that
showed muscle derived exosome can attenuate proliferation
and adipogenesis of preadipocytes as well as identified miRNAs
profiles of porcine exosomes from muscle and adipose tissues.
According to bioinformatic analyses, we suggested miR-221-5p
and miR-146a-5p may serve as regulator in the muscle-adipose
communication. However, the exact mechanism of how muscle-
derived exosomal miRNAs affects adipose tissue remained to be
determined in future study. This study may serve as a foundation
for further studies on the detailed functions of exosomes
between the skeletal muscle-adipose crosstalk and the potential
relationship between skeletal muscle atrophy and obesity.
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