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CO = cardiac output; CRP = C-reactive protein; ED = emergency department; EDM = esophageal Doppler monitor; ICU = intensive care unit; ICG =
impedence cardiography; NPPV = noninvasive positive pressure ventilation; PaCO2 = arterial carbon dioxide tension; PCT = procalcitonin; PetCO2 =
end-tidal carbon dioxide tension; ScvO2 = central venous oxygen saturation.
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Abstract
The delivery of critical care is no longer limited to the intensive care
unit.  The information gained by utilization of new technologies has
proven beneficial in some populations.  Research into earlier and
more widespread use of these modalities may prove to be of even
greater benefit to critically ill patients.

Introduction
Diagnostic and therapeutic interventions done outside the
intensive care unit (ICU) are an integral part of the multi-
disciplinary continuum of critical care. Presented here is a
brief review of hemodynamic monitoring, ancillary studies,
and therapeutic modalities that are currently used or that
have potential applications in the emergency department
(ED).

Esophageal Doppler monitoring
In treating critically ill patients it is often desirable to have
available an objective measure of cardiac function and
response to therapy. Determinations of cardiac output (CO)
have traditionally used a pulmonary artery catheter, employing
the thermodilution technique in the operative suite or ICU
[1–3]. The risks associated with central venous access,
pulmonary arterial injury, embolization, infection, interpretation,
and reproducibility were previously addressed and render this
modality impractical for use in the ED [2,4,5]. The esophageal
Doppler monitor (EDM) can be used to evaluate the velocity
and time at which blood travels within the descending aorta
using a Doppler signal. EDM-derived variables include peak
velocity, flow time, and heart rate. From the EDM-derived
variables, CO, stroke volume, and cardiac index can be
computed [6–9]. Peak velocity is proportional to contractility
and flow time correlates with preload.

Recent reviews in the literature [10–14] support the use of
EDM for fluid management in the critically ill both in the
operative and ICU settings. Placement of the EDM is similar to
insertion of a nasogastric tube, and once it is correctly
positioned, with a good Doppler signal acquired, the EDM
correlates well with the thermodilution technique and serial
measurements can be obtained [15,16]. Reliability of the EDM
may be hindered during dysrhythmic states because of the
fluctuating or irregular aortic pulse wave. It is clinically useful in
distinguishing between a low versus high CO state and
determining the response of CO to therapeutic interventions
such as an intravenous fluid challenge. Gan and coworkers
[10] demonstrated a reduction in length of stay after major
surgery using EDM goal-directed fluid management. Case
report data support its successful use in guiding therapy in a
septic patient [17]. The ease of insertion and interpretation was
illustrated in ED studies [18,19], which provide some of the
limited evidence for the superiority of EDM data over clinical
hemodynamic assessment. EDM may be useful as a tool with
which to assess trends in cardiac parameters and clinical
response to a given therapy (Table 1). Although outcome data
utilizing the EDM are lacking, practical applications in the ED
include monitoring intubated patients receiving intravenous
inotropic or vasoactive agents. Mechanically ventilated patients
often require sedation as part of treatment, and similarly
patients being monitored with an EDM may benefit from
sedative medications, as delineated in clinical practice
guidelines regarding the use of sedation in the ICU [20,21].

Thoracic bioimpedance
Thoracic bioimpedance was initially devised for the space
program in the 1960s as a noninvasive means to monitor
astronauts during space flight [22]. The science of
bioimpedance utilizes differences in tissue impedance that
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occur in response to low levels of electrical current to derive
hemodynamic variables. Early work by Nyober and Kubicek
[22,23] derived bioimpedance by means of applying a small
current to the thorax and measuring the returning signal
coupled to a calculation to derive stroke volume. The currently
available technology differs by the choice of two formulae that
are currently in use: the earlier mathematical model by Kubicek
and the later modification by Sramek-Bernstein, which
corrected for certain clinical assumptions made by Kubicek.

Impedance cardiography (ICG) combines bioimpedance over
time with the electrocardiographic cycle. The instrument is
connected to patients by applying adhesive pads on the neck
and/or lateral chest wall areas [8,24]. Patients do not feel the
current when the instrument is applied. Studies have shown
earlier versions of thoracic bioimpedance to have a
correlation coefficient with pulmonary artery catheterization of
approximately 0.83 [25]. From the measured values of heart
rate, impedance, and electrocardiographic parameters, other
hemodynamic parameters are derived, which include cardiac
index, CO, stroke index, stroke volume, systemic vascular
resistance, and thoracic fluid content. Additional derived data
include the pre-ejection period and left ventricular ejection
time [24]. The pre-ejection period : left ventricular ejection
time ratio reflects contractility [24]. Clinically, ICG has been
studied in the management of congestive heart failure
[26–28], sepsis [29–31], and trauma [32–35]. In an ED
study of patients presenting with shortness of breath [36],
application of ICG changed the admitting diagnosis in 5% of
patients and accounted for a change in therapy in more than
20%. In applying this technology it should be recognized that
its limitations are that data output is derived from calculations,
and that continuous electrode contact must be maintained
with the skin, which may prove difficult in unstable or
diaphoretic patients.

ICG may have a growing role to play in ED management of
the critically ill, with further studies delineating the benefit and
optimal application of this technique. The use of this
technology could be particularly helpful in patients with poor
vascular access such as those with peripheral vascular
disease and hemodialysis patients (Table 1).

End-tidal carbon dioxide monitoring
End-tidal carbon dioxide refers to the presence of carbon
dioxide at the end of expiration (end-tidal carbon dioxide
tension [PetCO2]). Capnometry is the measurement of carbon
dioxide gas during ventilation. Capnography refers to the
graphical representation of end-tidal carbon dioxide over a
period time. The characteristic capnographic waveform is
composed of a baseline (representing dead space carbon
dioxide), expiratory upstroke, alveolar plateau, end-tidal
carbon dioxide, and downstroke. At the peak of the upslope
is the PetCO2 [37]. Depending on the hemodynamic state, the
amount of PetCO2 detected usually correlates with the degree
of pulmonary alveolar flow and ventilation [37–39].

Quantitative PetCO2 is currently measured using a main-
stream detector or a sidestream detector utilizing infrared
technology. Mainstream detectors are connected to an
endotracheal tube for real-time detection of changes in
PetCO2. Sidestream PetCO2 detectors sample expired gas
noninvasively (e.g. in nonintubated patients).

PetCO2 detection is used as an adjunct to confirm correct
endotracheal tube placement [40]. It has also been studied in
cardiac arrest as a surrogate of CO and coronary perfusion
pressure [41–44]. For victims of cardiac arrest of duration
greater than 20 min, capnography readings consistently
below 10 mmHg indicate that the chance that there will be no
return of spontaneous circulation is nearly 100% [45].
PetCO2 is useful for managing hemodynamically stable,
mechanically ventilated patients. After establishing a gradient
between PetCO2 and arterial carbon dioxide tension (PaCO2),
PetCO2 can approximate PaCO2 and serves as a rough guide
to ventilatory status [40].

In diabetic ketoacidosis the compensatory response to the
metabolic acidosis is an increase in respiratory rate with a
concurrent decrease in PaCO2. Using the relationship
between PaCO2 and PetCO2, a recent study [46] showed a
linear relationship between PetCO2 and serum bicarbonate
with a sensitivity of 0.83 and specificity of 1.0 in patients with
diabetic ketoacidosis. PetCO2 is a helpful noninvasive adjunct
for monitoring critically ill patients and for guiding therapy. It
potentially can have a more expanded role by providing a
quantitative assessment of patients’ ventilatory and perfusion
status when they present with respiratory failure, metabolic
derangements, and post-cardiac arrest (Table 1).

Sublingual carbon dioxide
Recognition of organ-specific sensitivity to decreased flow
arose from an understanding of the differences in regional
blood flow that occur during systemic hypoperfusion and
shock states. Early investigations conducted by Weil and
coworkers [47,48] in animals and humans demonstrated an
increase in gastric mucosal carbon dioxide during periods of
poor perfusion. This led to the concept of gastric tonometry,
which is used to measure mucosal carbon dioxide to derive
gastric mucosal pH via the Henderson–Hasselbach equation.
Experience with this technique demonstrated that it is
sensitive and correlates well with other hemodynamic
parameters [49]. The time consuming and complex nature of
calculating mucosal pH is not practical in the ED; however, it
was later discovered that sublingual mucosal carbon dioxide
correlates well with the gastric mucosal carbon dioxide [50].
Recent data indicate that the sublingual carbon
dioxide–PaCO2 gradient correlates well with illness severity in
septic patients in the ICU [51]. Larger studies evaluating the
applicability and response to therapy within the ED setting
are needed. Sublingual capnography may serve as a
surrogate marker of hypoperfusion. Currently marketed
devices for measurement of sublingual carbon dioxide are
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rapid and easily applied (see Appendix 1). These devices may
be useful in screening for hypoperfused states in ED triage
(Table 1).

Point-of-care testing
Point-of-care testing has found its way into the ED. As more
rapid bedside analyzers make their way into the marketplace,

Table 1

Normal values (See Appendix 1)

Monitoring Patient population in which the 
tool Parameter Normal values Comments parameter is useful

Esophageal FTc, PV FTc: 330–360 ms FTc: correlates with cardiac output, The hemodynamically compromised 
Doppler PV (age-dependent): and a mere change in the value in Especially useful in patients with 
monitor 20 years 90–120 cm/s; response to a fluid challenge can contraindications to invasive procedures 

50 years 70–100 cm/s; indicate hypovolemia [10–14] [17] 
70 years 50–80 cm/s PV: affected by afterload and left Mostly studied in intubated, sedated 

ventricular contractility [8] patients

Thoracic CO/CI, SV/SI, CO correlates well Limited in diaphoretic patients Useful in nonintubated patients – 
bioimpedance SVR/SVRI, (r = 0.83) with PA Studies done in CHF, sepsis, trauma, noninvasive

TFC, catheter [21] emergency department patients 
PEP/LVET CO correlates well (r = 0.83) with 

PA catheter [21] 
PEP/LVET reflect contractility [22–25]

End-tidal PetCO2 35–45 mmHg Direct correlation (r = 0.64–0.87) COPD 
carbon [81,82] with PaCO2 [37,38] Noninvasive ventilation 
dioxide CO and coronary perfusion pressure Cardiac arrest

surrogate [41–44] 
>10 mmHg: Critical <10 mmHg indicates unlikely ROSC [45]

Sublingual SL CAP 70 mmHg [48] A surrogate for gastric tonometry CO2 could be an earlier, more rapid 
capnography (i.e. a marker of tissue hypoxia) indicator of shock than biomarkers 
[47–49] Shock: >70 mmHg; sensitivity 73%, ED studies lacking

specificity 100%, positive predictive 
value 100%

Lactic acid LAC <2.5 mmol/l >4.0 mmol/l [53]: 98.2% specific for Shock of any cause
hospital admission from ED; 96% 
specific in prediciting mortality in 
normotensive inpatients; 87.5% 
specific in predicting mortality in 
hypotensive inpatients [55]

C-reactive CRP <50–60 mg/l Higher CRP level carries worse Sepsis
protein prognosis [65–67]

Procalcitonin PCT 0–0.5 ng/ml >0.6 ng/ml is approximately 69.5% Infected, septic patients
[81] sensitive for infection [84] 

>2.6 ng/ml: odds ratio 38.3 for septic 
shock [84]

Central ScvO2 65–75% A surrogate for mixed venous oxygen Studies have found ScvO2 to be useful in 
venous saturation and CI myocardial infarction, intensive care unit, 
oxygen <60% indicates global tissue hypoxia, surgical, trauma, and septic/cardiogenic 
saturation anemia, sepsis, low CO shock patients
[61,73,74] >80% indicates venous hyperoxia, 

which implies a defect either in oxygen 
utilization or delivery [76]

Arteriovenous A–V CO2 <5 mmHg Inversely proportional to CI Useful for identifying delivery dependent 
CO2 gradient states, and therefore adequacy of tissue 
[73] perfusion

CHF, congestive heart failure; CI, cardiac index; CO, cardiac output; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; ED,
emergency department; FTc, corrected flow time; LVET, left ventricular ejection time; PA, pulmonary artery; PCT, procalcitonin; PEP, pre-ejection
period; PetCO2, end-tidal carbon dioxide tension; PV, peak velocity; SI, stroke index; SL CAP, sublingual capnography; SV, stroke volume; ScvO2,
central venous oxygen saturation; SVR, systemic vascular resistance; SVRI, systemic vascular resistance index; TFC, thoracic fluid content.
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health care systems must find the appropriate fit at their
institutions. A recent review by Fermann and Suyama [52]
addresses the potential applications and pitfalls of their use.
A comprehensive review of point-of-care testing will not be
revisited here, but rather a few potentially useful biomarkers
are discussed.

Lactate
Whole blood analyzers are currently available that allow for
measurement of lactate [53]. Lactate is a useful biomarker,
providing an indication of tissue hypoperfusion [53–56].
Ability to obtain lactate levels in the ED has significant
implications for patient care, and recognition of subclinical
hypoperfusion using arterial and venous samples has been
shown to correlate well (r = 0.94) [57]. Arterial sampling has
advantages over venous sampling in hemodynamically
compromised patients [58]. Several published studies
[57,59–63] have demonstrated the ability of lactate to
predict morbidity and mortality even better than base deficit in
critically ill patients. Smith and coworkers [59] found that
elevated admission blood lactate levels correlated with 24%
mortality, and in those whose lactate levels did not normalize
within 24 hours the mortality was 82%. The level at which
lactate becomes clinically significant may be disputed. Rivers
and coworkers [61] used a cutoff of 4 mmol/l to initiate early
goal-directed therapy in septic patients. Blow and coworkers
[64] aimed for lactate levels of less than 2.5 mmol/l and
found that patients in whom this level could not be reached
had increased morbidity and mortality (Table 1).

The rate of lactate clearance corresponds to clinical
response [63,65]. The goal of resuscitation should therefore
be directed not only at normalizing lactate levels but also at
doing so in a timely manner, preferably within 24 hours.
Lactate measurement in patients with suspected subclinical
hypoperfusion served as both an end-point of resuscitation
and a means to stratify the severity of illness [62].

C-reactive protein and procalcitonin
Clinical decision making in the ED is often hampered in adult
and pediatric patients with possible sepsis because of an
inprecise history or a nonlocalizing physical examination.
Newer bedside assays may suggest a greater likelihood of
infection or severity of illness in the appropriate setting. C-
reactive protein (CRP) and procalcitonin (PCT) are two
biomarkers that are being investigated in the ED. CRP is a
well known acute phase reactant and is a useful marker of
inflammation. Its function is to activate complement, opsonize
pathogens, and enhance phagocytosis [66]. The physiologic
function of PCT is not known. Da Silva and coworkers [67]
suggested that CRP might be a more sensitive indicator of
sepsis than leukocyte indices alone. Lobo and colleagues
[68] found that elevated CRP levels correlated with organ
failure and death in an ICU population at admission and at
48 hours. Galetto-Lacour and coworkers [69] evaluated
bedside PCT and CRP in a pediatric population and found

the sensitivities for predicting a serious bacterial infection to
be 93% and 79%, respectively. In a recent review by Gattas
and Cook [70] they suggested that PCT may be useful in
excluding sepsis if it is in the normal range (Table 1). Bedside
PCT and CRP are currently not approved by the Food and
Drug Administration in the USA, but they are on the horizon
and may assist with clinical decision-making in the ED setting
in patients with suspected sepsis or a serious bacterial
infection [71].

Mixed/central venous oximetry and arterial–venous
carbon dioxide gradient
Wo and coworkers [72] and Rady and colleagues [73] first
described the unreliability of the traditional end-point of
normal vital signs in the ED resuscitation of critically ill
patients. Rady and coworkers [73] found a persistent deficit
in tissue perfusion by demonstrating a decreased central
venous oxygen saturation (ScvO2) despite normal vital signs
after resuscitation. Increased capillary and venous oxygen
extraction leads to a lower ScvO2, which is an indication of
increased oxygen consumption or decreased oxygen
delivery. Persistently decreased ScvO2 after resuscitation
predicts poor prognosis and organ failure [73]. Rivers and
coworkers [74] reviewed current evidence comparing mixed
venous oxygen saturation and ScvO2; they found that,
although a small difference in the absolute saturation value
may exist, critically low central venous saturations may still
be used to guide therapy. ScvO2 can be measured from
blood obtained from a central line inserted into the
subclavian or internal jugular vein. Alternatively, newer
fiberoptic enabled catheters can provide a real-time display
of ScvO2 after initial calibration [73] (Table 1).

Johnson and Weil [75] described the ischemic state seen in
circulatory failure as a dual insult of decreased oxygenation
and increased tissue carbon dioxide levels. Evidence of
carbon dioxide excess was found in cardiac arrest studies
demonstrating an elevated arteriovenous carbon dioxide
difference [76–78]. In a small observational study [78],
derangements in the arteriovenous carbon dioxide gradient
were found to exist in lesser degrees of circulatory failure and
that this relation correlated inversely with CO. A relationship
between mixed venous–arterial carbon dioxide gradient and
cardiac index was also observed in a study of septic ICU
patients [79]. By measuring ScvO2 or by calculating an
arterial central venous carbon dioxide gradient, clinicians can
detect subclinical hypopefusion and have a fair estimate of
cardiac function when vital signs do not fully account for a
clinical scenario [80]. These modalities can be employed in
either an ED or an ICU setting (Table 1).

Therapeutics
Early goal-directed therapy
The combination of early detection of subclinical hypo-
perfusion and goal-directed therapy in septic patients was
advanced by the ED-based protocol devised by Rivers and
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coworkers [61]. With early implementation of ScvO2
monitoring to guide fluid, inotropic, and blood product
administration, a significant mortality reduction was observed
in patients with severe sepsis and septic shock. The absolute
mortality benefit in the treatment group (30.5%) as compared
with the control group (46.5%) was 16%. Benefits from early
goal-directed intervention were seen as late as 60 days after
admission. Efforts to disseminate and apply early goal-
directed therapy are underway and multidisciplinary teams
may be employed to continue the protocol started in the ED
in the ICU. Early identification and treatment of patients at a
critical juncture in early sepsis supports the application of this
modality in emergency medicine and critical care.

Noninvasive positive pressure ventilation
Noninvasive positive pressure ventilation (NPPV) has been
used for a number of years in the ICU and for patients with
obstructive sleep apnea. Recently, NPPV has found an
increasing role in the ED. Continuous positive airway
pressure ventilation may assist patients by improving lung
compliance and functional residual capacity [81]. In the ED
patients with acute exacerbations of asthma, chronic
obstructive pulmonary disease, and congestive heart failure
resistant to medical therapy are often intubated for
respiratory support. Previously studied indications for
employing NPPV in the ED include hypoxic respiratory
failure, exacerbation of chronic obstructive pulmonary
disease, asthma, and pulmonary edema [81]. In a study into
the use of NPPV for patients with congestive heart failure
conducted by Nava and coworkers [82], overall outcomes
were similar for patients who did not receive NPPV, although
a greater improvement in arterial oxygen tension and partial
carbon dioxide tension, and a decreased rate of intubations
was observed in the NPPV group. In a controversial study of
congestive heart failure pitting bilevel positive airway
pressure against continuous positive airway pressure [83], a
greater rate of myocardial infarction was seen in the bilevel
group [83]. Asthma treatment in the ED utilizing bilevel
positive airway pressure has yielded improved outcomes
[84–86]. The avoidance of endotracheal intubation in
patients with reversible disease may have a significant
impact on clinical care [83]. NPPV is a viable option for
emergency physicians managing patients with COPD,
asthma, and pulmonary edema to avoid intubations, and
impact morbidity and hospital length of stay.

Conclusions
It has been increasingly recognized that the boundaries of
critical illness are extending beyond the ICU. Increasing ED
patient volumes compounded by limited ward and ICU bed
availability introduce a higher percentage of critically ill
patients awaiting ICU admission or transfer. Delays in
ancillary testing and implementation of therapy must be
avoided. Clinicians must be familiar with newer technologies
as they arrive and employ those technologies that will most
likely have an impact on clinical care. Earlier recognition and

treatment of critical illness by physicians in multiple
disciplines can potentially halt disease progression and have
a positive impact on patient outcomes.
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Appendix 1
The following is a brief listing of manufacturers of various
critical care technologies. This is not an endorsement of any
of the listed products or manufacturers. The authors do not
have any disclosures or financial interests in any of the listed
manufacturers.

Esophageal Doppler monitors:
• CardioQ® (www.deltexmedical.com)
• HemoSonic 100® (www.hemosonic.com)

Mixed–central venous monitor
• Edwards PreSep® Central Venous Oximetry Catheter

(Edwards LifeScience; www.edwards.com)

Impedance cardiography
• Bio Z® (Impedance Cardiography;

www.impedancecardiography.com or www.cdic.com)
• Mindwaretech® (www.mindwaretech.com)

End-tidal carbon dioxide:
• DataScope® (www.datascope.com)

Point-of-care testing:
• Lactate: YSI 2300 STATplus® Whole Blood Analyzer

(YSI Life Sciences; www.ysi.com/life/glucose-lactate-
analyzer.htm)

• Procalcitonin: PCT LIA® (Brahms;
www.procalcitonin.com)

• C-reactive protein: Nycocard® CRP (Axis-Shield;
www.axis-shield-poc.com)


