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Abstract: The main objective of yoga pose grading is to assess the input yoga pose and compare
it to a standard pose in order to provide a quantitative evaluation as a grade. In this paper, a
computer vision-based yoga pose grading approach is proposed using contrastive skeleton feature
representations. First, the proposed approach extracts human body skeleton keypoints from the
input yoga pose image and then feeds their coordinates into a pose feature encoder, which is
trained using contrastive triplet examples; finally, a comparison of similar encoded pose features
is made.Furthermore, to tackle the inherent challenge of composing contrastive examples in pose
feature encoding, this paper proposes a new strategy to use both a coarse triplet example—comprised
of an anchor, a positive example from the same category, and a negative example from a different
category, and a fine triplet example—comprised of an anchor, a positive example, and a negative
example from the same category with different pose qualities. Extensive experiments are conducted
using two benchmark datasets to demonstrate the superior performance of the proposed approach.

Keywords: yoga pose grading; skeleton extraction; contrastive learning; yoga pose classification;
deep learning

1. Introduction

Yoga pose grading aims to quantitatively evaluate yoga poses so that it can realize
yoga pose recognition (how a yoga pose is performed) and evaluate pose quality (how well
a yoga pose is performed) [1,2]; which can distinguish different movements by analyzing
pose characteristics. The most important aspect of yoga exercise is to do it correctly, since
any wrong position can be counterproductive and possibly lead to injury [3–5]. However,
not all users have access to a professional instructor. Many yoga beginners could only learn
yoga by self-study, such as mechanically copying from a recorded yoga video or remotely
watching a live yoga session. Consequently, they have no way of knowing if their pose
is good or poor without the help of the instructor. Therefore, automatically evaluating
yoga poses is critical to the recognition of yoga poses and in providing suggestions to alert
learners [6].

There are various types of artificial intelligence-based solutions for yoga pose anal-
ysis that have been developed in the literature, including (i) the wearable device-based
approach [7,8], (ii) the Kinect-based approach [9–11], and (iii) the computer vision-based
approach.

First, wearable device-based approaches usually require attaching sensors to each joint
of the human body during yoga exercise. Wu et al. proposed a pose recognition and
quantitative evaluation approach [7]. A wearable device with eleven inertial measurement
units (IMUs) is fixed onto the human body in order to measure yoga pose data. Then, the
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artificial neural network and fuzzy C-means are combined to classify the input pose into a
category. In addition, the angular differences between nonstandard parts (e.g., the yoga
student) and the standard pose model (e.g., the yoga teacher) are calculated to guide yoga
learners. Puranik et al. proposed a wearable system [8] where a wrist subsystem is used to
monitor a pose with the help of a flex sensor, and a waist subsystem is built to monitor the
pose with the use of a flex sensor. However, such solutions are impractical for long-term
applications due to their maintenance concerns.

Second, Kinect-based approaches deploy the Kinect device to extract features. Chen
et al. captured the yoga learner’s body map and extracted the body contour [9]. Then, a
fast skeletonization technique was used as a human pose feature for yoga pose recognition.
Trejo and Yuan presented a yoga pose classification approach by employing the KinectV2
camera and the Adaboost classifier algorithm for recognizing six poses [10]. Islam et al.
presented a yoga pose recognition method that leverages fifteen keypoints detected from
Kinect camera images and uses pose-based matching for pose recognition [11]. However,
the depth sensor-based camera required in these solutions may not be always available
for users.

Third, computer vision-based approaches use non-invasive computer vision techniques
to extract pose characteristics and perform pose analysis, as reviewed in Section 2. They
are more suitable for amateur training and home exercise. Many studies have begun to
examine how to utilize human pose analysis techniques in the field of intelligent sports
learning since the invention of human pose analysis techniques [12].

Computer vision-based yoga pose grading is a difficult task due to the following
challenges. The first challenge is due to the lack of a yoga pose grading benchmark as image-
level annotation is expensive; hence, the supervised representation learning might not be
feasible. The second challenge lies in the fundamental difference between the learner’s
pose image and the standard pose image. The aggregated features using multiple deep
features from the pre-trained models might be more robust than a single type of feature [13].
In addition, human body skeleton information might be robust to handle this diversity. To
tackle these challenges, the contrastive learning technique [14–16] is a potential solution.
Its key idea is to conduct a discriminative learning approach to learn encoded feature
representations, in which similar sample pairs remain close together, whereas different
sample pairs remain widely apart. It has been successfully verified in many computer
vision tasks such as image classification [17] and human activity recognition [18,19].

Motivated by this, a computer vision-based yoga pose grading approach using con-
trastive skeleton feature representations is proposed in this paper. The following are the
main contributions of this paper:

• To tackle the challenge of variation between the learner’s pose image and the standard
pose image, contrastive learning is introduced in this paper to develop a yoga pose
grading approach that uses contrastive skeleton feature representations instead of
diverse and complicated backgrounds in the images. The proposed approach is able
to learn discriminative features from human skeleton keypoints for yoga pose grading,
as verified in our experimental results.

• To tackle the challenge of the establishment of contrastive examples used for discrim-
inative feature learning, a novel strategy is proposed in this paper to compose the
contrastive examples using both the coarse triplet example, which consists of an anchor,
a positive example from the same category, and a negative example from a different
category, and the fine triplet example, which consists of an anchor, a positive example,
and a negative example from the same category with different pose qualities.

The rest of this paper is organized as follows. Section 2 provides a brief review of
the existing research works in yoga pose classification and yoga pose grading. Then, the
proposed yoga pose grading approach using contrastive skeleton feature representations is
presented in Section 3, and then evaluated in extensive experiments in Section 4. Limitations
and future studies are also provided in Section 4. Finally, this paper is concluded in
Section 5.



Healthcare 2022, 10, 36 3 of 12

2. Related Works

This section provides a brief review of related computer vision-based research works
with a focus on (i) yoga pose classification [20–28] and (ii) yoga pose grading [29–32], as
summarized in Table 1.

Table 1. An overview of related yoga pose classification and yoga pose grading research works in
the literature. “−” means “not applicable”.

Data Method Year Pose Pose Number of Pose RemarkClassification Grading Categories

Wearable [7] 2019
√ √

18 Neural network and IMU data
device-based [8] 2021 − − − Pose measurement

[9] 2014
√

− 12 Body contour-based matching
Kinect-based [10] 2018

√
− 6 Adaboost

[11] 2018
√

− 5 Pose-based matching

[20] 2019
√

− 6 OpenPose + CNN-LSTM for video
[21] 2019

√
− 42 Motion capture image + CNN

[22] 2019
√

− 26 Image-based CNN
[23] 2020

√
− 6 OpenPose + CNN

[24] 2020
√

− 6 Rule-based classification
[25] 2020

√
− 82 Image-based CNN

[26] 2021
√

− 10 Image-based CNN
Computer [27] 2021

√
− 14 Image-based CNN

vision-based [28] 2021
√

− 10 3D CNN for video
[29] 2011 −

√
− Handcrafted SURF feature of the

pose image
[30] 2018 −

√
12 Domain knowledge to check skele-

ton keypoints
[31] 2021 −

√
5 Domain knowledge to check skele-

ton keypoints
[32] 2021 −

√
21 Domain knowledge to check skele-

ton keypoints

Ours − −
√

45 Contrastive skeleton feature repre-
sentations

2.1. Yoga Pose Classification

Recently, deep learning has achieved an impressive performance in addressing the
yoga pose classification task due to its powerful feature learning capability. Yadav et al.
proposed a hybrid deep learning framework where the convolutional neural network (CNN)
layer is used in each frame to extract features from human body keypoints returned by
OpenPose [33], followed by the long short-term memory (LSTM) layers performing temporal
learning [20]. Maddala et al. proposed to integrate joint angular movements along with
the joint distances in a spatiotemporal color-coded image, which is further analyzed using
a CNN model [21]. To address the privacy issue in the camera-based solution, Gochoo et al.
proposed a privacy-preserving yoga pose recognition by utilizing a deep CNN and a low-
resolution infrared sensor [22]. The OpenPose-based skeleton keypoint extraction and the
CNN model were also studied in [23]. Special attention was paid to applying a rule-based
classification in order to detect fall risk during yoga exercise in [24]. A benchmark dataset
for fine-grained yoga pose classification and several CNN baselines are provided in [25].
Other examples of deep learning-based yoga pose classification include the image-based
CNN model and transfer learning [26,27], and the three-dimensional CNN model for yoga
videos [28].
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2.2. Yoga Pose Grading

In contrast to the objective of yoga pose classification to infer the yoga pose class label,
yoga pose grading aims to automatically quantify how well people perform yoga actions.
Despite the fairly popular studies on yoga pose classification, there are not many works on
yoga pose grading. Patil et al. proposed to identify yoga pose variations between different
persons by comparing the similarity between the speeded up robust feature (SURF) extracted
from the input pose images [29]. Chen et al. proposed to capture the user body map, and
then apply the skeleton to extract the human body feature points to identify the correct
pose [30]. Chaudhari et al. used the domain knowledge of five yoga poses to build a system
that delivers clear feedback to the practitioner for them to appropriately practice yoga
postures. They employed a CNN model to identify yoga poses as well as a human-joint
localization model to detect flaws in the pose [31]. Kale et al. built a knowledge base of
twenty-one poses for examining the skeletal stream of specialists to see if there were any
differences [32].

2.3. Motivation and Research Challenge

Despite the fairly popular studies in yoga pose classification, there is a lack in yoga
pose grading research, except the works in [29–32]. The limitations of existing works lie in
two aspects:

• First, it is a challenge to rely on the whole pose image for pose grading due to the
fundamental difference between the learner’s pose image and the standard pose
image. To address this, the proposed approach exploits the skeleton keypoints from
the pose image, or more specifically, the discriminative features that are learned from
the contrastive skeleton feature representations. This is in contrast to what the whole
pose image is used in [29].

• Second, the domain knowledge is required to define customized rules for specific yoga
pose grading. It is difficult for them to handle new types of yoga poses. For example,
the methods in [30–32] require the domain knowledge to define the rules in order
to evaluate yoga poses by checking characteristics (e.g., positions or angles) of the
skeleton keypoints of various yoga postures. To address this, the proposed approach
relies on machine learning methods in order to provide general yoga grading without
the need for additional domain knowledge.

In summary, to tackle these challenges, a pose grading approach using contrastive
skeleton feature representations is proposed in this paper.

3. Proposed Approach

The objective of the proposed yoga pose grading approach is to input two yoga pose
images from the learner and the coach, respectively, and then extract the human skeleton
keypoints and feed them into the pose feature encoder. Finally, the feature similarity
between them is calculated in order to obtain a pose grade. As illustrated in Figure 1,
the proposed framework consists of a model training process and a model inference
process. More specifically, the model training process consists of three key components:
(i) construction of contrastive examples, (ii) skeleton extraction, (iii) pose feature encoding
using contrastive skeleton feature representations. The model inference process consists of
(i) skeleton extraction, (ii) pose feature encoder, and (iii) feature similarity comparison. All
of these components are described in the following sections in detail.

3.1. Construction of Contrastive Examples

The proposed framework exploits the contrastive learning concept, which applies
a weight-sharing neural network on multiple inputs. This is a natural tool to compare
various pose images. To learn effective discriminative representations, the composition of
multiple contrastive data is crucial in defining the contrastive prediction tasks. For that,
we exploit the triplet example [34] in this work. The idea is to learn discriminative feature
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embedding representations where similar features are projected onto the nearby region,
whereas dissimilar features are projected far away from each other.

Figure 1. A conceptual overview of the proposed yoga pose grading framework. The model training
process consists of three key components: (i) construction of contrastive examples, (ii) skeleton
extraction, (iii) pose feature encoding using contrastive skeleton feature representations. The model
inference process consists of (i) skeleton extraction, (ii) pose feature encoder, and (iii) feature similarity
comparison. Both skeleton extraction and pose feature encoder are the same in these two processes.

To be more specific, we propose to use both the coarse triplet example—comprised of an
anchor, a positive example from the same category, and a negative example from a different
category, and the fine triplet example—comprised of an anchor, a positive example, and a
negative example from the same category with different pose qualities. To illustrate the
difference between these two types of triplet examples, a few examples are presented in
Figure 2.

(a) (b)

Figure 2. A comparison between (a) the coarse triplet example and (b) the fine triplet example. The
coarse triplet example consists of one anchor from Salabhasana, one positive example from Salabhasana,
and one negative example from a different category such as Chaturanga Dandasana. The fine triplet
example consists of three examples from the same category such as Salabhasana; however, they have
different pose grades: high-quality, medium-quality, low-quality (for the images from the left to the
right, respectively).
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3.2. Skeleton Extraction

Due to the fact that some yoga poses are too complicated to be captured from a single
point of view, the utilization of skeleton keypoints of the human targets in the pose images
may be more suited for analyzing various poses than the whole pose image. In view
of this, the proposed framework exploits the human skeleton keypoints in yoga pose
grading instead of analyzing the whole pose image that is usually difficult due to diverse
backgrounds and human appearance.

In this paper, we adopt Mediapipe [35], which utilizes a state-of-the-art machine
learning model BlazePose [36] for skeleton keypoint extractions. It detects human body
parts and tracks keypoints on these body parts. Each of these keypoints represents a
two-dimensional coordinate that yields values in the range of (0, 1) corresponding to the
position of the pixel in the image, normalized with respect to image width and height. The
implementation details are provided as follows. The static_image_mode is set to True as we
process the single pose image as the input, the minimum_detection_confidence is set to the
default value 0.5, and the model_complexity is set to 2 to obtain the most accurate keypoint
results. After Mediapipe is applied to the input pose image, 33 keypoints of the human
body are detected in one pose image. Each keypoint of the human body has two coordinate
values; therefore, an image contains (2, 33) coordinate data values that will be used in the
following pose feature encoder.

3.3. Pose Feature Encoding Using Contrastive Skeleton Feature Representations

The proposed approach aims to learn the discriminative representations by maximiz-
ing the agreement between similar yoga pose images via a contrastive loss in the latent
feature space. It consists of the following key components:

• A neural network encoder (denoted as f (·)) that extracts representation vectors from
input contrastive data examples. It maps representations to the space where con-
trastive loss is applied. The detailed network architecture is illustrated in Figure 3.
The proposed encoder takes the introduced skeleton points as the input, and then
it adopts a sequence of Conv1D layers, where the numbers of filters are 16, 32, 32, 32;
each filter has the same kernel size of 15. The batch normalization and average pooling
are applied after each Conv1D layer. Finally, the encoded feature is obtained with a
dimension of 32.

• When the coarse triplet example is used, the encoder takes a triplet example xa, xp,
and xn as the input. These three images are processed to extract their respective
skeleton points sa, sp, and sn, each of which has a size of (2, 33). Then, they are further
processed by a weight-shared encoder network f (·) to obtain their respective features
za, zp, and zn. A triplet contrastive loss is defined as follows [34]:

L(za, zp, zn) = max
(
‖za − zp‖2 − ‖za − zn‖2 + αc, 0

)
, (1)

where αc is a margin between positive and negative examples.
• On the other hand, when the fine triplet example is used, the encoder takes a triplet

example xh, xm, and xl as the input, all of which are from the same category but are
of high-quality, medium-quality, and low-quality, respectively. These three images are
processed to extract their respective skeleton points sh, sm, and sl , each of which has a
size of (2, 33). Then, they are further processed by a weight-shared encoder network
f (·) to obtain their respective features zh, zm, and zl . A triplet contrastive loss is
defined as follows:

L(zh, zm, zl) = max
(
‖zh − zm‖2 − ‖zh − zl‖2 + αh, 0

)
+ max

(
‖zl − zm‖2 − ‖zl − zh‖2 + αl , 0

)
, (2)

where αh and αl are the margins when the high-quality example and the low-quality
example are used as anchors, respectively.
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Figure 3. The detailed network architecture of the pose feature encoder that is used in the proposed
framework.

In the model training, every batch consists of the same number of coarse triplet
examples and fine triplet examples. Then, (1) and (2) are combined to form the final loss to
supervise the model training as follows:

L = AVGcoarse
(
max

(
‖za − zp‖2 − ‖za − zn‖2 + αc, 0

))
+5 ∗AVG f ine

(
max

(
‖zh − zm‖2 − ‖zh − zl‖2 + αh, 0

)
+ max

(
‖zl − zm‖2 − ‖zl − zh‖2 + αl , 0

))
, (3)

where AVGcoarse(·) and AVG f ine(·) represent the average loss calculated using the coarse
triplet examples and the fine triplet examples in the batch, respectively. In addition, the
loss that is obtained from the fine triplet examples is further multiplied by a factor of 5
in this combination (3), as the fine triplet examples are treated as more important in the
model training.

3.4. Inference

The model inference process consists of (i) skeleton extraction, (ii) pose feature encoder,
and (iii) feature similarity comparison. The skeleton extraction and the pose feature encoder
are the same as those used in the model training process. Given two input yoga pose images
from the student and the teacher (denoted as xs, and xt, respectively), extract the human
skeleton keypoints and feed them into the pose feature encoder, before finally calculating
the feature similarity between their encoded features zs and zt m to obtain a pose grade
as follows:

Grade(zs, zt) =
zT

s zt

||zs||||zt||
, (4)

which calculates the dot product between the L2 normalized zs and zt (i.e., cosine similarity).

4. Results
4.1. Dataset

Two benchmark datasets are used in our experiments.

• Dataset A: This is the yoga pose classification image dataset adopted from Kaggle [37],
where 45 categories and 1931 images are selected. In this dataset, images are captured
with various resolutions and diverse backgrounds. An overview of these categories is
illustrated in Figure 4.

• Dataset B: This is the yoga pose grading image dataset that we constructed. In this
dataset, 3000 triplet examples are collected, where each triplet example consists of
three pose images that belong to the same yoga pose category. These images have
various resolutions and diverse backgrounds. Then, professional yoga teachers [38]
are engaged to grade these three images with respect to the standard pose image
in order to obtain three grades: high-quality, medium-quality, and low-quality. An
example of this dataset is illustrated in Figure 5.

These two serve as the benchmark datasets for evaluating and justifying the proposed
approach in experiments.
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Figure 4. An overview of 45 categories of yoga poses in Dataset A.

Figure 5. Examples of our yoga pose grading image in Dataset B. Three images are selected from the
category Utthita Trikonasana. These images have low, medium, and high grades, respectively (from the
left to the right).

4.2. Performance Metrics

The performance of the proposed approach is evaluated using the two types of
performance metrics below.

The first method is the pose recognition performance evaluation using Dataset A. Two
images (simulating one image from the student and the other image from the teacher) are
randomly selected from this dataset. Then, the proposed approach is used to evaluate
whether their feature similarity is smaller than a user-defined threshold (it is set to 0.75 in
our experiments) in order to make a binary decision of whether they belong to the same
category. Subsequently, the following four criteria are defined:

• True positives (TP): The two input images are from the same category (accurate pose),
and the proposed approach correctly classifies them into the same category.

• False positives (FP): The two input images are not from the same category (inaccurate
pose); however, the proposed approach wrongly classifies them into the same category.

• True negatives (TN): The two images are not from the same category (inaccurate pose),
and the proposed approach correctly classifies them as different poses.

• False negatives (FN): The two images are from the same category (accurate pose);
however, the proposed approach wrongly classifies them as different poses.

Based on the four aforementioned criteria, we further define the following perfor-
mance metrics: Accuracy, Precision, Recall, and F1.

Accuracy =
TP + TN

TP + FP + FN + TN
, (5)

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + FN
, (7)

F1 = 2× Precision× Recall
Precision + Recall

. (8)

In this experiment, 1656 pairs of photos are randomly selected from Dataset A, includ-
ing 828 positive pairs and 828 negative pairs.



Healthcare 2022, 10, 36 9 of 12

The second method is the pose feature similarity performance evaluation using
Dataset B. The criterion is: The distance between high-quality and low-quality pairs should
be larger than that between high-quality and medium-quality pairs, and between low-quality
and medium-quality pairs. The proposed approach is evaluated and its performance Ac-
curacy is defined as the ratio between the number of tests where the proposed approach
makes the correct decision and the number of total tests. In this experiment, 254 examples
from Dataset B are used.

4.3. Baseline Approaches

The relevant yoga pose grading works [29–32] were reviewed in Section 2.2. These
approaches are not suitable in our experiments to be able to provide a fair comparison.
First, the method in [29] needs to compare the whole pose image, which is different from
the proposed approach that uses only skeleton keypoints. Second, the methods in [30–32]
require domain knowledge to define the rules for checking the angles of the skeleton
keypoints of various yoga poses, which is not available for our pose dataset.

In order to conduct a fair experiment to justify the performance of the proposed
approach, we define the following two baseline approaches in the performance comparison.

• Baseline Approach 1: This extracts the skeleton keypoints from the input pose image
and then builds a virtual skeleton image as follows. The size of the skeleton image is
first set to (224, 224), then the background color is set to black, each keypoint is then
assigned a unique color, and the connections between them are drawn according to
the definition of the keypoints. In addition, the image augmentation method is used in
the model training, including a random rotation of up to 30 degrees, random scaling,
and cropping with a factor in the interval between 0.8 and 1.0. The MobileNetV3
network [39] is used as the backbone, the cross-entropy loss is used, and the output
feature vector length is 128. In the model training, 1931 images from 45 categories
are used. Finally, the encoded features are used to compare feature similarity in the
inference process.

• Baseline Approach 2: This exploits the same model architecture as the proposed ap-
proach. However, the cross-entropy loss is used to build a pose classification model.
In the model training, 1931 images from 45 categories are used. After the model is
trained using Dataset A, the encoded pose feature is used to compare feature similarity
in the inference process.

4.4. Implementation Details of the Proposed Approach

The implementation details of the proposed approach are provided as follows. The
triplet examples are constructed, as described in Section 3. The Mediapipe [35] is applied
on each input yoga pose image to extract its 33 skeleton keypoints. Then, the coordinates of
these keypoints from the triplet example are used as the input to the proposed approach. In
the model training process, 1931 coarse triplet examples and 591 fine triplet examples are
used. The initial learning rate is set to 0.005, with a weight decay of 0.1 to prevent model
over-fitting. The coordinates are randomly shifted as augmentation by adding a value
randomly drawn from a Gaussian distribution with a zero mean and a 0.02 variance. The
stochastic gradient descent optimization algorithm is used with an Adam optimizer [40].
In the proposed triplet loss, the margin αc in (1) is set to 0.1, and both margins αh and αl in
(2) are set to 0.2. The model is trained for 300 epochs with a batch size of 256 on the Nvidia
Tesla V100 GPU, and with the 1.9.0 version of the PyTorch library.

4.5. Experimental Results and Discussions

The first experiment evaluated the performance of the yoga pose grading approach, as
shown in Table 2. As seen from this table, the proposed approach is able to achieve the best
Recall and F1 performance in Dataset A. In the experiment using Dataset B, the proposed
approach is able to achieve the best accuracy performance.
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Table 2. Yoga pose grading performance comparison. The best performance is indicated by the
bold fonts.

Dataset A Dataset B
Method

Accuracy Precision Recall F1 Accuracy

Baseline Approach 1 0.7953 0.9939 0.5942 0.7438 0.5709
Baseline Approach 2 0.8327 0.9911 0.6715 0.8006 0.6004
Proposed Approach 0.8321 0.8819 0.7669 0.8204 0.6358

The second experiment is an ablation study to evaluate how the proposed contrastive
examples contribute to the final grading performance of the proposed approach. An
experiment is conducted to compare the performance of the proposed approach by using
the coarse contrastive examples alone and by using both the coarse contrastive examples
and the fine contrastive examples, as shown in Table 3. As seen from this table, the
proposed approach is able to achieve the best performance using both coarse contrastive
examples and fine contrastive examples.

Table 3. The ablation study of how the proposed contrastive examples contribute to the final pose
grading performance of the proposed approach. The best performance is indicated by the bold fonts.

Dataset A Dataset B
Proposed Approach

Accuracy Precision Recall F1 Accuracy

Coarse contrastive examples only 0.7760 0.6961 0.9795 0.8138 0.5827

Both coarse and fine contrastive examples 0.8321 0.8819 0.7669 0.8204 0.6358

We acknowledge that the proposed approach is not superior to all baseline approaches
in terms of the individual performance metric. It is possible to improve the proposed
approach in several aspects in future research works. First, more data augmentations
can be applied to generate more contrastive pairs, which could further boost the model’s
performance in learning the discriminative features of different poses. Second, only the
skeleton positions are used in the proposed approach; it would be interesting to incorporate
other features, such as the geometrical features (e.g., angular or distance) among skeleton
keypoints, into the proposed approach.

In addition, there are several interesting areas that warrant further research to address
the limitations of the proposed approach. First, the proposed approach performs automated
pose grading for a single image. In practice, yoga learners need to perform a complete
cycle to exercise a certain pose. To address this, the proposed approach can be extended
to perform yoga pose grading frame by frame. However, it would be interesting to study
how such grading could be performed by considering temporal information provided by
the learners’ video instead of processing it frame by frame. Second, the proposed approach
provides an overall grade for the yoga pose image. It would be interesting to study the
quantitative evaluation of the learners’ pose, such as arm angle or distance, so that further
interpretable feedback could be provided to improve the motion of the human body in
real time.

5. Conclusions

A computer vision-based yoga pose grading approach has been proposed in this
paper. The proposed approach was able to automatically grade the yoga pose image via
the learned contrastive skeleton feature representations. The proposed approach was able
to produce more accurate pose grading, as verified in our experimental results with the
use of two benchmark datasets.
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