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A proof of concept for machine 
learning‑based virtual knapping 
using neural networks
Jordy Didier Orellana Figueroa1*, Jonathan Scott Reeves1,3, Shannon P. McPherron2 & 
Claudio Tennie1,2

Prehistoric stone tools are an important source of evidence for the study of human behavioural 
and cognitive evolution. Archaeologists use insights from the experimental replication of lithics to 
understand phenomena such as the behaviours and cognitive capacities required to manufacture 
them. However, such experiments can require large amounts of time and raw materials, and achieving 
sufficient control of key variables can be difficult. A computer program able to accurately simulate 
stone tool production would make lithic experimentation faster, more accessible, reproducible, less 
biased, and may lead to reliable insights into the factors that structure the archaeological record. We 
present here a proof of concept for a machine learning-based virtual knapping framework capable of 
quickly and accurately predicting flake removals from 3D cores using a conditional adversarial neural 
network (CGAN). We programmatically generated a testing dataset of standardised 3D cores with 
flakes knapped from them. After training, the CGAN accurately predicted the length, volume, width, 
and shape of these flake removals using the intact core surface information alone. This demonstrates 
the feasibility of machine learning for investigating lithic production virtually. With a larger training 
sample and validation against archaeological data, virtual knapping could enable fast, cheap, and 
highly-reproducible virtual lithic experimentation.

Knapped stone tools provide an abundant and long-lasting record of past behaviours and cognition of pre-
historic humans on an evolutionary time scale. As a result, the stone artefact record is one of main pillars 
upon which our understanding of human evolution—and the evolution of human behaviour and cognition—is 
built. This understanding comes from building inferential links between formal and technological variation 
observed in the archaeological record and the behavioural, cognitive, and evolutionary processes that lead 
to its formation1–8. However, these links are not always apparent from the stone tools themselves, even in the 
earliest lithic technologies8–20, where the archaeological record is primarily comprised of simpler core and flake 
tools10,21–24. Therefore, archaeologists rely on experimental approaches to replicate stone artefacts under test 
conditions to determine whether factors such as function25,26, raw material availability27, skill28, technique29–31, 
cognition28,32–36, or culture and social learning33,34,36–38 played a role in the production (and subsequent discard) 
of knapped stone tools.

Replication experiments produce insights into the archaeological record but come with some limitations. For 
one, replication experiments are necessarily affected by the knapper’s own conscious and unconscious biases, 
their knapping experience, their expertise in the manufacture of certain tool forms, and their range of knowledge 
of various knapping techniques39. In addition, replication experiments cannot be easily reproduced, as many 
variables cannot be controlled under traditional experimental setups with modern knappers, whilst using a 
different knapper could introduce an additional variable not under control. Some experimenters partly address 
these issues by standardising the blanks (i.e. cores or flakes). Standardising raw materials can be done by saw-
ing blocks of material into particular shapes, casting standardised shapes in materials like ceramic or glass, and 
more recently, by 3D milling of materials into particular shapes. In addition, some experimenters have also 
begun using machine-controlled knapping, focusing on searching for first principles in knapping by isolating 
the effect of specific variables on flake production40–43. However, standardising blanks and building machine-
controlled flaking apparatuses comes with a substantial increase in the amount of time and resources required 
to prepare, measure, and store the experimental equipment and materials. The need for time and resources is 
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further amplified in the first principles approach, as the number of different experiments needed to investigate 
the effect of multiple interacting variables is substantial.

One alternative that may circumvent the potentially vast resource and time limitations of traditional lithic 
experimentation entirely, or otherwise reduce costs, is to develop simulations of stone tool reduction in a digital 
environment. More specifically, a piece of software able to accurately virtually simulate flaking in three dimen-
sions—comparably similar to actual knapping—would allow for fast, inexpensive, and replicable experiments. 
Doing so would provide a means to carry out stone tool production experiments in a controlled and reproducible 
environment for less time and money. The virtual knapping program would also be unaffected by any biases that 
individual human knappers may have in traditional experiments, and which are hard to control (given also that 
these biases may in some cases still be unknown).

If knapping could be done virtually, and it were—at least in some cases—a valid substitute for actual knap-
ping, it would serve as a less resource-expensive and more feasible alternative for lithic experiments. Variation 
in flake shape arises out of a large constellation of parameters that are difficult to systematically test. Having a 
computer-based model where individual variables could be isolated and examined programmatically would not 
only increase the speed of what is currently a lengthy process, but could also help us further understand cause 
and effect relationships of different variables and the interactions between them.

In addition, there would be fewer material requirements, also in terms of long-term storage and transport, 
since cores could be shaped entirely within a computer, and infinitely duplicated and knapped (and re-knapped), 
allowing for increased dataset sizes and greater reproducibility. The software could be used to create virtual 
assemblages testable against actual lithic experiments, examining the influence of certain variables during lithic 
reduction, or more exhaustively uncovering the possible range of variability of specific reduction techniques. 
Moreover, the reproducibility and robusticity inherent within a well-made virtual knapping program could 
even counterbalance some of the error during simulation. A well-crafted virtual knapping program would also 
be free of human knapper biases entirely, allowing experiments undertaken with it to be more controlled, more 
reproducible, and perhaps more representative compared to traditional lithic experiments.

A single virtual simulation would ideally take considerably less time to reduce a set of cores than a human 
knapper would, and even many measurements on the resulting lithics could be automated and performed at a 
fraction of the time within the software, given that the products would already be digitised. It would also be much 
more reproducible than current knapping experiments, especially as the (virtual) knapper’s biases could be kept 
identical for all experiments. Currently, this is not possible to a similar degree due to factors such as differences 
across knappers (e.g. different skill levels, different modern traditions of knapping) and even within them (e.g. 
changing motivation, energy, concentration, learning during the experiment).

Here we provide an attempt for a proof of concept of a framework for a virtual knapper using a machine 
learning approach based on neural networks applied to programmatically created 3D inputs (cores and flakes). 
Our approach generated a predicted 3D flake and modified core as an output from an intact (i.e. unknapped) 
core. Our approach proved capable of reliably and validly predicting the length, width, volume, and overall 
shape of a flake removal from the surface of a core given the point of percussion. We therefore conclude that we 
successfully created a proof of concept—pathway—for a virtual knapper.

Predicted flakes from a more complete virtual knapper—e.g. using the approach outlined here—could form 
the basis for (virtual) lithic assemblages to compare with archaeological data, which could also allow archaeolo-
gists to examine how the different knapping variables affect the resulting assemblages, and to examine important 
inferences on the various biological, environmental, and sociocultural factors that could have played a role in 
the formation of the archaeological assemblages we find in the present; thus, also informing a large part of our 
understanding of human evolution.

Machine learning.  Arguably, the most intuitive approach for virtual knapping would be physics-based 
simulations of conchoidal fracture—a type of fracture underlying stone knapping—that would likely require the 
use of mathematical methods such as finite element analysis (FEA). Although the application of FEA for virtual 
knapping is an important avenue to explore, simulating conchoidal fractures is a resource intensive process, and 
even the most recent research uses high-performance cluster computers to run simulations44,45, especially if we 
wished to simulate more realistic—hence complicated—knapping scenarios. Simulations wishing to examine 
the effects that different reduction sequences have on the resulting assemblages, or whether and how some tool 
forms can come about through the reduction of other forms24,29 require large amounts of flake removals and 
changing of knapping variables, making a FEA approach not entirely viable.

However, FEAs are only one of many approaches available to tackle the development of a virtual knapping 
program. To address all of the requirements we had set forth for a virtual knapper, we chose to base our method 
on neural networks. In a similar way as to how neural networks have allowed for drastically increasing the reso-
lution of images in a fraction of the time it takes for computers to render them traditionally46,47, we sought for 
our neural network framework to predict a flake removal virtually in a fraction of the time it takes for physics-
based simulations.

The primary goal for the virtual knapping program was to be a tool that could reliably perform a virtual 
replication experiment in a very short time without requiring large amounts of computational resources. To this 
end, a virtual knapper program should also be able to run on an office computer system, not unlike common 
agent-based modelling software tools, but it should also accurately simulate real stone flaking—focusing, as a 
starting goal, on hard-hammer percussion knapping (i.e. flakes removed using a hand-held hammerstone to 
strike the core) of a single raw material type.

Machine learning is a technique that allows computers to build a model of a set of data automatically by 
analysing the data and learning from it, without requiring the user to manually set-up or adjust the model’s 
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parameters48,49. The advantage of machine learning-based modelling is that it allows for the bulk of the com-
putational processing—i.e. the training of the machine learning model—to be completed prior to the model’s 
practical use; normally requiring only a very small fraction of the computing time needed to train the model 
in the first place.

Machine learning is a broad field, and encompasses a wide range of methods and algorithms. One such family 
of algorithms are artificial neural networks, which are broadly based on a simplified model of inter-connected 
biological neurons50,51. Artificial neural networks learn iteratively by a process known as training: the network 
makes predictions from the input data, then evaluates the error in prediction with a mathematical function, and 
adjusts its neurons and the strength of their connections in order to improve future predictions51.

Artificial neural networks have gained prominence in recent years, as they are advantageous for highly-dimen-
sional data with large numbers of variables and complex interactions. This advantage is even more important 
for problems where these interactions are difficult to formulate with traditional statistical modelling, or even 
when we do not know which variables and interactions are important. For instance, human vision is very good 
at recognising objects, but programming—or mathematically describing—an algorithm to recognise objects in 
images would be extremely difficult when done traditionally, but can even surpass human performance in specific 
scenarios51,52. Applications of neural networks include autonomous driving53, recommendation algorithms54, 
and computer-aided medical diagnosis55,56.

One disadvantage of machine learning, however, is that it often requires a large amount of training data. 
For our envisioned framework, we required 3D models of a large number of core and flake combinations (i.e. 
a flake and the  core from which it was removed). Such a dataset is not (yet) publicly available, and we did not 
have the resources to create it ourselves. Moreover, for the initial evaluation of our approach, we sought to 
avoid adding unnecessary complexity by limiting the shape of the initial cores in our dataset, since—due to the 
bias-variance trade-off—additional variability in a dataset usually requires a larger dataset for the model not to 
overfit to the particular training dataset, performing poorly with new data51. In the meantime, we opted instead 
for programmatically-generated cores and flakes. These have the advantage of being quickly generated with a 
constrained amount of variability, and if a machine learning model can successfully predict the flakes from this 
data set, then predicting flakes from a larger more varied data set could likely only be a question of additional 
training data, as the cores and flakes we used here were based on empirical findings from previous machine-
controlled knapping experiments40. Unlike previous machine-controlled knapping experiments, however, our 
flakes were not restricted to a single removal for each core, as we also removed flakes from already knapped 
cores during data generation (see Fig. 1).

Image‑to‑image translation.  Neural network algorithms that predict one 3D shape from another are rare or 
remain limited in their application57,58. However, predictions from 2D datasets are far more common. Here, we 
circumvent this problem by representing our 3D datasets as a two dimensional surfaces to apply image-to-image 
translation.

Image-to-image translation is a task in which a neural network model converts (or translates) one type of 
picture to another type altogether. Examples include converting a picture of a landscape taken during the day 
into a picture of the same landscape at night, converting a line drawing into a photorealistic image, predicting 
the colourised version of a black and white image, or converting a diagram of a façade into a photorealistic 
image of a building.

However, since our input consisted of 3D objects, not (2D) images, we needed to encode the information of 
the relevant surfaces of the 3D cores and flakes into an image. In order to accomplish this task, we made use of 
depth maps on our 3D cores and flakes.

Depth maps.  Depth maps (or z-buffers) are images that encode the distance (or depth) between a view point in 
3D space from where the depth map is captured, and the 3D surfaces visible from that same point (see Fig. 2). 
Depth maps are very similar in concept to digital elevation models, which capture the elevation of a portion of 
the Earth’s surface (a 3D property), and encode it into a 2D image whose colours (or raster values) represent dif-
ferent elevations. Depth maps can be conceptualised as a less-restricted form of elevation maps, with the depth 
map’s maximum allowed depth analogous to the lowest surface elevation of a digital elevation model, and the 
distance between the surface of the object and the view point as analogous to the elevation of the terrain’s surface.

Conditional generative adversarial network (CGAN).  The conditional generative adversarial network (CGAN) 
architecture consists of a discriminator model, which learns to distinguish between the real outputs of our data-
set and fake outputs created by a generator model, the second part of the CGAN. The generator model learns to 
create outputs that are realistic enough to fool the discriminator into believing they are real based on the input 
images. The training process becomes an iterative adversarial contest in which, as the training progresses, the 
generator becomes better at fooling the discriminator, and the discriminator, in turn, becomes better at detect-
ing the generator’s predicted output. The training ideally culminates in a generator model trained to create 
outputs that are as close to the real outputs as possible, and able to provide highly accurate predictions under 
non-training circumstances.

The CGAN performs image-to-image translation by mapping the unmodified core depth maps (input) to the 
resulting flake volume depth maps (output); what is, in essence, an abstraction of the task of predicting flakes 
from cores. The predicted flake depth maps obtained as outputs can be then used to obtain the modified core 
depth map, and with these, calculate the 3D flakes and modified cores using the 3D model of the unmodified 
core (which would be available in a standard use-case).
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Results
The CGAN predicted the depth maps of the flake volumes removed (n = 603) in under 2 minutes, giving an 
average of less than 200 ms per individual flake prediction. The length, width, volume, and flake shape error 
calculation of all the predicted depth maps took less than 3 s, giving an average of less than 5 ms per indi-
vidual prediction (see “Methods” for information on workstation specifications). The CGAN obtained a high 
degree of accuracy in all measured metrics.

An R2 of 1.00 (higher is better) and root-mean squared-error (RMSE; see “Methods”) of 0.00 (lower is better) 
would indicate perfect prediction accuracy. For its prediction of flake length, our model obtained an R2 of 0.85, 
with an RMSE of 9.15 pixels (see Fig. 3a), but a lower R2 of 0.58 for its prediction of flake width, with an RMSE 
of 8.50 pixels (see Fig. 3b). The prediction of the flake’s cube root volume obtained an R2 of 0.77 with an RMSE 
of 0.76 (see Fig. 3c; see “Methods” for the lack of unit of measurement), indicating a high prediction accuracy 
by the CGAN.

In terms of flake shape prediction, we calculated an average mean absolute error (MAE; see “Methods”) of 
0.024 across all flake predictions. The interval for the data (the range of all possible values) was [0, 1], which 
suggests very low error across predictions. Even when considering the interval for the actual—rather than the 
possible—data values of our testing dataset ([0.00, 0.75]), or that of our prediction dataset (i.e. [0.00, 0.52]), the 
average error remained considerably low, at less than 5% of the interval.

We obtained a very low average RMSE of 0.028 across all flake predictions, but the average normalised root-
mean squared-error (NRMSE; see “Methods”) was higher, at 0.213, or 21.3%. The higher value of the NRMSE 
is expected due to the way it was calculated, which would weigh errors in smaller flakes proportionally much 
higher than the same amount of error in more voluminous flakes. Our alternate NRMSE calculation (NRMSE2), 
calculated across all flakes, rather than the average of individual NRMSEs (see “Methods”) had a much lower 
value of 0.037. Using visual inspection, we can state that the shape of the predicted flakes had a (qualitative) 
striking resemblance to their respective original input flakes (see Fig. 4). The generation of the 3D models of the 
predicted flakes from the depth maps took less than 2 minutes; less than 200 ms per individual predicted flake.

A second, independent, training run on the same workstation obtained very similar results (R2 of length = 0.85, 
R2 of volume = 0.74, R2 of width = 0.55, average MAE = 0.024, RMSE = 0.028, NRMSE = 0.221, NRMSE2 = 0.037).

Figure 1.   Example of a core and removed flakes from the input dataset. (a) The training dataset consists of pairs 
of flaked cores (blue) and their matching flakes removals (red), oriented such that together they represent the 
complete core prior to flaking, much like a refit. (b) Some of the flake and core pairs were generated in different 
stages of reduction (see “Methods”). This is an illustration of a generated reduction sequence. Note that, in the 
dataset, each flake has a matching modified core model as well.
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The model remained reasonably accurate with different training dataset sizes, except in width prediction, 
where prediction accuracy went down significantly; though this seem to have been related to other issues (see 
“Discussion”). The lowest results were obtained with the training dataset size of 10% of the total dataset (training 
n = 201, testing n = 1809), with a flake length prediction R2 of 0.66, and RMSE of 13.26; a flake width prediction 
R2 of 0.06, with RMSE of 12.98, and cube root of flake volume prediction R2 of 0.20 and RMSE of 1.010. We also 
calculated an average MAE of 0.036, an average RMSE of 0.044, an average NRMSE of 0.314 (or 31.4%), and an 
NRMSE2 of 0.056.

Discussion
Lithic replication experiments are an important component of human evolutionary research, but replication 
experiments require considerable material, storage, and time resources to be effective, and being subject to human 
biases and differences between and within knappers, these experiments become difficult—if not impossible—to 
reproduce. Even when knapping experiments are replicated, their validity may be affected by knapper’s biases 
and differences. Here we have used machine learning and programmatically-generated core and flake inputs to 
produce a proof of concept for a virtual knapping program. Such a program would improve the reproducibility 
of experimental replication studies by being conducted in a digital environment. In addition, by removing a 
large portion of the biases (and differences between knappers) brought about by the use of human knappers 
for replication experiments, a virtual knapping framework could allow researchers to more easily examine the 
influence of different knapping variables and their interactions in shaping the archaeological lithic assemblages; 
experiments that would be much more prohibitive to undertake in a real-world environment, even with real-life 
machine-knapping experiments. Moreover, with a singularly-biased computer model, such experiments would 
be much more controlled and scientific, as the results would not be biased by human factors (e.g. the knapper’s 
mood, stamina, motivation, or even different knappers), which could even allow researchers to examine the 
effect of knapper biases and differences between knappers on lithic reduction.

With the accurate results of our proof of concept framework, we can start evaluating the performance and 
efficacy of the approach on more complex datasets that better approximate the real world. However, while it is 
true that the core shapes used varied primarily in the exterior platform angle (the angle between the platform 
where the flake is struck and the core surface where the flake is removed), some flakes were taken from an initially 
smooth core surface and some flakes were taken from a core surface made irregular by the removal of previous 
flakes. Irregular core surfaces are more like those found in the vast majority of actually knapped cores. The next 
step for the evaluation of the framework is to build a model based on actual core and flake pairs, which will first 

Figure 2.   Example of the standard orientation for depth map capture as displayed using a 3-D model of 
a knapped core, which has a near-perfectly flat platform surface. Note that the platform surface is aligned 
horizontally with respect to the depth map. Note also that, though difficult to see, the point of percussion is 
aligned to be in the exact centre of the image. (a) 3-D mesh of the core with camera (left) to capture depth map 
image. (b) Depth map rendered into a 3-D surface superimposed over the original core mesh. The depth map’s 
frame is located at the maximum depth we set when captured. Anything deeper than the maximum depth is 
rendered as pure black in the image. (c) Resulting depth map image.
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require a large investment in 3D scanning of material, but will add important variability, and in doing so, will 
increase the external validity of the model59.

This new approach to virtual knapping could also take advantage of what is known as transfer learning, where 
a model, already trained with a large dataset, can be additionally trained with a similar, albeit more specific and 
smaller dataset without sacrificing accuracy in prediction. This type of training could be applied to our model, 
capturing the benefits of the large numbers of realistic data we generated, as well as requiring a lower dataset 
size for training with actual flakes and cores.

While it is possible that other variables not measured here, or used for the data generation, contribute to the 
shape of actual flakes, the framework could be extended to incorporate any number of significant new knap-
ping variables either through the acquisition a broader dataset, or through additional neural network models. 
Striking a core in the same place with the same exterior platform angle but with a different hammer or angle of 
blow would produce different flakes. If the effects of these other variables were known, then the core and flake 
data generation program could be made to include them; otherwise, experimental data sets that include these 
variables would have to be knapped, scanned and included in the model. An additional solution could involve 
the training of a predictive model specifically for hard hammer percussion and a separate model specifically for 
soft hammer percussion. Simulation experiments could then be conducted by virtually knapping identical cores 
with the two separate models to compare their outcomes. Other variables, such as raw material properties, could 
be tackled in a similar fashion.

We emphasise that this machine learning approach does not intend to fully replace others; rather, it can 
work in conjunction with other approaches that seek to understand flake formation40–43,60,61. The more we can 
understand flake formation in general, the better we can build a machine learning model to simulate knapping, 
since we will know which types of variability are important to introduce and which type are not.

Currently, our proof of concept does not yet have the capacity to detect whether a strike would result in a 
successful flake removal or a failure to detach one. Our data generation assumed successful flaking in all cases; 
consequently, the model would be over-confident in removing flakes that in actuality would not be possible to 
remove, adding error during virtual lithic experiments. A simple solution, considering the prediction of the 

Figure 3.   (a) Plot of predicted length vs actual length of testing dataset flakes. (b) Plot of predicted width vs 
actual width of testing dataset flakes. (c) Plot of predicted cube root of volume vs actual cube root of volume of 
testing dataset flakes.
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neural network is based on a map of volume removed, is to build a dataset of knapping scenarios where no flake 
would be detached, and use a blank flake volume removed depth map to signal the failure to detach a flake. After 
training with a dataset that includes failed removals, the model could, theoretically, be able to also predict both 
failed and successful flake removals.

Based on our results, even with the limitations outlined above, we can conclude that a machine learning-
based virtual knapper, using actual knapped 3D cores and flakes as input, is—in principle—a feasible approach 
to building a complete program for virtual lithic experimentation. This we have showed in our proof of princi-
ple study here. The main obstacle to a valid and reliable simulation currently lies in access to high quality core 
and flake 3D datasets of sufficient size. If a more complete virtual knapping were to prove successful at flake 
prediction once a sufficiently large and varied dataset of actual cores and flakes was available as input, we would 
have obtained a framework for widespread, fast, and cost-effective virtual lithic experimentation that could be 
independently verified as reliable and valid (as this proof of concept was) and become and efficient equivalent to 
actual knapping. Such a program could also serve as a teaching tool for novice knappers for learning how differ-
ent knapping variables (e.g. platform depth) affect flake removals. A virtual knapper could be used to perform 
large-scale lithic experimentation virtually at a fraction of the time and cost, without knapper biases, and would 
be independently replicable.

Methods
Data generation.  Using Python 362 and the PyMesh library63, we programmatically generated a core and 
flake dataset. As a starting point, we used a 3D scan of an actual glass core used in controlled machine-knapping 
experiments40,42. We then removed flakes from this core in a manner similar to these controlled experiments. 
These flakes are simplified versions of the actual flakes removed in40, but they conform to the basic properties 
of flaking and flake morphology. For the initial 405 flake removals, we only knapped one flake from each core, 
varying platform depths and exterior platform angles. These two variables are known to play a large part in 
determining flake outcomes40, and so by varying them systematically, we were able to produce a variety of flakes.

After the initial 405 flake removals, we also varied the horizontal location along the core edge where the flake 
was removed. This introduced some asymmetries into the core surface. After an additional 344 flake removals 
(totalling 749 with the previous 405), we also began removing flakes from already-flaked cores to introduce 
additional variability in the core surface morphology (see Fig. 1) for an additional 1506 data points.

After removing some cases with errors (e.g. missing surfaces, negative platform depth) through a visual 
inspection and by programming error checks in the depth map generation code (see Supplementary Data SI1), 
we ended with a total of 2010 sets of 3D models consisting of a modified (i.e. knapped) core and a flake—both 
positioned and oriented uniformly based on the point of percussion (see Fig. 5), and together forming the 
unmodified (i.e. un-knapped) core (see Supplementary Data SI5; Fig. 1). All 3D models were stored as .ply files, 
and the platform parameters for each flake removal were stored as a .csv file.

Figure 4.   Comparison of two actual vs predicted flakes (a,b). Note that the size and depth of the predicted flake 
model was manually scaled to match the size of the actual flake model, though this does not alter the overall 
shape of the flake (see “Methods” section).
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Depth map generation.  Using Python 362 as well as the Open3D64 and NumPy libraries65, we captured 
depth maps of the topology of the 3D core surface, which we could input into a neural network trained for 
image-to-image translation (see Supplementary Data SI1)—with the assumption that our captured depth maps 
encoded enough information of the core surface morphology to allow for accurate predictions of resulting flakes 
by the model. The depth maps were captured with a dimension of 128 × 128 pixels. The depth maps captured the 
surface from which the flake was detached (i.e. the surface with the flake scar), aligning the platform surface of 
each core (and flake) perpendicularly to the view point, as well as aligning the point of percussion to be in the 
horizontal centre—and in the same vertical position—in every depth map. The 3D shapes were projected ortho-
graphically to the depth map to avoid angle foreshortening from a perspective projection, in case this was to be 
detrimental to the model’s prediction accuracy.

In addition, the maximum depth was calculated based on the platform depth and exterior platform angle 
(all obtained thanks to knowing the location of the point of percussion) to also encode those variables into the 
depth map itself; the deeper the platform and the more acute the angle, the larger the maximum depth. The 
depth maps were normalised to an interval of [0, 1], with the maximum depth set to 0, and the point closest to 
the view point set to a value of 1.

Although the input data only contained already-knapped cores and the last flake removed, the two together 
were used to generate the depth map of the core prior to flake removal. Since both the flakes and cores were 
already aligned in 3D space, the core before flaking could be reconstructed.

With the initial core (unmodified) depth map obtained, we calculated a map of the difference between the 
modified (flaked) and the unmodified core surface, which shows the volume taken from the core by the knapping 
of the flake. In our model, we used the volume removed as the desired predicted output of our neural network, 
rather than a depth map of the flake’s ventral or dorsal surface, since the dorsal flake surface is already encoded 
in the unmodified core depth map, and the ventral surface, in that of the modified core. Thus, we can obtain the 
shape of the flake removal by calculating the difference between the modified and unmodified core surface depth 
maps, and we can, in turn, calculate the modified core surface depth map by subtracting the volume removed 
from the unmodified core surface depth map. In a standard use case scenario, we would only have the unmodi-
fied core surface depth map as an input to the neural network model, which would output a predicted volume 
removed depth map, with which we could obtain the modified (flaked) core surface and the flake removed.

Neural network training and testing.  With the depth maps of our generated cores and flakes, we built a 
conditional generative adversarial network (CGAN) for image-to-image translation66 following the implemen-
tation in the TensorFlow documentation67 using Python 362 and the TensorFlow 2 library (see Supplementary 
Data SI2)68.

We shuffled the order of our depth map pairs and split our depth map dataset (n = 2010) into two smaller 
subsets: 70% for the training dataset (n = 1407), and 30% for the testing dataset (n = 603). The training data was 
shuffled once more when creating the Tensorflow Dataset object.

Figure 5.   All core and flake models follow a standard orientation, in which their platform surfaces are aligned 
on the same (horizontal) plane, and all models are centred with the point of percussion (white) in the same 
location in 3D space. The point of percussion varied by changing the distance from the core edge (platform 
depth), as well as its horizontal position along the platform edge (off-centre). The differently coloured cores 
represent cores with different exterior platform angles.
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We trained the CGAN for 150 epochs (see “Supplementary Information S1” for code). Our input was the 
unmodified core depth maps of the training dataset, and we provided the CGAN with the volume removed 
depth map as the desired output to learn to predict. The training was done on an Asus Vivobook Pro 17 laptop 
(N705UD), with a 4-core 8-thread Intel Core i7-8550U CPU, 16 GB of DDR4 RAM, and a dedicated NVIDIA 
GeForce GTX 1070 GPU. The training process took approximately 2.5 hours using the NVIDIA GPU as a CUDA 
platform.

After training was completed, we moved to testing the trained model. We input only the unmodified core 
depth maps from our dataset into our CGAN to obtain a dataset of predicted flake volume depth maps. Predic-
tion for all 603 depth maps took less than 2 minutes total.

Data analysis.  After converting the 3D models of the cores and flakes into 2D depth maps, splitting these into 
a training and testing dataset, as well as feeding the latter to our neural network to predict flake removals, we 
measured the predicted depth maps and compared them with the matching depth maps from our output test-
ing dataset (see Supplementary Data SI3).

To calculate prediction accuracy, we compared the predicted flake volume depth maps with those of our test-
ing dataset. Since our analyses were performed on the depth maps, rather than the 3D objects, the prediction 
metrics had pixels for units, rather than metric units such as centimetres. We applied common basic quantitative 
lithic analyses to compare the predicted and testing dataset, and examine the prediction accuracy.

We compared the length, width, and cube root of volume of the flakes across datasets. In order to evaluate 
the accuracy in predicted flake shape, we calculated the average mean absolute error (MAE), average root-mean 
squared-error (RMSE), and normalised root-mean squared-error (NRMSE, normalised by the range of values 
for each testing depth map) between the predicted and actual flake depth map images.

To calculate our metrics, we first set a cut-off threshold to eliminate low-level noise in the predicted depth 
maps. We used different threshold values (0.1, 0.05, 0.01, and 0.005), but observed that the value of 0.01 provided 
the best results across all training runs, and was therefore the one used in the reporting of results. We first found 
all the pixels with values higher than our noise threshold for both testing and predicted flakes, and assigned this 
area of the image as the flake. For our linear measurements, we used the width and length of this area to calculate 
flake length and width for both predicted and actual flakes. Therefore, the RMSE for the prediction accuracy for 
these metrics have pixels as units. To calculate the volume, we summed the elevation values of each pixel in the 
image that was above the noise threshold. It is difficult to assign an actual unit to the depth data, as it is based on 
abstract and normalised 3D Cartesian distance units; therefore, we reported the RMSE for the volume—as well 
as the flake shape accuracy metrics—as unit-less.

To prevent artificially reducing the error by using image pixels that contained no data (thus increasing the total 
number of data points with low values, and reducing the mean error), we calculated the error only for the part of 
the image that contained either the predicted or actual flake. Areas of the depth map that only had noise or had a 
value of zero were not used for the calculation. We calculated the difference in each pixel between the predicted 
and actual depth maps, then calculated the MAE, RMSE, and NRMSE of each flake prediction, with each pixel 
representing one data point. Once we had obtained the MAEs, RMSEs, and NRMSEs of every individual flake 
prediction, we calculated the averages for each metric, which we report in our results. Finally, we also calculated 
a different average NRMSE (NRMSE2) by taking the average RMSE previously calculated, and normalising it 
by dividing it by the range of testing data values (ymax—ymin), rather than normalising it per flake prediction.

We additionally calculated the RMSE of the prediction using our own code, as well as the coefficient of 
determination (R2) between the CGAN’s predictions and the testing data using the scikit-learn library’s metrics.
r2_score function69.

On a reviewer’s request, we performed the calculation of all previously described metrics separately for initial 
versus subsequent removals (i.e. the first removal from an intact core, and removals from non-intact cores). Since 
there was no a priori labelling of either initial or non-initial flake removals, JDOF visually inspected all cores and 
compiled a list of initial flake removals. Although great care was taken to include all initial flake removals—and 
only initial flake removals—there could have been some that were missed, but we considered our labelling was 
thorough enough that the results would remain valid.

According to the results from these separate analysis (see Supplementary Data SI5), the model had a higher 
prediction accuracy with initial removals when compared to non-initial removals (e.g. length prediction 
R2 = 0.925 vs. 0.806), even as the initial flakes were less numerous (n = 243) than flakes from subsequent remov-
als (n = 360). The higher accuracy with initial flakes was true for all metrics, save for width prediction, where 
the prediction for initial removals was considerably lower compared to that of subsequent removals, with an R2 
of 0.197 vs. 0.596. The pattern was constant for the models trained with different fractions of the data except for 
the model trained with 10% of the data, which was instead more accurate with non-initial removals (e.g. length 
prediction R2 = 0.785 vs. 0.591). However, for the analysis of the initial flake removals, the width prediction R2 
was calculation as a negative value (the width prediction for the 10% run was quite low already), which is a pos-
sibility with the scikit-learn function used, and suggests that specific model was worse than a constant model.

With the addition of the processing time for the separate analyses, the time taken for the analysis of the 603 
predictions was approximately doubled from the original 3 seconds (with the singular analysis) to approximately 
6 seconds total (with both the singular and separate analyses).

Finally, using Python 362 and the Open3D64 and NumPy65 libraries (see Supplementary Data SI4), we trans-
formed the predicted depth maps to predicted 3D models of flakes to perform an additional visual comparison 
between predicted and actual shape. These analyses were performed in a custom-built desktop computer, with 
a 6-core 12-thread AMD Ryzen 5 3600 CPU, and 16 GB of DDR4 RAM.
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Due to the current depth-mapping algorithm, in order to produce the visualisation in Fig. 4, we had to 
manually scale down (i.e. make the model smaller in all dimensions) and reduce the depth (make the model 
smaller in the z-dimension) of the predicted flakes to match the models of their respective actual flake through 
visual inspection. The resizing process does not affect flake shape, nor its width and length, and serves as a useful 
visualisation of the possible accuracy of our framework, even if it is not mathematically precise. Future itera-
tions of the program could allow the resizing of the predicted flake 3D model automatically using the precise 
scale of the 3D model of the actual flake with some modification of the framework’s code. Moreover, the depth 
map generation could be done using a perspective, instead of an orthographic projection, as we observed that 
reconstructing the 3D model was more difficult using our remeshing method.

Additional tests.  We trained and evaluated the CGAN using different training dataset sizes to examine the 
robusticity of our framework: 10% (n = 201), 30% (n = 603), and 50% (n = 1005); see SI5.

Data availability
The dataset generated and analysed during the current study, as well as the code used for the modelling and 
analysis are available in an Open Science Framework repository: https://​doi.​org/​10.​17605/​OSF.​IO/​ANQZF.

Code availability
The code used for the processing and analysis of the generated dataset are available in an Open Science Frame-
work repository: https://​doi.​org/​10.​17605/​OSF.​IO/​ANQZF.
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