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Abstract

Osteosarcoma (OS) is a molecularly heterogeneous, aggressive, poorly differentiated pediatric bone cancer that frequently
spreads to the lung. Relatively little is known about phenotypic and epigenetic changes that promote lung metastases. To
identify key drivers of metastasis, we studied human CCH-OS-D OS cells within a previously described rat acellular lung
(ACL) model that preserves the native lung architecture, extracellular matrix, and capillary network. This system identified a
subset of cells—termed derived circulating tumor cells (dCTCs)—that can migrate, intravasate, and spread within a
bioreactor-perfused capillary network. Remarkably, dCTCs highly expressed epithelial-to-mesenchymal transition (EMT)-
associated transcription factors (EMT-TFs), such as ZEB1, TWIST, and SOX9, which suggests that they undergo cellular
reprogramming toward a less differentiated state by coopting the same epigenetic machinery used by carcinomas. Since
YAP/TAZ and AXL tightly regulate the fate and plasticity of normal mesenchymal cells in response to microenvironmental
cues, we explored whether these proteins contributed to OS metastatic potential using an isogenic pair of human OS cell
lines that differ in AXL expression. We show that AXL inhibition significantly reduced the number of MG63.2 pulmonary
metastases in murine models. Collectively, we present a laboratory-based method to detect and characterize a pure
population of dCTCs, which provides a unique opportunity to study how OS cell fate and differentiation contributes to
metastatic potential. Though the important step of clinical validation remains, our identification of AXL, ZEB1, and TWIST
upregulation raises the tantalizing prospect that EMT-TF-directed therapies might expand the arsenal of therapies used to
combat advanced-stage OS.
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today rely on the same four drugs used since the mid-1980s
[3-5]; expectedly, the 5-year survival rate from metastatic
OS has not appreciably changed since that era and remains
at 20-30% [5-7]. Since traditional cytotoxic che-
motherapies and newer immunotherapies seem unable to
eradicate genetically heterogeneous OS cells, our research
focused its attention at the sentinel feature of high-grade OS
tumors, which is their composition of poorly differentiated
or undifferentiated stem-like tumor cells that appear in
various states of partial osteoblastic, chondroblastic, and
adipogenic commitment [8].

Except for the presence or absence of metastatic disease
at diagnosis, tumor grade—which gauges how well tumors
resemble their normal tissue counterpart histologically—is
the single most important predictor of a patient’s clinical
course and outcome [1]. Consistently, high-grade poorly
differentiated sarcomas are significantly more proliferative,
invasive, and metastasis-prone than their low-grade coun-
terparts. In light of the broad sweeping effect that tumor
grade and differentiation have upon cell invasion and
metastasis, it comes as no surprise that many cancer hall-
marks defined by Hanahan and Weinberg are intricately
linked to cell fate [9, 10]. Among the hallmarks of interest
to our current studies, chemoresistance, genome instability,
migratory potential, and invasiveness have all been asso-
ciated with cancer stem cells (CSCs) [11, 12]. The rela-
tionship between cell fate, differentiation, and cancer
hallmarks in OS is far less studied, and it remains to be
determined whether dedifferentiated OS cells become, or
just phenocopy, CSCs.

To help explore this relationship, our research draws
from recent efforts by tissue engineers to fabricate
laboratory-grown tendons, muscle, and bone from normal
mesenchymal stem cells (MSCs) pushed toward distinct cell
fates in response to growth factors and biophysical forces
[13-17]. Using MSC differentiation as the reference stan-
dard, we can observe how disturbed cell signaling pathways
might invoke the jumbled pattern of differentiation
observed in high-grade OS. As a byproduct of the OS’s
hypothesized inability to sense and respond to micro-
environmental cues that should otherwise have steered them
toward a mature osteoblastic cell fate, one would predict
that OS contains an undifferentiated, genetically defective
MSC-like cell population (perhaps CSCs) that continues to
produce daughter cells capable of partial trilineage differ-
entiation [18-22]. Though limited data exist in OS, evi-
dence from other cancer types suggests that this small
minority of stem-like tumor cells are responsible for tumor
propagation and, ultimately, more likely to escape the pri-
mary tumor (PT), circulate in the bloodstream as circulating
tumor cells (CTCs), and metastasize to the lungs [23].

To determine whether those hypotheses were correct, we
faced two hurdles. First, because the differentiation from
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MSCs into mature osteoblasts is inextricably linked to the
surrounding tissue architecture and matrix stiffness, there
was concern that non-physiological tissue culture plastic-
ware, devoid of differentiation cues, would obscure any
effect of differentiation upon cell phenotype, or worse, lead
to incorrect conclusions. Second, and perhaps more pro-
blematic, because CSCs are rare (perhaps less than one cell
in a thousand), there was no tractable solution to identify
and profile a sufficient number of CSCs within a native
tumor as it exists in vivo.

To overcome those challenges, we turned to a novel
ex vivo model that we had previously optimized to inter-
rogate human lung cancer [24-30]. This decellularized rat
lung model (acellular lung (ACL)), also described as a four-
dimensional lung metastasis model, provides OS cells with
the full spectrum of biological substrates needed for tumor
growth within a three-dimensional (3D) collagen network
enmeshed with a decellularized vascular network suitable
for perfusion of nutrient-enriched media. In a flow perfusion
bioreactor that circulates media throughout the decellular-
ized residual vascular network, tumor cells propagate to
form full-fledged macroscopic tumors that recapitulate
much of the complex in vivo tumor heterogeneity. While
fostering the formation of large ACL-embedded tumors
used to assess intratumoral heterogeneity, an added
advantage of this model was the ability to study CTCs, a
distinct subset of cells capable of completing the multi-step
process required to form metastatic tumors.

As will be shown, these so-called derived CTCs (dCTCs)
expressed proteomic markers previously reported in inva-
sive OS and, surprisingly, shared numerous genes linked to
the epithelial-to-mesenchymal transition (EMT) that occurs
in epithelial malignancies [31, 32]. The finding that dCTCs
expressed genomic and proteomic features previously
reported for EMT raised the prospect that OS dCTCs
stemmed from a population of cells had either failed to
differentiate or had epigenetically converted to a less dif-
ferentiated, more invasive cell type. As sarcomas are
mesenchymal by their very definition and generally lack
epithelial features, the EMT terminology would not make
sense linguistically.

Nevertheless, the essence of EMT, which is the rejuve-
nation of mature cells toward a less differentiated, more
pluripotent stem-like state, has been reported to occur in a
wide range of non-epithelial tissues, including gliomas,
leukemias, and sarcomas of various subtypes [33-35]. In
this latter scenario—and routinely throughout this text—we
describe this EMT-like phenomenon more appropriately as
dedifferentiation, defined as the natural acquisition of a less
differentiated uphill state on the proverbial Waddington
epigenetic landscape. Apart from this difference in termi-
nology, EMT and dedifferentiation share much in common.
We note that, within the ACL model and other engineered
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tumor microenvironments (TMEs), EMT and dediffer-
entiation occur naturally in response to EMT-associated
transcription factors (EMT-TFs) and TME cues, as opposed
to cell reprogramming, a closely related process that
invokes pluripotency by introducing exogenous TFs into
the cell.

Recently, many roles for Yes-associated protein (YAP)
and TAZ (encoded by WWTRI1) as main mediators of the
Hippo pathway have been described in (a) regulating organ
size [36]; (b) promoting tumor initiation, progression,
metastasis [37, 38], and EMT [39]; and (c) reprogramming
cancer cells into CSCs [40—42]. The activation of the YAP/
TAZ protein in high tensegrity microenvironments favors
YAP/TAZ nuclear shuttling from the cytoplasm to the
nucleus, where it partners with TEAD as a transcriptional
coactivator of several genes, including CTGF and AXL, to
promote cell proliferation and survival programs [43—45].

In the current work, our use of the ACL model afforded
the ability to derive a purified population of dCTCs quickly.
Genomic and proteomic interrogation of these cells pro-
vides an initial glimpse of the cellular changes required to
invoke the dedifferentiation and invasive capacity of OS
cells. As will be demonstrated, several proteins classically
associated with EMT, such as AXL, were significantly
overexpressed in dCTCs and a highly metastatic MG63.2
OS cell line. That AXL inhibition reduced cell proliferation,
invasion, and metastasis suggests the EMT pathway—as
interpreted as dedifferentiation in sarcoma—may provide
new clues to combat an aggressive bone cancer that to date
have remained elusive.

Materials and methods
Regulatory

The animal studies have been approved by the Institutional
Animal Care and Use Committee at the Houston Methodist
Research Institute (Protocol#AUP-0716-0037) and MD
Anderson Cancer Center (MDACC; Protocols #00001903-
RNOO and #00001904-RN00).

Cell culture and lung harvest

The isogenic metastatic MG63.2 cell line is derived from a
non-metastatic MG63 cell line through serial passage in
nude mice via intratibial injections [46, 47]. The parental
MG63 was first established from a 14-year-old OS patient
[48]. Both MG63, MG63.2, and OS-D cell lines (that were
derived also from OS patient specimens were gifted from
Dr. Kleinerman’s Laboratory (MDACC, Department of
Pediatrics, Houston, TX). OS-D, MG63, and MG63.2 par-
ental or luciferase-expressing cells were grown in high

glucose Dulbecco’s modified Eagle’s medium (Hyclone,
USA) supplied with 10% fetal bovine serum (Gemini,
USA), and 1x Penicillin—Streptomycin—Amphotericin (Life
Technology, USA) in flasks. Cells were tested twice per
year for mycoplasma contamination using the MycoAlert
Detection Kit (Lonza Group Ltd.) according to the manu-
facturer’s protocol, and cell line identity was validated using
short-tandem repeat fingerprinting with an AmpFLSTR
Identifier Kit as previously described [49]. To grow the OS-
D cells on the ACL model, the Lung—Heart block from a
Sprague Dawley rat (Envigo) was harvested, and the pul-
monary artery was cannulated as previously described [25].
Additional details about lung decellularization and perfu-
sion are provided in Supplementary Methods.

0S cell culture in the ex vivo lung model

For the ACL cell culture, a customized bioreactor with three
outlets in the cap (one for the pulmonary artery, one for
trachea, and one for outflow) was created and set up in a cell
culture incubator along with a pump and 10 feet Tygon
tubing for oxygenation (Fig. 1). The ACL was then con-
nected in the bioreactor through the pulmonary artery can-
nula. The trachea was connected to the tracheal cannula
while the outflow was connected to an oxygenator. The cell
culture media was run through the lung by a pump at a
perfusion pressure of 6 ml/min. Additional details are
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Fig. 1 Diagrammatic representation of the acellular lung (ACL)
model. Right lung lobes were tied by silk, and 2D cells were seeded to
the left lung lobe through the trachea. As the nutrient media perfuse to
the lung, tumor nodules on left lobes grow and form dCTCs that
intravasate to the vasculature, survive in circulation, and enter the right
lobes through the pulmonary artery (PA) and forms metastatic lesions.
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provided in Supplementary Methods and as described pre-
viously [30].

Treatment of OS-D cells on ACL model with
doxorubicin

The ACL model was seeded with OS-D cells and grown for
7 days. On day 7 and during 24 h, 3 uM of doxorubicin
(Sigma, USA) was infused in the treatment bioreactor,
while the control group received a similar volume of etha-
nol. Then the media was changed, and the cells were grown
for the next 2 days. Additional details are provided in
Supplementary Methods.

Histology and immunohistochemistry (IHC) analyses

A rat lung lobectomy was performed on different days, and the
ACL tissue was fixed in 10% formalin, embedded in paraffin,
and then sliced in 4pum sections for hematoxylin—eosin
staining. We also performed IHC analyses of the formalin-
fixed paraffin-embedded sections for Ki-67 and caspase-3, as
described previously [30]. Expert board-certified pathologists
examined the stained slides, and the images were captured
using a microscope (Evos, Mill Creek, WA). We calculated
the proliferation index (Ki-67) and apoptotic index (caspase-3)
using ten random pictures taken at x40 magnification for each
specimen stain, and both the total number of cells and the
number of positive cells were counted to yield the percentage
of positive cells expressing those proteins. More details are
provided in Supplementary Methods.

Western blot profiling

Protein lysis from cells or tumors using RIPA buffer, pro-
tein quantification by Bradford assay, and western blots
were performed as previously described by our group [50].
More details are provided in Supplementary Methods.

MG63 and MG63.2 OS in vivo models and
pulmonary metastasis assessment

Animal studies were conducted following the University of
Texas MDACC Committee on Animal Care protocol
(Protocol #00001904-RN00). Additional details about
experimental lung metastasis experiments are provided in
Supplementary Methods.

Statistical analyses
Statistical analyses comparing two groups were performed
using the GraphPad Prism 7 software (GraphPad Software

Inc.) selecting the unpaired ¢ test. A value of p <0.05 was
considered statistically significant.
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Results

An ex vivo ACL model of OS for anticancer drug
testing

As an alternative to in vitro preclinical models that fre-
quently overestimate the efficacy of anticancer therapeutics,
we chose a simple ACL model that preserves critical tumor-
promoting elements of the metastatic OS microenviron-
ment, including the native lung extracellular matrix, com-
plex 3D tissue architecture, and an intact vascular network
that enables mass transport of nutrients and metabolic waste
byproducts. Because the acellularized capillary network
permeates the ACL, a bioreactor can deliver oxygenated,
nutrient-rich, cell culture media to tumor cells, thereby
fostering the development of macroscopic tumors. To test
whether OS cells would survive, proliferate, and metasta-
size within this ex vivo ACL model, primary human OS-D
cells were introduced into the left lung via the trachea. As
described extensively in the “Methods” and Supplemental
Methods sections, before injecting the cells, the right main
stem bronchus is sutured shut (Fig. 1). In that configuration,
tumors develop in the left lung by direct extension. How-
ever, they can only reach the right side when cells migrate
from the left-sided lung tumors, intravasate into the
bioreactor-perfused pulmonary vessels as dCTCs, and lodge
within the contralateral lung capillary network (i.e., lung-to-
lung metastases).

OS-D tumor nodules formed in the ACL within 3 days,
as shown macroscopically (Supplemental Fig. 1A) and
microscopically at various magnifications (Supplemental
Fig. 1B, C). As a standard chemotherapy used to treat OS,
doxorubicin (3 uM) was used to evaluate PT regression
beginning on day 7 (Supplemental Fig. 2A-D). Doxor-
ubicin treatment reduced the formation of tumor nodules
(Supplemental Fig. 2A-D) compared to the untreated con-
trol group (24.3£9.1 vs. 833 £ 130, p <0.0001). Similarly,
there were significantly more metastatic lesions with the
untreated control group (Supplemental Fig. 1D) compared
to the model treated with doxorubicin (Supplemental Fig.
2D) (147 £ 61 vs. 0, p <0.0001).

To evaluate doxorubicin’s effect, respectively, upon
cell proliferation and apoptosis, each specimen was THC
stained separately with an antibody against Ki-67 and
caspase-3. The percentage of positive cells was counted
and averaged to yield the proliferation and apoptotic
indices. Our analysis showed a moderate difference in the
proliferation index (Ki-67) in the control group (Sup-
plemental Fig. 2E) compared to the PT treated with
doxorubicin (Supplemental Fig. 2F) (81.6+5.1% vs.
69.3+18.3%, p=0.057) (Supplemental Fig. 2I). The
apoptotic index was expectedly much higher in the
doxorubicin-treated OS model (Supplemental Fig. 2H)
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Fig. 2 OS-D dCTCs upregulate receptor tyrosine kinases (RTKs)
linked to metastasis. A CTCs derived from the ex vivo 4D ACL
model have significantly higher EPHB2, FGFR2, and RET gene
expression, as compared to respective primary tumor nodules formed
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represent the mean values of n =3 experiments, and bars represent
standard deviations. B Representative EphB2, FGFR2, and RET

compared to the untreated control group (Supplemental
Fig. 2G, J; 78.8% vs. 7.2%, p <0.01). Moreover, there
were significantly more metastatic lesions in the
untreated control group than the model treated with
doxorubicin (Supplemental Fig. 2K, L; 147 61 vs. 0,
p<0.0001). To further assess the sensitivity of doxor-
ubicin in the ACL model, dCTC were more resistant to
doxorubicin at 48 h than 2D cells (Supplemental Fig. 2M, N;
p<0.0001). There was no significant difference in cell
number between control and doxorubicin treatment (Sup-
plemental Fig. 2N; p=0.75) after 48h of treatment.
Though other chemotherapies remain to be tested, our
results suggest that the ex vivo ACL OS model exhibits in
vivo-like sensitivity to chemotherapy.

immunofluorescence confocal microscopic staining and quantification,
C within the single cell, or D the averaged OS-D-2D, PT, and dCTC
samples. 20 um bars are shown. Scatter plots represent the mean value
of three experiments for OS-D 2D-monolayer cultures and four
experiments for the PT and dCTC. Bars represent standard deviations.
PT primary tumor, dCTC derived circulating tumor cell.

The ACL model facilitates the study of OS metastasis

As the ACL was connected in the bioreactor through the
pulmonary artery cannula (Fig. 1), within 7 days of
tumor formation, thousands of dCTCs had entered the
culture media perfused through the capillary network.
Intermittently every 48 h, dCTCs were harvested from
the conditioned medium circulating through the capillary
network, which presented our team with an unexpected
opportunity to study lung-to-lung hematogenous OS
spread using an ex vivo system free of white blood cell
contaminants. Examination of the right lung revealed
metastatic nodules (Supplemental Fig. 1D), and two
methods were used to assess the metastatic potential of

SPRINGER NATURE
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OS-D cells in our ex vivo ACL model. By tying off the
right bronchus, the first method models the full spectrum
of chronological events required for lung-to-lung
metastases: (a) tumor cell motility within the left-sided
pulmonary nodules, (b) dCTC intravasation into the left
lobe lung vasculature, (¢) dCTC survival within the
circulating culture media, and (d) eventual survival and
extravasation of dCTC into the contralateral right lung
parenchyma (Supplemental Fig. 1D). The second
method, directly measures the latter two events (e.g.,
anoikis and extravasation) and, importantly, begins with
OS-D cells directly trypsinized from 2D monolayers that
are injected into the pulmonary artery (Supplemental
Fig. 1E-H).

dCTCs upregulate receptor tyrosine kinases (RTKs)
linked to metastasis

Several RTKs play an essential role in the regulation of
stemness, invasion, and metastasis [51]. Therefore, we
hypothesized our OS dCTCs would express a RTK pattern
similar to human CTCs that emanate from OS xenograft
models. Focusing initially on a subset of previously repor-
ted preclinical biomarkers [32], we measured the expression
of EPHB2, FGFR2, and RET in OS-D cells taken from
monolayers cultures (2D), ACL PT, and ACL dCTC (Fig.
2). Reverse transcriptase polymerase chain reaction (RT-
PCR) data from three independent ACL experiments
revealed a statistically significant upregulation of EPHB2,
FGFR2, and RET mRNA in dCTC as compared to mono-
layer and PT cultures (Fig. 2A). To better delineate the
location and nuclear-to-cytoplasmic distribution of the three
protein biomarkers, we used confocal microscopy (Fig.
2B-D) to evaluate the cells or tissues at the single-cell (Fig.
2C) and averaged sample levels (Fig. 2D). A detailed
description of the approach used for cell visualization,
analysis, segmentation, and interpretation as performed
using semi-automated Imaris software algorithms is
described in Supplemental Methods section. FGFR2 and
RET were significantly upregulated in PT formed by OS
cells, while EPHB2 was significantly downregulated com-
pared to 2D OS cells (p <0.0001, Fig. 2A). These data
collectively indicate that the ACL TME significantly alters
the RTK profiles that govern the OS metastatic cascade.

The Hippo pathway, YAP/TAZ, and AXL are
enhanced in dCTCs

Healthy and cancer cells alike sense their microenvironment
through soluble, physical, and mechanical cues by trans-
lating them into biochemical signals that regulate cellular
behavior, including differentiation and metastasis. In that
process, the YAP (Yes-associated protein) and TAZ

SPRINGER NATURE

(Transcriptional Co-Activator with PDZ-Binding Motif)
paralogs serve as important transcriptional coactivators that
dictate when and how MSCs transition into cells forming
bone, fat, cartilage, or muscle. To determine whether YAP/
TAZ activation, and downstream effectors such as AXL,
contributed to the dCTC phenotype [52-54], we compared
the expression of YAP/TAZ and AXL within OS-D cells
cultured upon 2D monolayer, within the ACL PT, and
among the dCTCs. We used confocal microscopy to
quantify each protein’s subcellular localization in individual
cells because the epigenetic effects of activated YAP/TAZ
proteins necessitate TEAD binding and transmigration into
the nucleus (Fig. 3). Consistent with published reports, total
and nuclear (i.e., active) YAP/TAZ levels are significantly
elevated when OS-D cells are cultured on 2D cultureware
that are several orders of magnitude stiffer than human lung
tissue (Fig. 3). Compared to the PT from which they ema-
nated, dCTCs expressed higher YAP and TAZ, which were
predominantly confined to the cell nucleus (Fig. 3B-D and
Supplemental Fig. 3A).

Even more striking was the upregulation in dCTCs of
AXL, an RTK known to mediate YAP/TAZ oncogenic
effects [54, 55], OS metastasis [32], and chemoresistance in
several cancer types [56—-60]. We quantified AXL expres-
sion by RT-PCR (Supplemental Fig. 3B),
fluorescence, and confocal analyses (Fig. 3A and B-D
lower panels). These findings indicate that the AXL/YAP/
TAZ axis may have a critical role in OS cell fate and
metastasis and serve as a viable drug target.

immuno-

The expression of EMT-TFs suggests that dCTCs may
have undergone dedifferentiation

As dCTCs strongly express proteins linked to metastasis,
we questioned whether YAP/TAZ, AXL, and other TFs
induced epigenetic changes favoring what would be clas-
sically described as EMT in epithelial malignancies. As
elaborated in the “Introduction,” the epigenetic processes
associated with dedifferentiation and EMT were suspected
to be quite similar in OS.

To investigate this, we employed RT-PCR and immuno-
fluorescence to analyze previously described cell stemness
markers (SOX9, TWIST, ZEB1, SNAI2, N-Cadherin (N-
CDH)). Compared to the PT, dCTC upregulated SOX9 and
TWIST by 6-30-fold (Fig. 4A-D). ZEB1, known to tran-
scriptionally repress epithelial genes responsible for cell
polarity and migratory potential, was also considerably elevated
at the RNA, but not at protein, as compared to 2D and PT [61].
This result might be due to its heterogeneous expression within
the replicates of each sample (Fig. 4B-D) or due to the dif-
ferential effects of ZEB1 in sarcomas vs. carcinomas.

The RT-PCR analyses also showed a significant upre-
gulation of Snail2 (SNAI2) in the dCTCs compared to PT
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Fig. 3 The Hippo pathway,
YAP/TAZ, and AXL are
enhanced in OS-D dCTCs.

A Representative YAP-1, TAZ,
and AXL immunofluorescence
confocal microscopic staining
and quantification, B within the
total single cell, C the nuclear
single cell, and D the averaged
0S-D-2D, PT, and dCTC
samples. 20 ym scale bars are
shown. Scatter plots represent
the mean value of three
experiments for OS-D 2D-
monolayer cultures and four
experiments for the PT and
dCTC. Bars represent standard
deviations. PT primary tumor,
dCTC derived circulating
tumor cell.
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(Supplemental Fig. 4A, p<0.0001). N-CDH, a protein
often expressed in mesenchymal tissues, was also upregu-
lated in dCTCs (Supplemental Fig. 4B-D, p =0.0004), a
finding confirmed by immunofluorescence and quantified
by Imaris image analysis. Collectively, this data suggests
that dCTC have acquired stem cell features that may have
aided their dissemination into the perfused vascular space.

AXL inhibition attenuates the proliferation,
migration, and metastasis of OS cells

To investigate whether AXL was contributing to OS cell
growth, migration, and metastasis, we treated in vitro an
isogenic pair of metastatic and non-metastatic human OS
cell lines (MG63.2/MG63) with a small molecule
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Fig. 4 The expression of EMT-associated TFs suggests that OS-D
dCTCs may have undergone dedifferentiation. A As assessed by
RT-PCR, dCTCs derived from the ex vivo 4D ACL model have sig-
nificantly higher SOX9, TWIST, and ZEB1 gene expression, as
compared to respective primary tumor nodules formed on this model
and OS-D cells grown as 2D monolayer. Columns represent the mean
values of n = 3 experiments, and bars represent standard deviations. B

inhibitor of AXL (AXLi, SGI-7079) [47]. The
metastasis-prone OS MG63.2 cells, as compared to
parental MG63 cells, highly expressed AXL by immu-
nofluorescence confocal imaging analysis (Supplemental
Fig. 5A). In addition, MG63.2 cells were more sensitive
to AXL inhibition compared to MG63 cells, as shown
through a proliferation cell-based assay (Supplemental
Fig. 5B). To verify in vitro on-target AXLi effects, we
performed a western blot analysis, demonstrating that
SGI-7079 blocked exogenous stimulation by its cognate
ligand (Gas6; Supplemental Fig. 5C, D) and slowed
in vitro migration of MG63.2 cells as compared to par-
ental MG63 cells (Supplemental Fig. 6). Therefore, the
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Representative SOX9, TWIST, and ZEB1 immunofluorescence con-
focal microscopic staining and quantification, C within the single cell,
or D the averaged OS-D-2D, PT, and dCTC samples. 20 um scale bars
are shown. Scatter plots represent the mean value of three experiments
for OS-D 2D-monolayer cultures and four experiments for the PT and
dCTC. Bars represent standard deviations. PT primary tumor, dCTC
derived circulating tumor cell.

different expression of AXL between MG63 and
MG63.2 cells might be the consequences of these cells
responding variably to AXLi, through their proliferation
or migration.

Next, to test whether AXLi would affect OS metas-
tasis in vivo, the same isogenic pair of cell lines, co-
expressing luciferase, were injected via tail vein into
immunocompromised NSG mice (Fig. 5A). Lung
metastases were monitored via bioluminescence in live
animals using the IVIS Spectrum in vivo imaging sys-
tem, and representative images of Bouin’s solution-
stained lungs were analyzed after 4 weeks of AXLi. The
bioluminescence images were analyzed using the Living
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Image software (PerkinElmer). AXL blockade of
MG63.2 cells by SGI-7079 significantly reduced tumor
bioluminescence (Fig. 5B, C) and the number of pul-
monary metastases (Fig. 5D). AXLi significantly reduced
the AXL expression levels but not of pAXL or vimentin,

which is considered as an exclusive marker on OS CTC
[62], as shown in Fig. SE, F and Supplemental Fig. 7,
shown by THC and western blotting. These results indi-
cate a direct role for AXL in OS proliferation, migration,
and metastasis.
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Fig. 5 AXL inhibition attenuates the metastasis of MG63.2 OS cell
lines. A Preclinical experiment design. B Monitoring OS tumor
growth in lung and SGI-7079 (AXL inhibitor, AXLi) treatment
response after tail vein injection of MG63/MG63.2-1uciferase cell lines
in immunodeficient mice. The luminescent intensity of photons emit-
ted from each tumor from control and AXLi-treated mice after injec-
tions with 5 x 10° luciferase- MG63/MG63.2 cells. C Bioluminescent
imaging of mice 25 days post-tail vein injection of 5x 10° MG63.2-
expressing luciferase during AXLi and placebo treatments. D Quan-
tification of pulmonary metastatic nodules in MG63 and MG63.2
xenograft mice after AXLi and placebo treatments. E IHC stains for
AXL and vimentin in lung tissues of MG63.2 xenograft mice after
AXLi or placebo treatments. F Western blot analyses of AXL and
pAXL expression in lung tissues of MG63.2 xenograft mice after
AXLi or placebo treatments (left panel). Normalized AXL and pAXL
expression relative to GAPDH in lung tissues of MG63.2 xenograft
mice after AXLi or placebo treatments (right panel) with unpaired two-
tailed Student’s ¢ test statistical analyses; bars show mean + SD.

Discussion

To study OS metastases at the main site responsible for
cancer deaths, we demonstrate the ability to grow OS cells
in an innovative native ACL matrix model (Fig. 1). Like
lung cancer cells placed through the trachea [63], OS cells
spread throughout the lung to form distinct, rapidly growing
nodules that can reach >1 cm in size. This capacity to form
macroscopic tumors is facilitated by a bioreactor and paired
residual lung capillary network that provides a biological
conduit to nourish growing tumors with oxygenated,
nutrient-rich cell culture media while simultaneously elim-
inating waste byproducts. As opposed to monolayer and
spheroid cell culture models that lack 3D architecture and
contain hypoxic cores that affect drug sensitivity, the ACL
model provided a unique opportunity to study chemother-
apy response that better resemble the human tumor coun-
terparts. As highlighted by our results, the model also
yielded abundant dCTCs, which allowed us to investigate
the cell fate changes that enabled their intravasation.

The ACL model yielded striking differences in chemo-
sensitivity, using doxorubicin, a standard treatment for OS.
Like lung cancer cells treated with cisplatin [29], the OS
cells grown in the ACL showed a significant increase in
apoptosis with a single treatment of doxorubicin compared
to untreated control samples. Interestingly, dCTCs were
also resistant to doxorubicin (Supplemental Fig. 2), a phe-
nomenon reported in lung cancer dCTCs treated with cis-
platin [29].

With ligation of the right main stem bronchus, the ACL
model provided a unique opportunity to simulate—ex vivo
—the metastatic cascade typically observed in living
organisms. OS cells migrate to the lung only after well-
described steps that include intravasation from primary
osseous sites into circulation as CTCs, resistance to anoikis,
adherence to the pulmonary endothelium, and extravasation
into the lung parenchyma (Fig. 6). Our research presented
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two distinct ways to study OS tumor metastasis within the
ACL: (a) an approach of lung-to-lung metastases that
required tumor cells to disseminate from left-sided PT and
(b) a terminal half of the metastatic process that begins with
a direct introduction of cells into the decellularized vascular
remnant. Akin to the second method studied in the ACL, the
mouse tail vein model provided an additional opportunity to
interrogate the latter part of the metastatic cascade. As
demonstrated with lung cancer [27], OS PTs within an ACL
model are capable of shedding dCTCs from PT, after just
2 days.

Rettew et al. have previously reported that genetic
upregulation of EphB2, FGFR2, and RET, which encode
RTKs, increases the metastatic potential of tumor cells by
enhancing cell proliferation, motility, invasion, and tumor-
igenicity [31, 32]. Therefore, we expected that the highly
metastatic MG63.2 OS cell line would be enriched in those
proteins. It was unexpected, however, to discover that
dCTCs would coopt many of the same EMT-TFs used by
carcinomas. High levels of SNAI2, ZEB1, and TWIST that
were also observed (Fig. 4) strongly suggested that OS
dCTCs had undergone an EMT-like epigenetic transition.

As stated in the “Introduction,” sarcomas are not epithe-
lial in origin and cannot become more “mesenchymal” [33—
35], so we prefer to describe the EMT-like epigenetic effect
as dedifferentiation, which describes rejuvenated cell fate as
cells shift up the Waddington epigenetic differentiation
landscape [64]. Since epithelial and non-epithelial tumors
upregulate EMT-TFs as they acquire a less differentiated
stem-like state, our team and others suggest a more unifying
rubric that emphasizes the EMT-TFs themselves [11]. An
added benefit of describing EMT and dedifferentiation by
EMT-TFs, rather than by phenotypic markers, is the natural
attention to the mechanistic underpinnings of cell fate,
whereby EMT-TFs bind gene enhancer and promoter ele-
ments to orchestrate epigenetic changes in response to
microenvironmental cues.

To further explore the mechanistic relationship between
EMT-TFs and stemness, we investigated several proteins of
the YAP/TAZ/AXL axis that are widely reported to regulate
organ size and mesenchymal cell fate. Their dysregulation
has been shown to promote tumor growth and invasion in a
wide range of epithelial and non-epithelial malignancies,
including carcinomas and sarcoma [39, 40]. The YAP
protein, highly expressed in human OS tissues, is more
commonly found in advanced clinical stage [65] and may
serve as a prognostic indicator [66].

The mechanism of YAP upregulation in OS is complex
but appears to interface with or phenocopy the stem cell TF
SOX2 through canonical Hippo signaling in response to
mechanotransduction [67]. Notably, recent work by Leh-
mann et al. has shown that ZEB1 and YAP simultaneously
bind the same TEAD promoter binding sites of CTGF,
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Tumor Cell

Stromal Cell

Some tumor cells upregulate EMT-related
transcription factors (EMT-TF), which promotes
a MSC-like phenotype; these cells exhibit

Low EMT-TF*  High EMT-TF*
Cell State Cell State
(Primary Tumor) (CTC, dCTC)
Stemness =+ +44
Metastatic Potential + +44
Drug Resistance + + 44
Coregulated EMT Molecules + +44
(e.g., AXL)
Mechanotransduction + ++44
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Yy p ial and more
intravasate into the vascular system
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Visual Art: © 2019 The University of Texas MD Anderson Cancer Center

Metastatic cells transition back and
invade as normal tumor population

Fig. 6 The model describing how EMT-like related machinery
promotes OS dedifferentiation and enhanced metastatic potential.
Metastatic cascade occurs within a small subset of primary tumor cells

CYRG61, and AXL [68]. This surprising intersection of the
ZEB1-related EMT and YAP-mediated control of mesench-
ymal cell fate provides a fertile area for further exploration.

Drugs targeting AXL, a downstream effector of YAP/
TAZ found in numerous cancer types, are being explored in
the preclinical setting [69, 70]. Further, via the ABL2 pro-
tein intermediate, AXL can also act upstream of TAZ in
some cancer types to promote a feed-forward activation
loop amenable to therapeutic intervention [71]. Collec-
tively, our data suggest that the YAP/TAZ/AXL axis con-
tributed to the aggressive behavior of the OS dCTCs by
promoting cell stemness, demonstrated by their high
expression on ZEB1-, TWIST-, or AXL-related genes. In
turn, changes in cell fate led to dCTC dissemination, dox-
orubicin resistance, and enhanced metastatic potential.
Although those effects are well documented in carcinomas
[72, 73], our research highlights their contribution to sar-
coma dedifferentiation and substantiates a prior finding
that TWIST upregulation invokes a dedifferentiated
osteoprogenitor-like state [74].

Our OS ACL model provided a unique opportunity to
rapidly profile dCTCs and shed new light on molecular
drivers of cell differentiation/dedifferentiation and metas-
tasis. For example, AXL blockade was shown to attenuate
the proliferation, migration, and metastasis of OS cells. We

that acquire the ability to migrate, intravasate into the bloodstream,
resist anoikis, and survive at distant tissue sites, like the lung. CTC
circulating tumor cell, dCTC derived circulating tumor cell.

note that the ACL model itself does not, nor was it intended
to, perfectly replicate all aspects of the human lung
microenvironment. The residual collagenous capillary net-
work that persists following the detergent-based decel-
lularization lacks endothelial cells.

Despite the advantages of the ACL and rat tail-vein
models, additional research is required to determine how
well they replicate bone-to-lung hematogenous spread of
OS tumor cells. The OS-D/MG63.2 cell lines had been
maintained in a non-physiological monolayer environment
for years, which could have impacted their plasticity.
Though our models lack immune cells and other cellular
constituents, they nevertheless supported the development
of macroscopic tumors.

In conclusion, our OS ex vivo ACL and in vivo
experimental metastasis models mimicked several vital
steps required for tumor metastases. Importantly, the ACL
model elicited abundant dCTCs that highly expressed
EMT-TFs classically associated with EMT or dediffer-
entiation (Fig. 6). Given the unparalleled ability to
experimentally regulate the ACL TME and partially repli-
cate the metastatic cascade, these systems offer a unique
opportunity to investigate how microenvironmental cues,
growth factors, and other EMT drivers work in concert to
regulate tumor cell fate. The strong presence of EMT-
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related TFs in OS dCTCs and a close connection to the
YAP/TAZ mechano-sensing pathway are remarkable find-
ings that may ultimately pave the way for future mechan-
istic studies that determine why high-grade OS cells are
stem-like in nature [35].
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