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Abstract: Low glycemic index (GI) and/or low glycemic load (GL) are associated with decreased risks
of type-2 diabetes and cardiovascular disease. It is therefore relevant to consider GI and GL in the
early phases of the development of packaged foods and beverages. This paper proposes a model that
predicts GI and GL from macronutrient composition, by quantifying both the impact of glycemic
carbohydrates and the GI-lowering effects of nutrients such as proteins, fats and fibers. The precision
of the model is illustrated using data on 42 breakfast cereals. The predictions of GI (r = 0.90, median
residual = 2.0) and GL (r = 0.96, median residual = 0.40 g) compete well with the precision of the
underlying in-vivo data (Standard Error SE = 3.5 for GI). This model can guide product development
towards lowering GI and GL, before final confirmation by in vivo testing.
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1. Introduction

Carbohydrates should account for 50% of total energy intake in a normal diet, but free sugars
should account for less than 10%, as recommended by the World Health Organization, to prevent both
obesity and dental caries [1]. In order to achieve this public health target, consumers will need to
make significant changes to their diets and providers of packaged food and beverages will need to
replace free sugars with alternatives that are truly supportive of health benefits. Sugars have many
functionalities that go beyond providing sweetness. Therefore, complete removal or partial reduction
of sugar is not simple and various routes for nutritious sugar replacements have been proposed [2].
The first approach consists of carefully selecting alternative glycemic carbohydrates in order to avoid
replacing low glycemic sugars such as lactose by high glycemic carbohydrates such as maltodextrin.
The second approach consists in replacing sugars and rapidly digestible glycemic carbohydrates
by slowly digestible carbohydrates [3], non-glycemic carbohydrates such as dietary fibers [4], and
particularly β-glucans [5]. Further considering non-glycemic nutrients such as proteins and fats is
important since they further modulate postprandial glycemic response [6–8].

Foods and beverages with low glycemic index (GI) and low glycemic load (GL) are considered
beneficial [9], based on evidence coming from meta-analyses of both observational studies [10,11], as
well as from randomized clinical trials [12]. Benefits include the management of diabetes [13], the
prevention of diseases such as type-2 diabetes [14], and cardiovascular disease, including coronary
heart disease [15,16].
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To estimate the GI/GL of a meal or a diet, one can use the model of the Food and Agriculture
Organization (FAO) [17]. This model predicts the GI of a diet as a simple function of its constituting
products by using average GI and GL values of hundreds of common foods and beverages available in
generic tables [18]. This simple model is unfortunately not always reliable; for example, it failed to
predict GI of composite breakfast meals [19,20]. The FAO-model has two inherent limitations. First,
the GIs of the constituting products are averages coming from tables that do not necessarily reflect the
specificities of the actual products (e.g., depending on the local sources of ingredients and processes,
the reported GIs of white bread made from wheat flour varies between 59 and 89). Second, the model
does not properly take into account the GI-lowering effect of the non-glycemic components in the meal
(e.g., the butter on the bread).

This work presents a new model that builds on the logic of the FAO-model, but that overcomes its
two inherent limitations. First, in order to overcome the issue of product specificities, and in order
to be useful for both complete meals and single products, it models GI as a function of nutrients,
not as a function of products (with GI = 100 for pure glucose). Second, it both deterministically
quantifies the effects of glycemic carbohydrates and empirically estimates the GI-lowering effects of
other macronutrients, such as proteins, fats and fibers.

Published data, including data on honey, pasta, bread and milk, allowed us to set up the shape of
the model combining deterministic and empirical aspects. Sixty in-house in-vivo trials allowed the
estimation of empirical coefficients of the model. These 60 trials covered various product categories
(i.e., infant cereals, cereal bars, biscuits and dairy beverages) and a wide range of recipes, leading to GI
spreading between 15 and 95. Consequently, the correlation between prediction and observation was
very large (r = 0.97, p-value < 0.01, n = 60). In order to challenge the model, it has been applied on a single
product category that was not part of the model setup. The application presented includes correlation
plots for 42 breakfast cereals, as well as the corresponding Bland-Altman difference plots [21].

2. Materials and Methods

2.1. Products

Forty-two breakfast cereals made from various grains (i.e., wheat, oat, mixtures of grains), with or
without inclusions (e.g., chocolate, fruits, nuts, honey), have been characterized for their macronutrient
composition using standard analytical methods [22]. The type of process and composition of these
42 starch-based products is presented (Table 1). These products contained glycemic carbohydrates
accounting for 57 to 82 g/100 g and the proportion of Rapidly Digestible Starch ranged between 65%
for granola and 88% for extruded products.

2.2. In-Vivo Testing

The in-vivo testing to measure GI was performed according to international standards [23].
Fourteen studies, all approved by the Human Research Ethics Committee of the University of Sydney,
tested the 42 products with 2 to 5 products per study protocol. The constant test protocol enabled the
combination of data from all 14 studies to perform secondary analyses. Serving sizes were calculated
to deliver 50 g glycemic carbohydrates. Test products were compared with a reference of 50 g glucose,
which was assessed in triplicate in each study. Within each study, 10 healthy subjects consumed all test
products and the reference in a crossover design, with one sample per day, under fasting conditions,
with at least one-day washout between two test days. Subjects tested the dry products along with
a glass of 250 mL water. Two fasting blood samples (t = −5 min and t = 0 min) were obtained, and
after the second fasting blood sample a test product was consumed and postprandial glycaemia was
monitored for 120 min (15, 30, 45, 60, 90, 120 min). A total of 140 subjects (61 women, 79 men) were
enrolled in these 14 studies with age ranging between 19.8 and 52.3 years (mean = 29.6, SD = 8.6) and
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BMI ranging between 18.2 and 24.9 kg/m2 (mean = 22.0, SD = 2.2). GI and GL (Equations (1a) and (1b))
were determined using commonly accepted equations [24]:

GI =
Incremental blood glucose area of the test food

Incremental blood glucose area of glucose
× 100 (1a)

GL =
GI x glycemic carbohydrate per serving (g)

100
(1b)

Table 1. 42 breakfast cereals with process, composition [g/100 g], glycemic index (GI) (in-vivo vs.
predicted) and glycemic load (GL) [g] for a 30 g serving (in vivo vs. predicted), sorted by descending GI.

Process Sucrose
(g/100)

Starch
(g/100)

Fiber Sol.
(g/100)

Fiber Ins.
(g/100)

Fat
(g/100)

Protein
(g/100)

GI GI
pred.

GL
(g)

GL pred.
(g)

P01 Extruded 11.8 61.2 2.4 7.1 2.2 9.1 83 79 18.2 17.2
P02 Extruded 10.9 71.0 0.7 2.0 2.1 6.9 83 82 20.4 20.2
P03 Extruded 6.3 68.0 1.9 5.8 3.3 8.3 83 82 18.5 18.3
P04 Flakes 14.9 56.8 2.8 8.3 2.2 10.3 82 71 17.6 15.3
P05 Extruded 16.8 57.5 2.2 6.7 2.1 8.5 80 77 17.8 17.3
P06 Flakes 11.8 64.2 1.7 5.1 1.4 9.3 79 74 18.0 16.9
P07 Flakes 28.6 53.7 0.8 2.3 2.5 6.3 79 72 19.5 17.8
P08 Extruded 4.1 74.7 0.7 2.0 1.4 12.3 78 82 18.4 19.3
P09 Extruded 28.8 52.0 1.1 3.3 2.7 6.3 78 72 18.9 17.4
P10 Extruded 4.0 62.6 3.2 9.7 2.1 12.3 75 78 15.0 15.6
P11 Extruded 25.2 48.8 2.2 6.5 4.0 7.8 75 70 16.7 15.5
P12 Extruded 30.0 46.9 1.5 4.4 4.8 6.2 73 70 16.8 16.1
P13 Flakes 11.4 69.8 1.0 2.9 2.1 7.1 73 76 17.8 18.5
P14 Bar 27.4 41.0 1.4 4.1 7.1 6.3 72 70 14.8 14.3
P15 Extruded 29.8 44.3 1.9 5.7 3.9 8.4 72 68 16.0 15.2
P16 Extruded 25.0 51.2 1.6 4.8 5.0 7.2 72 70 16.5 16.1
P17 Bar 27.9 40.6 1.5 4.5 7.3 6.2 71 70 14.6 14.3
P18 Flakes 17.2 60.0 1.6 4.7 1.2 8.6 71 73 16.4 17.0
P19 Bar 21.3 48.2 1.3 3.8 6.5 5.8 70 73 14.6 15.2
P20 Extruded 29.7 48.3 1.5 4.6 3.0 7.6 70 70 16.4 16.4
P21 Extruded 20.9 52.6 1.9 5.8 3.7 8.8 70 70 15.4 15.5
P22 Extruded 29.8 49.0 1.3 4.0 5.0 4.9 69 71 16.3 16.7
P23 Bar 22.5 42.7 1.4 4.3 9.8 6.3 68 69 13.3 13.6
P24 Extruded 28.7 47.0 1.4 4.1 7.4 7.6 68 68 15.4 15.4
P25 Extruded 28.8 47.0 1.6 4.7 4.5 8.0 68 69 15.5 15.7
P26 Flakes 28.4 47.7 2.2 6.6 1.7 8.7 68 70 15.5 15.9
P27 Extruded 24.8 48.6 1.3 3.9 10.1 5.7 67 68 14.8 15.0
P28 Bar 30.0 33.4 1.0 3.0 12.9 7.4 66 64 12.6 12.2
P29 Extruded 24.2 54.9 1.3 3.9 3.2 7.0 63 72 14.9 17.1
P30 Flakes 0.7 67.1 3.1 9.3 2.2 11.5 62 62 12.6 12.6
P31 Extruded 26.9 44.7 2.0 5.9 4.9 9.0 61 68 13.1 14.6
P32 Extruded 4.7 62.7 2.1 6.4 7.5 11.1 61 71 12.3 14.3
P33 Muesli 14.9 47.3 2.6 7.8 6.7 11.9 60 61 11.2 11.3
P34 Muesli 11.4 45.5 2.0 6.1 11.1 11.8 59 58 10.1 9.9
P35 Muesli 14.9 44.1 2.2 6.5 9.5 10.6 59 59 10.4 10.5
P36 Granola 22.3 38.9 1.4 4.2 13.7 14.4 59 53 10.8 9.8
P37 Granola 25.5 43.3 1.6 4.7 9.8 10.0 59 58 12.2 12.0
P38 Granola 22.3 41.6 1.9 5.8 10.5 11.6 55 54 10.5 10.4
P39 Granola 18.7 41.8 1.9 5.8 12.4 13.0 54 52 9.8 9.5
P40 Granola 18.5 41.7 1.9 5.7 12.8 13.1 52 52 9.4 9.4
P41 Granola 22.1 41.4 1.9 5.7 10.3 12.0 52 54 9.9 10.3
P42 Granola 22.2 42.3 1.8 5.4 9.8 13.5 50 56 9.7 10.8

Min 0.7 33.4 0.7 2.0 1.2 4.9 50 52 9.4 9.4
Max 30.0 74.7 3.2 9.7 13.7 14.4 83 82 20.4 20.2

Mean 20.1 51.1 1.7 5.2 5.9 9.0 68 68 14.7 14.7
SD 8.5 10.0 0.6 1.7 3.8 2.5 9.2 8.2 3.1 2.9
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2.3. FAO Predictive Model

The FAO-model predicts GI of a meal as a function of its N constituting foods. If ci is the amount
(in grams) of glycemic carbohydrates of the ith food (i = 1 . . . N) and GIi its GI, the model can be
written in a synthetic form (Equation (2)):

GIMeal =

∑N
i=1 ciGIi∑N

i=1 ci
(2)

As an example, using published data [25], consider a simple test meal composed of only two
foods, namely 110 g white bread (c1 = 50 g glycemic carbohydrates, GI1 = 88) and 30 g butter (c2 = 0g,
GI2 = 0). The equation predicts GIMeal = (50 × 88 + 0 × 0)/(50 + 0) = 88, whereas the reported in-vivo
data suggest that the addition of butter reduces GI of the white bread from 88 to 67. This example
illustrates the inability of the current model to account for the GI-lowering effect of fat (and similarly
for proteins or fibers).

2.4. Development of a New Model to Predict GI

The main idea of the new model is to apply the logic of the FAO-model on macronutrients instead
of foods. The model development includes three steps (Equations (3a)–(3c)).

In a first step, the model considers products composed exclusively of water and of N mono/

disaccharides. Let xi be the relative amount (%) of the ith mono/disaccharide (i = 1 . . . N) and GIi its
tabulated GI (Table 2), given as an average of GI-values reported by the University of Sydney [26]. Sugar
alcohols that are partially glycemic such as maltitol (GI = 35) or xylitol (GI = 12) should be considered as
mono/disaccharides in this context. With these definitions, the synthetic form of the FAO-model remains
unchanged (Equation (3a)), while accurately predicting the GI of any mono/disaccharide mix.

GI =
∑N

i=1 xiGIi∑N
i=1 xi

(3a)

Table 2. Glycemic index (GIi) and correcting factor (ai) of common glycemic carbohydrates, including
glycemic sugar alcohols.

Glycemic Carbohydrates GIi ai

Monosaccharides Glucose 100 1
Fructose 20 1
Galactose 20 1

Disaccharides Maltose 105 1
Trehalose 70 1
Sucrose 62 1
Lactose 47 1
Isomaltulose 32 1

Polysaccharides Maltotriose 110 1
Maltotetraose 110 1
Starch 110 %RDS/100
Maltodextrin 110 1

Sugar alcohols Maltitol 35 1
Xylitol 12 1

As a fictive example, a syrup composed of 90 g/100 g water and a mix of 3 g glucose (GI = 100),
2 g fructose (GI = 20) and 5 g maltitol (GI = 35) would yield GI = (3 × 100 + 2 × 20 + 5 × 35)/(3 + 2 + 5)
= 51. In-vivo data of such mixes are hardly available, but various published data on products such as
honey tend to confirm the accuracy of the model [27].
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In a second step, the model extends mono/disaccharides to glycemic carbohydrates, including
glycemic polysaccharides. Equation (3a) still properly handles polysaccharides such as maltotriose,
maltotetraose or more generally maltodextrin of any dextrose equivalent, but not starch. GI of starch
varies due to botanical diversity and the fact that processing can affect the availability of glucose as
demonstrated by the impact on GI of various ways of cooking pasta [28], or of cooling cooked rice [29].
Equation (3b) accounts for this change in starch availability by introducing a correcting factor ai to
characterize the availability of the glycemic carbohydrates.

GI =
∑N

i=1 xiaiGIi∑N
i=1 xi

(3b)

As shown in Table 2, ai = 1 for all glycemic carbohydrates except for starch for which it is best
estimated by the proportion (0 ≤ ai ≤ 1) of Rapidly Digestible Starch [30].

In the third step, the model quantifies the impact on GI of all non-glycemic nutrients. Any product
can be considered as composed of N nutrients (N = m + n) with m glycemic carbohydrates and n
other nutrients, with xk the relative amount (%) of the kth nutrient (k = 1 . . . N) and

∑
xk = 100%.

Equation (3c) introduces the non-glycemic nutrients as diluting factors of GI, along with coefficients bj

(j = 1 . . . n) that characterizes their GI-lowering power.

GI =
∑m

i=1 xiaiGIi∑m
i=1 xi +

∑n
j=1 x jb j

(3c)

Non-glycemic nutrients without GI-lowering power (e.g., water) have bj = 0, whereas bj of other
nutrients were a-priori unknown and were estimated to be highest for β-glucans, fats and proteins (0.6),
followed by other soluble fibers (0.3) insoluble fibers and ashes (Table 3). These empirical coefficients
were estimated by Ordinary Least Square (OLS) regression applied on a heterogeneous dataset of
60 in-vivo studies, not including the 42 breakfast cereals (data not shown).

Table 3. GI-lowering power (bi) of common macronutrient as defined by empirical data fitting for
starch-based products.

GI-lowering Macronutrients bi

Carbohydrates
β-glucan 0.6
Fiber soluble 0.3
Fiber insoluble 0.1

Others

Fat 0.6
Protein 0.6
Ashes 0.1
Water 0.0

As an example, published data point to a GI of 66 for a test product composed of 50% glucose and
50% proteins [31]. This is close to the GI as predicted by Equation (3c) with GI = 50% × 100/(50% + 50%
× 0.6) = 63. Other published data report GI = 27 for 100 g of whole milk composed of 88 g water, 4.9 g
lactose, 3.3 g fat, 3.1 g protein and 0.7 g minerals [32]. In comparison, Equation (3c) yields a predicted GI
of 26 with GI = 4.9 × 47/(4.9 + 88 × 0 + 3.3 × 0.6 + 3.1 × 0.6 + 0.7 × 0.0) = 26. Finally, coming back to the
example of the 30 g of butter on 110 g white bread, Equation (3c) predicts a decrease from GI = 88 for
plain bread to GI = 65 for bread + butter (vs. GI = 67 in-vivo). Similar decreases have been observed
when replacing dairy butter with peanut butter [33].

Predicted glycemic load (GL) is derived from predicted GI using the standard GL Equation (1b).
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3. Results and Discussion

3.1. Precision of Predictions for 42 Breakfast Cereals

In-vivo GI of 42 breakfast cereals ranged between 50 and 83 (mean = 68, SD = 9.2). The granola
and muesli products tested had the lowest GI (50–60), before bars (66–72), whereas flakes and extruded
products cover a wider range depending on their composition (61–83). The standard error (SE) of
in-vivo data is SE = 3.5. Predicted GI of the same breakfast cereals ranged between 52 and 82 (mean = 68,
SD = 8.2). When visualizing observed vs. predicted GI (Figure 1A), the correlation is r = 0.90 (p-value
< 0.01) and the precision of the prediction given by the median absolute residual (=2.0) is smaller than
the in-vivo SE.
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With a standard serving size of 30 grams of product, the in-vivo GL of these 42 breakfast cereals
ranged between 9.4 and 20.4 grams (g) of glucose equivalent (mean = 14.7 g, SD = 3.1 g) and their
predicted GL range between 9.4 g and 20.2 g (mean = 14.7 g, SD = 2.9 g). When visualizing observed vs.
predicted GL (Figure 1B), the correlation is r = 0.96 (p-value < 0.01) and the precision of the prediction
was high since the median absolute residual was as low as 0.40 g.

Three products featuring specific inclusions (i.e., cashew nuts, almonds, quinoa or cocoa) yielded
predictions differing from actual in-vivo data by 9–11 points for GI and by 2.0–2.3 g for GL. These three
products are also outside the mean ± 2SD range in the Bland-Altman difference plots (Figure 1C,D).
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These plots show that the predictions were not biased and that no simple relationships between the
differences and the mean value can be identified.

These results illustrate the strength of the new model that combines deterministic modelling
to quantify the impact of glycemic nutrients and empirical modelling to quantify the impact of
GI-lowering nutrients. This hybrid model delivers more accurate predictions than pure empirical
models such as the one described by Meynier [34], who used advanced feature selection techniques to
select main effects and interactions of four product characteristics (slowly digested starch, fat, fiber,
and rapidly digested starch) to predict the GI of cereal products (r = 0.73, p-value < 0.01).

The proposed model delivers accurate GI and GL prediction for products with high proportion of
glycemic nutrients such as the 42 tested breakfast cereals. This is because it first captures the effect
of glycemic nutrients in a very simple deterministic way by modelling the GI of a mix of glycemic
nutrients as the weighted average of their GIs and second accounts for the GI-lowering effect of other
nutrients. Glycemic nutrients include mono/disaccharides and glycemic polysaccharides as well as
nutrients such as maltitol and xylitol, which are partially glycemic, and therefore increase glycemic
response. Non-glycemic nutrients include fat, fibres, proteins, ashes and water. The provided list of
nutrients is not exhaustive and can be adapted to any product category, including novel glycemic or
non-glycemic nutrients if needed.

3.2. Limitations of the Model

Whilst the deliberate simplicity of the model facilitates user experience, it does limit its accuracy.
As a case in point, among the 42 breakfast cereals tested, the predicted GL was too high for two
products with inclusions of cashew nuts, almonds and quinoa and too low for a product rich in cocoa.
These products reveal that the model is not fully capturing the specificities of components that are rich
in GI-modulating nutrients such as particular fat types or polyphenols [35].

More generally, a limitation of the model is that starch digestibility is captured through a single
global marker (i.e., coefficient ai) regardless of the underlying mechanisms. This global marker is well
estimated by the fraction of rapidly digestible starch, as suggested by the empirical data used to build
the model. But this simple approach is eventually not properly addressing mechanisms such as the
modulation of enzyme availability induced by specific ingredients (e.g., quinoa, lentils or chickpeas),
the impact of ingredient processing on particle sizes within the same grain (e.g., cracked wheat vs.
wheat flour), the impact of process on products comparable in composition (e.g., bread vs. pasta) [36],
and the complex interactions occurring among food constituents, especially when the physical format
of the product varies (e.g., solid vs. liquid) [37]. Such mechanisms might be captured more adequately
by alternative in-vitro methodologies that have shown to be highly correlated with in-vivo GI [38,39];
but such methodologies rely on long and tedious procedures that conflict with the simplicity of the
proposed model.

Another potential limitation of the model is that it captures the GI-lowering effect of non-glycemic
nutrients in the same way regardless of the underlying mechanism. This simplifies the tool, but limits the
accuracy for estimating the GI-lowering power of various nutrients. For example, proteins—similarly
to fibers and fats—might increase viscosity and therefore physically protect glycemic nutrients from
enzymatic digestion; but in addition, some amino acids are known to trigger the insulin response and
therefore to lower the glycemic response [40]. Consequently, the b-coefficient of proteins in the model
might strongly vary according to their amino acid profiles leading to two or more protein categories
(e.g., low and high insulinogenic effect).

3.3. Potential Use of Model Beyond Breakfast Cereals

The estimated b-coefficients should be adapted for each product category based on empirical data.
As an example, the model was initially developed with total fibers instead of a split into three fiber
types (insoluble, soluble and β-glucans). It worked well on tested products that featured fibers of
similar type (i.e., constant ratio of soluble to insoluble, no β-glucans), however, the method became
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inaccurate when comparing products containing a variety of fibers. Splitting total fibers into three
nutrients indirectly integrates the modelling of viscosity [41]. This logic could be extended to further
splitting β-glucans (and including other fibers such as pectin, glucomannans or acacia gum) according
to their effect on viscosity [42], or to their molecular weight [43]. Similarly, the model could be extended
to split fats into low and high viscous fats [44], or according to their impact on gastric emptying.

The proposed model is scalable and should theoretically become more precise with more detailed
nutrient breakdowns. However, the more detailed the input composition, the more difficult it becomes
to access this information in a precise manner. Consequently, there is a trade-off for each product
category and each application of the model. As an example, the model used back of pack labelling to
benchmark prepared composite meals, such as pizzas, enchiladas or burritos. The GI predictions were
relevant since structural and microstructural transformations happening during processing, as well
as resulting starch availability were well mastered at factory level and the reheating by consumers
was expected to have minimal additional impact. In this sense, the model might be more relevant
for finished packaged foods than for semi-finished foods (e.g., pizza dough) or homemade meals for
which cooking procedures can have a strong impact. The benchmark of prepared composite meals
helped to prioritize brands to be improved. Once these products are identified, product developers
could systematically vary their processes and ingredient parameters in order to identify settings that
minimize estimated GI and GL, whist achieving the ideal sensory profile [45].

4. Conclusions

This work presents a model that provides precise analytical predictions of GI and GL in the case
of breakfast cereals. It quantifies both the impact of glycemic nutrients and the GI-lowering effect of
other macronutrients. Limitations of the model and potential usage of the model for other product
categories are discussed. These analytical predictions are more precise for GL than for GI, which is
interesting because GL is a proxy of the physiological glycemic response, taking into account not
only the characteristics of macronutrients but also their quantity. The model is therefore particularly
useful for products for which the mode of preparation can vary. Indeed, breakfast cereals can be
consumed dry or reconstituted with milk (whole, semi-skimmed or skimmed), with or without further
additions (e.g., added sucrose). As an example, when adding 125 mL of whole milk on top of the
30 g of cereals, the GL of the 42 breakfast cereals tested was predicted to increase between 0.0 to 1.2 g
(mean = 0.56 g, SD = 0.32). The resulting GL is below the simple addition of the two GLs of cereals
and whole milk (i.e., +1.7 g for 125 mL), simply because milk protein and milk fat act as GI-lowering
agents for the glycemic carbohydrates of the cereals. In such cases, the model allows estimation of GI
and GL for any mode of preparation. The model can therefore help the food industry to accelerate
the development of breakfast cereals (and potentially other foods and beverages) with lower glucose
responses, while taking into account personalized usages and modes of preparation. Prototypes with
the highest predicted potential should then be tested in-vivo to confirm the physiological accuracy of
these statistical predictions.
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