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Abstract: Respiratory Syncytial Virus (RSV) causes severe inflammation and airway pathology in
children and the elderly by infecting the epithelial cells of the upper and lower respiratory tract. RSV
replication is sensed by intracellular pattern recognition receptors upstream of the IRF and NF-κB
transcription factors. These proteins coordinate an innate inflammatory response via Bromodomain-
containing protein 4 (BRD4), a protein that functions as a scaffold for unknown transcriptional
regulators. To better understand the pleiotropic regulatory function of BRD4, we examine the BRD4
interactome and identify how RSV infection dynamically alters it. To accomplish these goals, we
leverage native immunoprecipitation and Parallel Accumulation—Serial Fragmentation (PASEF)
mass spectrometry to examine BRD4 complexes isolated from human alveolar epithelial cells in
the absence or presence of RSV infection. In addition, we explore the role of BRD4’s acetyl-lysine
binding bromodomains in mediating these interactions by using a highly selective competitive
bromodomain inhibitor. We identify 101 proteins that are significantly enriched in the BRD4 complex
and are responsive to both RSV-infection and BRD4 inhibition. These proteins are highly enriched in
transcription factors and transcriptional coactivators. Among them, we identify members of the AP1
transcription factor complex, a complex important in innate signaling and cell stress responses. We
independently confirm the BRD4/AP1 interaction in primary human small airway epithelial cells.
We conclude that BRD4 recruits multiple transcription factors during RSV infection in a manner
dependent on acetyl-lysine binding domain interactions. This data suggests that BRD4 recruits
transcription factors to target its RNA processing complex to regulate gene expression in innate
immunity and inflammation.

Keywords: RSV; BRD4; AP-MS; PPI; AP1; Wnt; innate immune response

1. Introduction

Respiratory Syncytial Virus (RSV) is an enveloped, single-stranded, negative-sense
RNA virus that infects ciliated epithelial cells in the respiratory tract [1]. RSV infection
then spreads to the lower airways, where productive infection of small airway epithelial
cells induces rapid activation of the innate immune response, resulting in secretion of pro-
inflammatory cytokines [2], anti-viral interferons [3], exosomes [4], and damage-associated
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patterns [5] that mediate mucous production and leukocytic inflammation [4]. Worldwide,
RSV infection is responsible for the plurality of pediatric hospitalizations in children age 5
and younger [6].

The innate immune response induced by RSV-infection is mediated by pattern recogni-
tion receptors (PRRs) such as the Toll-like receptors (e.g., TLR3) and Retinoic acid inducible
gene (RIG-I) that monitor the airway lumen and cellular cytoplasm [3,7]. These PRRs
recognize double-stranded RNA (dsRNA) and 5′-phosphorylated RNA as products of ef-
fective RSV replication and stimulate the nuclear translocation of the interferon regulatory
factor IRF3 and the various nuclear factor kappa beta (NF-κB) transcription factors into the
nucleus, where they cooperate to induce rapid expression of pro-inflammatory cytokines
and anti-viral interferons [8–10].

Upon translocation to the nucleus, NF-κB RelA/p65 interacts with a protein called
Bromodomain-containing protein 4 (BRD4), an epigenetic scaffold that mediates the RSV
induced innate immune response [7,11–13]. BRD4 accomplishes this in part through its
tandem bromodomains, which bind acetylated lysine residues on histones and transcription
factors like RelA [8]. The resulting BRD4/RelA complex further interacts with Cyclin-
dependent Kinase 9 (CDK9) to form the positive transcription elongation factor (p-TEFb).
p-TEFb in turn initiates transcription via phosphorylation of RNA Polymerase II (Pol II)
complexes paused at the promoters of NF-κB early-intermediate inflammatory genes [14].
BRD4-dependent transcriptional elongation involves the coordinated actions of histone
acetyl transferases [15,16], cyclin dependent kinases [8] and ubiquitin ligases [17] that
dissociate elongation factors and stimulate polymerase processivity. The mechanism by
which the transcriptional elongation complex is reprogrammed in the innate immune
response is not well understood.

In this study, we apply native immunoprecipitation (IP) of endogenous BRD4 com-
plexes and high-resolution Online parallel accumulation-serial fragmentation mass spec-
trometry (PASEF-MS) [18] to address this knowledge gap by examining the BRD4 in-
teractome and its dynamic changes in response to RSV infection. We also measure the
dependence of these interactions on BRD4’s bromodomains by perturbing the complex
with the small molecule bromodomain inhibitor, ZL0454 [19–21]. Our results demon-
strate that BRD4 recruits several inflammation-modulating transcription factors during
RSV infection, including β-catenin of the Wnt-signaling pathway and c-JUN (JUN) and
Fos-Related Antigen 1 (FOSL1) of the AP1 complex. We further show that many of these
transcription factors are sensitive to bromodomain inhibition. Both the interaction with
AP1 and its sensitivity to bromodomain inhibition were confirmed in human small airway
epithelial cells (hSAECs). We conclude that RSV dynamically enriches the BRD4 interac-
tome for pro-inflammatory transcription factors, and that interactions are dependent on
BRD4’s bromodomains.

2. Materials And Methods
2.1. Reagents & Chemicals

The 4-hexylphenylazosulfonate (Azo) used in these experiments was synthesized
in-house as described previously [22,23]. The BRD4 selective BD competitive inhibitor,
ZL0454, was synthesized as previously described [19,20] and determined to be >99% pure.
All other reagents used for preparation of samples for MS analysis were ACS grade or
higher and purchased from MilliporeSigma unless other-wise noted.

2.2. Virus Preparation And Infection

The human RSV long strain was grown in Hep-2 cells and prepared as described [7,24].
The viral titer of purified RSV pools was varied from 8 to 9 log PFU/ml, determined by
a methylcellulose plaque assay [25,26]. Viral pools were aliquoted, quick-frozen on dry
ice-ethanol, and stored at −70 °C until used.
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2.3. Cell Culture And Treatment

A549 cells (human adenocarcinomic alveolar basal epithelial cells) were obtained from
ATCC and grown in 10% FBS/F12K media (Corning, Corning, NY, USA). Primary human
small airway epithelial cells (hSAECs) were immortalized using human Telomerase/CDK4
as previously described [27,28], and grown in SAGM small airway growth medium (Lonza,
Walkersville, MD, USA). All cells were incubated at 37 °C, 5% CO2 until confluence.

A549 cells were washed twice with Phosphate-buffered Saline (PBS) and exchanged
into serum-free F12K media prior to infection with RSV viral particles at a multiplicity
of infection (MOI) of 1. Infected A549 cells were exchanged into FBS-containing media
2 h post-infection, and harvested at 24 h post-infection. hSAECs were stimulated with
poly(I:C) (MilliporeSigma, Burlington, MA, USA, catalog no. P0913) by introducing the
ligand to SAGM media at a final concentration of 50 µg/mL [29]. hSAECs were harvested
four hours post-stimulation. The ZL0454 inhibitor was dissolved in DMSO and added to
the relevant cell culture media at a final concentration of 10 µM. The ZL0454 inhibitor was
added 18 h before infection/stimulation, and to the media during infection/stimulation.

2.4. Protein Extraction and BRD4 Immunoprecipitation

Cells were washed twice with cold PBS before lysis in 500 µL low ionic strength
immunoprecipitation buffer (50 mM NaCl, 10 mM HEPES, 1% IGEPAL, 10% Glycerol) with
1 mM Dithiothreitol (DTT) and 1% protease inhibitor cocktail (MilliporeSigma, Burlington,
MA, USA, catalog No. P8340) [30]. Lysates were sonicated three times for 10 s each time
(BRANSON Sonifier 150, setting 4), and centrifuged for 5 min at 10,000 g, 4 °C. Approx-
imately 3 mg of the supernatant was incubated overnight at 4 °C with 3 ug anti-BRD4
antibody (Cell Signaling, Danvers, MA, USA, catalog No. 13440) for BRD4 immunopre-
cipitation. A nonspecific isotype control antibody (LSBio, Seattle, WA, USA, catalog no.
LS-C149375) was used as a negative control. 30 µL of Protein A magnetic beads (Dynabeads,
Invitrogen, Waltham, MA, USA) were added, and the samples were incubated on a rotating
mixer for 1 h at 4 °C. The beads were then separated from the supernatant with a magnetic
stand. The beads were washed three times in low ionic strength immunoprecipitation
buffer, transferred to a new tube, and washed once more; samples meant for mass spec-
trometry were washed three additional times in 50 mM NaCl/10 mM HEPES buffer before
trypsin digestion.

2.5. Trypsin Digestion and Bottom-Up Sample Preparation

The magnetic beads were resuspended in 50 µL 0.2% 4-hexylphenylazosulfonate
(Azo)/50 mM Ammonium Bicarbonate and reduced with 10 mM DTT at 37 °C for 1 h.
Freshly prepared iodoacetamide solution (200 mM) was added to a final concentration of
20 mM, and the samples were incubated in the dark for 30 min. The beads were digested
with 1 µg Trypsin Gold (Promega, Madison, WI, USA) overnight at 37 °C and agitation
at 1000 rpm. The supernatants were collected, and the beads were further washed with
100 µL 0.1% Azo/50% Acetonitrile. The supernatants and washes were collected and dried
in a vacuum centrifuge to remove the acetonitrile, and resuspended in 1% formic acid.
The samples were then exposed to a mercury lamp (305 nm) for 5 min and centrifuged
to degrade the Azo and remove byproduct salts. Finally, the samples were desalted
using Pierce C18 tips (Thermo Scientific, Waltham, MA, USA) and resuspended in 0.1%
Formic Acid.

2.6. Label-Free Quantitative Proteomics Analysis

Desalted peptides (2 µL) were loaded and separated on an IonOptiks Aurora UHPLC
column with CSI fitting (Melbourne, Australia) at a flow rate of 0.4 µL/min and a linear
gradient increasing from 0% to 17% mobile phase B (0.1% formic acid in acetonitrile) (mobile
phase A: 0.1% formic acid in water) over 60 min; 17% to 25% from 60 to 90 min; 25% to 37%
B from 90 to 100 min; 37% to 85% B from 100 min to 110 min; and a 10 min hold at 85% B
before washing and returning to low organic conditions. The column directly integrated
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a nanoESI source for delivery of the samples to the mass spectrometer. MS spectra were
captured with a Bruker timsTOF Pro quadrupole-time of flight (Q-TOF) mass spectrometer
(Bruker Daltonics, Billerica, MA, USA) operating in PASEF mode, with 10 PASEF-MS/MS
scans acquired per cycle. Precursors with charge states ranging from 0 to 5 were selected
for fragmentation.

Protein identification and quantification were performed using MaxQuant
v1.6.17.0 [31,32], with LFQ normalization restricted within sample groups. Four biological
replicates with two technical replicates each were used for global label-free quantitation.
Differential protein abundance was established using the “ProStar” and “DAPAR” [33] R
packages for R version 4.0.3 [34]. In brief: protein abundance represented by MS signal
intensity was Log2-transformed, and proteins were filtered to remove contaminants, re-
verse identifications, and proteins not quantified in at least 6 out of 8 technical replicates
within at least one sample group. Log2 intensities were normalized to median of the global
data set, and missing values were imputed via ssla for partially observed values within
a condition, or set to the 2.5% quantile of observed intensities for observations that were
missing entirely within a condition. A limma test was utilized to evaluate statistical signif-
icance based on an FDR-adjusted p-value of less than 0.05. For enrichment of protein in
the BRD4 IP over the nonspecific IgG, a Log2 fold change of 1 or greater in either direction
was used. For comparison of the BRD4 IP between treatments and biological conditions,
the protein abundance was normalized to the abundance of BRD4 in the sample prior to
analysis with ProStar and DAPAR, and a Log2 fold change threshold of 0.6 was chosen.
P-values were FDR adjusted using the “p.adjust” function in base R (implementing the
Benjamini-Hochberg procedure). Tandem MS spectra were visualized and plotted using
Skyline [35] and the “ggplot2” [36] package for R version 4.0.3. Barplots for protein identifi-
cations were generated using the “ggpubr” [37] package for R version 4.0.3. Venn Diagrams
were generated using the “vennDiagram” [38] and “RColorBrewer” [39] packages for R
version 4.0.3.

2.7. Gene Ontology and String Analysis

Proteins identified in BRD4 IP samples but not in the nonspecific IgG pulldown were
submitted to the online PANTHER tool for biological process gene ontology analysis [40,41].
STRING database analysis [42] was conducted using the list of putative BRD4 interacting
proteins that simultaneously displayed (1) increased abundance on the BRD4 complex
post-RSV infection and (2) reduced abundance on the RSV-stimulated BRD4 complex post
treatment with the ZL0454 inhibitor. Molecular function gene ontology terms for these
proteins were obtained through STRING’s built-in analysis functions. For significance,
an FDR-adjusted p-value threshold was set at 0.05 for all analyses. GO Dot plots and UpSet
plots were generated using the “ggplot2” and “ggupset” [43] packages for R version 4.0.3.
Network images were generated in Cytoscape version 3.8.2 [44] using the “stringApp” [45]
and “clusterMaker2” [46] plugins.

2.8. Western Blotting

Beads containing immunoprecipitated BRD4 complexes were suspended in 2x Laemli
loading buffer and boiled at 95 °C for 5 min. The beads were then separated using a
magnetic stand, and the supernatents were loaded on a 4–15% Criterion TGX Precast
Protein Gel (Biorad, Hercules, CA, USA) for separation. Proteins were transferred to a
nitrocellulose membrane using a Trans-Blot Turbo Transfer System (Biorad, Hercules, CA,
USA) with a constant voltage of 25 V over 30 min. The membrane was blocked for 1 h
using 5% milk powder in Tris-buffered Saline with 0.1% Tween-20 (TBST) and incubated
overnight at 4 °C with anti-c-JUN (Cell Signaling, Danvers, MA, USA, catalog no. 9165)
or anti-BRD4 antibodies (Cell Signaling, Danvers, MA, USA, catalog no. 13440) diluted
1:1000 in 5% milk powder/TBST. The membrane was washed thoroughly and incubated in
VeriBlot IP Detection Reagent (Abcam, Cambridge, UK, catalog no. ab131366) diluted 1:200
in 5% milk powder/TBST. Imaging was performed via chemiluminescent detection using
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an Azure c500 gel imaging system (Azure Biosystems, Dublin, CA, USA), and densitometry
was performed using FIJI version 1.53c [47].

3. Results

To investigate the effects of RSV infection on the interactome of BRD4, we utilized
native immunoprecipitation and online PASEF-MS to quantify members of the BRD4
complex isolated from A549 human alveolar epithelial cells. A549 cells have been exten-
sively utilized for analysis of airway innate responses, maintain characteristics of type II
alveolar cells and are permissive for RSV infection [48,49]. A549 cells were infected with
sucrose-cushion purified RSV (long) at a multiplicity of infection (MOI) of 1 for a total
duration of 24 h before harvest. A subset of infected A549 cells were additionally treated
with the BRD4 inhibitor ZL0454 (10 µM) beginning 12 h before infection. ZL0454 has been
shown to effectively and specifically target the bromodomains of BRD4, with minimal
cross-reactivity with other bromodomain proteins [19,21]. Control cells were treated with
DMSO, and left uninfected. After 24 h of viral replication, all cells were harvested according
to the workflow presented in Figure 1. Three combinations of biological and treatment
conditions resulted: Control-DMSO (CD), RSV-DMSO (RD), and RSV-ZL0454 (RZ).
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Figure 1. Affinity Purification Mass Spectrometry (AP-MS) experimental workflow, including sample preparation and data
analysis. In brief, A549 cells were grown to confluence, treated with the bromodomain inhibitor ZL0454, and infected with
RSV. Cells were harvested in a non-denaturing lysis buffer and BRD4 complexes were immunoprecipitated with anti-BRD4
or Isotype Control (IgG) antibodies and protein A magnetic beads. After extensive washing, the isolated proteins were
digested on-bead using trypsin in a photocleavable surfactant (Azo) buffer [22,23]. After surfactant removal, the samples
were desalted using C18 tips and analyzed via online LC-PASEF-MS/MS. Peptide identification and protein quantification
were performed in MaxQuant. Differential abundance analysis was performed using DAPAR and Prostar.

3.1. Identification of Putative BRD4 Interactors

Proteins were isolated from harvested cells via immunoprecipitation with an antibody
specific to the long isoform of BRD4 (B). A nonspecific isotype control IgG (I) was used
as a negative control to screen out contaminants. Accordingly, downstream analyses
had 6 experimental groups to consider, resulting from the permutations of the biological
conditions (“CD”, “RD”, “RZ”) and pulldown type (BRD4/“B”, IgG/“I”). After tryptic
digestion, proteomic analysis, and removal of contaminants of reverse identifications, 2874
proteins were identified between all experimental groups. Notably fewer proteins were
identified in the ZL0454 treated samples than in other experimental groups (Figure 2a).
We speculate that many proteins and pulldown contaminants had diminished global
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abundance following the 42-h transcriptional blockade with ZL0454, resulting in fewer
identifications in these groups.

After filtering to require identification in at least 6 (of 8) technical replicates in one or
more biological conditions, this list was reduced to 2580 protein identifications. 1321 identi-
fications were common to all sample groups, with another 302 identifications missing only
in the “RZI” group, and 195 found in all but the “RZ” condition (Figure 2b). Relatively few
(188) proteins were identified solely in BRD4 pulldown samples (i.e., not in IgG pulldown
controls). These proteins were subjected to PANTHER gene ontology (GO) analysis, with an
emphasis on biological process (Figure 2c). The selected proteins were highly enriched for
transcriptional regulators and DNA binding proteins, which is consistent with the known
roles of BRD4 in Pol II—dependent transcriptional initiation [11,50].
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Figure 2. Identification of immunopurified proteins by online LC-PASEF-MS/MS. (A) Protein identifications per sample
group. Bar plot represents the mean of n = 8 biological and technical replicates. (B) UpSet plot of protein identifications
shared between sample groups. Protein IDs were filtered to require n≥ 6 identifications per sample group for representation.
(C) PANTHER Biological Process GO analysis of proteins identified solely in BRD4 IP groups. Dot size represents the
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3.2. Quantitative Enrichment of BRD4 Interactors

Of the 2580 consensus protein identifications, 1603 were quantifiable in 6 or more
technical replicates of at least one experimental group. Under these filters, sample groups
demonstrated clear separation in principal component analysis (Figure 3a) with a high
degree of Pearson correlation within sample groups (Figure 3b). This indicates good
reproducibility within groups, as well as markedly different protein abundance profiles
between them.

Proteins were evaluated as potential BRD4 interactors based on their relative enrich-
ment in each BRD4 IP over their abundance in the matching IgG control group. (Figure 4).
Using a Log2 fold change threshold of 1 and an adjusted p-value threshold of 0.05, we
identified 230 proteins that were significantly enriched in the Control-DMSO compari-
son, 186 proteins that were significantly enriched in the RSV-DMSO comparison, and
416 proteins that were significantly enriched in the RSV-ZL0454 comparison. We speculate
that the increased number of enriched proteins in the RSV-ZL condition stems from a
reduced background protein abundance following ZL0454 transcriptional blockade. In sup-
port of this conclusion, we note that many proteins quantified in IgG pulldowns display
differential abundance between biological conditions. Between all three comparisons,
557 unique proteins were significantly enriched and were categorized as potential inter-
actors. Among these proteins, we identify ARID1A, and multiple subunits of the Pol II
and Mediator complexes—all known interactors with BRD4 [30]. Additionally, we identify
multiple transcription factors, ATPases, splicing factors, ribosomal proteins, and related eu-
karyotic initiation factors (Figure 4d). These enriched proteins are suggestive for additional
roles of the BRD4 complex in mRNA processing and translation.

We note that the canonical BRD4 interactors, CDK9 and NF-κB RelA, are not flagged as
potential interactors in this analysis, despite the fact that we identified both proteins during
our experiment. In the case of RelA, we observed a high abundance of the protein in both
the “RDI” and “RDB” sample groups, and accordingly enrichment could not be established
(Supplementary Material Figure S1a). This likely reflects an increase in the protein’s global
abundance that was captured on the nonspecific IP. CDK9, in contrast, was not reliably
quantified (fewer than 6 intensity values in any given sample group) and thus was omitted
from further analysis. Interestingly, we were able to reliably identify and quantify the
enrichment of Cyclin-dependent Kinase 12 (CDK12) (Figure 5d & Supplementary Material
Figure S2d), which functions in a highly similar manner to CDK9 [51,52].

3.3. RSV-Induced BRD4 Protein Interactions

Once we had identified these 557 potential BRD4 interactors, we proceeded to examine
how RSV infection altered their relative abundance within the BRD4 complex. To correct
for differences in BRD4 abundance by treatment, protein abundances in the pulldowns
were normalized to that of BRD4. The resulting Log2(Protein/BRD4) ratios were then
compared between the biological conditions to identify differential membership in the
BRD4 complex. For this purpose, an absolute Log2 fold change threshold of 0.6 (corre-
sponding to a positive 1.5 fold change in the usual scale) and an FDR-adjusted p-value
threshold of 0.05 were set. Under these criteria, RSV infection resulted in a significant
increase to the Log2(Protein/BRD4) ratio of 272 proteins (Figure 5a); 174 of these proteins
displayed an absolute 2-fold change (Log2 fold change > 1) in abundance or greater. In a
manner similar to the list of putative interactors, we found that RSV-infection signifi-
cantly increased the relative abundance of transcription factors and coactivators, ATPases,
splicing factors, cytoskeleton binding proteins, and numerous proteins associated with
translational machinery (Supplementary Material Figure S3). In particular, we highlight
the recruitment of multiple members of the AP1 transcription factor complex (i.e., c-JUN,
FOSL1), as well as several associated proteins (e.g., MAP4K4, NACA) (Figure 6a). AP1 is
a ubiquitous transcription factor that participates in the activation of pro-inflammatory
cytokines [53–55]. Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) and
Nascent polypeptide associated complex subunit alpha (NACA) also contribute to AP1 via
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activation of the Jun N-terminal kinase [56] and stabilization of c-JUN homodimers [57], re-
spectively. This interaction suggests that BRD4 and AP1 cooperate to initiate transcription
of pro-inflammatory cytokines.

In contrast to the proteins with increased relative abundance, only 35 proteins dis-
played a significant reduction (Log2 fold change < −0.6) in membership to the BRD4
complex post RSV infection. These proteins were enriched for components of the nu-
clear pore complex and mRNA export machinery, as well as core cell cycle regulators
(Supplementary Material Figure S4).
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Figure 6. BRD4 recruits the AP1 transcription factor complex during RSV-infection. (A) Protein abundance boxplots of
AP1 complex members and related proteins. Boxplots represent n = 4 biological replicates per experimental group. Each
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3.4. Inhibitor-Sensitive BRD4 Interactors

The effect of bromodomain inhibition on the RSV-stimulated BRD4 complex was
similarly determined by comparing the BRD4-normalized “RZB” and “RDB” groups
(Figure 5b). In this contrast, we observed 81 proteins that significantly increased their
membership in the BRD4 complex, as well as 160 that significantly decreased their relative
abundance. 51 of these proteins displayed a Log2 fold change exceeding 1, and 103 dis-
played a Log2 fold change less than −1. Interestingly, we observed that treating A549 cells
with 10 µM ZL0454 resulted in a reversal to many RSV-stimulated changes (Figure 5c);
95 proteins that had significantly increased abundance on the BRD4 complex following
RSV-infection were significantly reduced following ZL0454 treatment. Six proteins dis-
played the opposite trend, with reduced abundance in the RSV-stimulated complex that
was restored by bromodomain inhibition. This subset of differentially represented proteins
is highly enriched in transcriptional coactivators, nuclear pore constituents, and mRNA
splicing factors (Figure 7). This includes the AP1 complex member c-JUN, as well as the
associated protein NACA. Notably, FOSL1 and MAP4K4 relative abundances were not
significantly reduced by bromodomain inhibition, and c-JUN relative abundance remained
above baseline, suggesting that BRD4 may interact with both AP1 c-JUN homodimers
and AP1 JUN/FOSL1 heterodimers. CDK12 was likewise unaffected by bromodomain
inhibition, which is consistent with the interaction mechanism of the related CDK9 protein,
which interacts with BRD4 via its C-terminal domain rather than its bromodomains [58].

We also observe that BRD4 interacts with members of the E-cadherin (e.g.,
β-catenin/CTTNB1, γ-Catenin/JUP) complex in an RSV- and bromodomain inhibitor-
specific manner. This complex is enriched in cell-cell junctions and regulates gene expres-
sion through direct and indirect mechanisms. β-catenin is known to indirectly interact
with NF-κB RelA in a tissue and stimulus-specific manner that can either upregulate or
downregulate NF-κB signalling. Similarly, β-catenin has been observed to interact with
AP1 [59], and AP1 is known to cooperate with RelA [60]. This suggests that NF-κB, AP1,
and Wnt signalling converge on BRD4 to regulate gene expression, and that bromodomain
inhibition can interrupt this process.
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3.5. Validation of the BRD4/AP1 Interaction

To confirm the discovered interaction with AP1 and its sensitivity to the small molecule
bromodomain inhibitor ZL0454, we immunoprecipitated BRD4 complexes from human
small airway epithelial cells (hSAECs). hSAECs are telomerase-immortalized human small
airway cells that maintain stable epithelial morphology in monoculture, and reproduce
both genomic and proteomic signatures of primary cells without early senescence [4].
hSAECs were treated with 10 µM ZL0454, and stimulated with the specific Toll-like Recep-
tor 3 (TLR3) ligand poly(I:C) to induce inflammation similar to that of RSV infection [61,62].
Detection via western blot and a specific antibody for c-JUN confirmed that inflammation
induces an interaction between BRD4 and the AP1 subunit c-JUN (Figure 6b). This experi-
mental result also confirmed that the BRD4/c-JUN interaction could be partially disrupted
by bromodomain inhibition with ZL0454.
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4. Discussion

Respiratory syncytial virus is a common human pathogen and the single largest cause
of pediatric hospitalization in the united states [6]. As a consequence of RSV replication
in the lungs and airways, innate inflammation triggered in the airway epithelium plays
a significant role in the progress and resolution of the disease. The innate inflammatory
response proceeds largely through the actions of NF-κB [8] and IRF [7] transcription factors,
which converge on BRD4, an epigenetic scaffold that interacts with transcription factors and
cyclin-dependent kinases to enable Pol II-dependent transcriptional initiation. Previous
works have identified over 250 high confidence members of the basal BRD4 interactome [30],
including members of the SWI/SNF, DNA-directed Pol II complex, ribonucleoprotein, AP-2
adaptor, and spliceosomal complexes. Building on that foundation, we have utilized high-
resolution, online PASEF-MS to identify 557 interactors over three biological conditions
in A549 cells, and 272 interactors that are enriched on the RSV-stimulated BRD4 complex.
These interactions are consistent with the previous body of work, and demonstrate that
viral infection reorders the interactome of BRD4, enriching it for transcription and splicing
factors, as well as kinases, ATPases, and translational machinery. We also demonstrate
that a significant proportion of these interactions are sensitive to bromodomain inhibition,
indicating that they are facilitated either directly or through downstream feedback signaling
by BRD4’s acetyl-lysine binding activity. STRING network analysis and molecular function
GO enrichment (Figure 7) indicate that these proteins are highly associated with nuclear
pore function, RNA binding, and transcriptional coactivator activity.

4.1. Online PASEF-MS as a High-Resolution Tool for Dynamic Interactome Analysis

Mass spectrometry-based shotgun proteomics has been widely applied for the discov-
ery of protein interactions via affinity purification samples [63]. While often considered the
gold-standard for modern interactome studies, Affinity Purification Mass Spectrometry
(AP-MS) often fails to identify low abundance interaction partners [64], despite the phys-
iological importance that they can play. A variety of strategies have been implemented
to improve quantitation of low-abundance peptides [65,66], but all come with trade-offs
in the experimental workflow or the efficiency of protein identifications. In this study,
we utilized online PASEF-MS [18], which implements trapped ion mobility spectrometry
(TIMS) to simultaneously exclude singly-charged contaminant ions from MS acquisition,
reduce chimeric spectra, separate isobaric precursors, and focus ions to improve sensitivity
and throughput. This approach enabled us to deeply examine the interactome of endoge-
nous BRD4, despite the low relative abundance of many interactors and the low cellular
abundance of BRD4 itself.

Over three biological conditions, we quantified over 1600 proteins and validated 557
(35%) as potential BRD4 interactors. These proteins were identified with high-quality
tandem mass spectra, and quantified based on technical duplicates of 4 biological replicates
per biological condition and per antibody. Given our data’s consistency with previous
works [30,67] and our independent validation of the BRD4/AP1 interaction in hSAECs,
we are confident that the data presented is of high quality, and that our conclusions on
RSV-stimulated and bromodomain-dependent interactions are valid.

4.2. BRD4 Recruits Inflammation-Modulating Transcription Factors during RSV Infection

During the process of viral infection, NF-κB RelA traffics to the nucleus and interacts
with BRD4, CDK9 and other components of the positive transcription elongation factor (p-
TEFb) [7]. The resulting complex phosphorylates Pol II, releasing it from a paused state on
the promoters of pro-inflammatory and anti-viral genes [14]. This process results in a rapid
and robust innate immune response which helps to reduce viral proliferation and recruit
the cellular immune response. However, many NF-κB dependent genes experience delayed
activation in response to inflammatory stimulus, and other genes with NF-κB binding sites
remain inactive throughout the process [68–70], indicating complex transcriptional and
epigenetic regulation. It is currently unclear how BRD4 circumvents these barriers.
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To address this information gap, we conducted what is, to our knowledge, the first
study to examine BRD4’s dynamic interactome in an unbiased manner. Previous studies
have either focused on the basal interactome [30,67,71], or utilized highly-targeted assays
to study individual interactions [72,73], such as the interaction between BRD4 and RelA [7].
This unbiased approach enabled us to discover novel, RSV-induced BRD4 interactions with
transcription factors from multiple pathways. These included the AP1 transcription factor
(e.g., c-JUN, FOSL1), and both β-catenin and Junction Plakoglobin, of the Wnt-signalling
pathway. Other transcription factors are also enriched in this fashion, including DEAD-
Box Helicase 3 (DDX3X), Metadherin (MTDH), and multiple members of the mediator
complex (e.g., MED1, MED4, MED13, MED31). Remarkably, all of these proteins either
modulate NF-κB [74–77] or directly facilitate the expression of pro-inflammatory cytokines
and antiviral genes [55].

AP1 is a ubiquitous family of transcription factors composed of JUN-family homod-
imers and JUN/FOS-family heterodimers [78]. Multiple paralogs of both JUN and FOS
exist and contribute to significant diversity in the effect and mechanisms of AP1 complexes.
In the context of viral and TLR3-dependent inflammation, AP1 activates expression of nu-
merous pro-inflammatory cytokines, including IL-6, IL-8, CD38, and TNF [55]. These genes
are also highly induced via NF-κB, and interestingly, many NF-κB dependent genes also
present AP1 binding sites and require the AP1 subunit c-JUN for efficient transcription [79].

Wnt-signaling through β-catenin is also associated with inflammation, but in a more
nuanced fashion; Wnt/β-catenin can either repress or co-activate NF-κB-dependent in-
flammation via interactions with RelA in a cell-type and stimulus specific manner [80,81].
In some cases, NF-κB may serve as a coactivator for genes under the control of the Wnt
pathway and drive aberrant expression of stem cell signature genes, which is observed to
contribute to tumorigenesis [82]. Notably, interactions between β-catenin and RelA have
been observed to be indirect; these two proteins did not physically associate in the absence
of cell extracts [83]. Our results suggest that BRD4 may be a mediator of this association.

Finally, interactions have also been observed between β-catenin and AP1, and β-
catenin binding sites are often enriched with AP1 binding sites [84,85]. c-JUN was reported
to physically associate with β-catenin via interfaces at its N-terminus and DNA-binding
domain [59]. Interestingly, this interaction promoted Cyclin D1 and c-Myc gene expression
in a manner completely independent of AP1 binding sites. Altogether, our data suggests
that the BRD4 complex integrates signals from the NF-κB, AP1, and Wnt pathways during
RSV-infection and facilitates crosstalk between them.

4.3. RSV-Induced Interactions Are Bromodomain-Dependent

Small molecule bromodomain-and-extra-terminal (BET) inhibitors competitively oc-
cupy the bromodomains of BRD4 and related proteins, and have been used extensively
over the last decade to disrupt bromodomain mediated transcriptional activity and probe
related physiology [86,87]. In the context of airway inflammation, BET inhibitors have
been demonstrated to block BRD4-mediated expression of pro-inflammatory cytokines
and interferons, while preventing downstream airway remodeling via the epithelial-to-
mesenchymal transition (EMT) [20]. Classically, BRD4 inhibitors suffer from low-specificity
and dose-limiting toxicity [87]. In this study, we utilize the ZL0454 BET inhibitor dis-
covered by our group [19]. ZL0454 was developed using structure-based drug design
to identify chemistries that occupy the acetyl-lysine binding pocket of BRD4. Of these
inhibitors, ZL0454 shows high selectivity for both bromodomains of BRD4. ZL0454 dis-
places acetylated lysine side chains from the bromodomain (BD)-1 and -2 of BRD4 with an
IC50 of approximately 50 nM using time-resolved fluorescence resonance energy transfer
(TR-FRET) assays. Comparing its selectivity, ZL0454 binds to BRD4 16-20 times higher
than the BDs of closely related BRD-2, 3 and -T. In contrast to nonselective BET-isoform
inhibitors, ZL0454 does not produce detectable toxicity in cell culture or in vivo [19]. Con-
sequently, ZL0454 is a unique probe of acetylated lysine binding, enabling us to probe
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the bromodomain-dependence of numerous RSV-induced BRD4 interactions and provide
insight into the mechanisms of BRD4-mediated innate inflammation.

Of the 227 BRD4 interactors that were recruited to the BRD4 complex during RSV-
infection, we observe that 95 ( 42%) are disrupted to some degree by treatment with ZL0454,
including most of the transcription factors described in the earlier section (e.g., c-JUN,
CTNNB1, JUP, DDX3X, MTDH). In particular, we note that the recruitment of β-catenin and
γ-catenin, as well as that of the mediator complex, is completely abrogated by competition
for the acetyl lysine binding pocket of the BRD4 bromodomains. Considered together
with the prominent role that β- and γ-catenin play in the EMT [88], this suggests that BET
inhibitors may block airway remodeling by interfering with BRD4-mediated Wnt-signaling.

In addition to the catenins, we also observe partial depletion of members of the
AP1 complex. In the case of c-JUN, we observe a nearly 3-fold reduction in response
to bromodomain inhibition. Likewise, NACA—which is reported to stabilize c-JUN ho-
modimers [57]—is completely displaced from the BRD4 complex by ZL0454. Despite
this finding, we observed no reduction to the AP1 complex member FOSL1, with which
c-JUN can alternatively form a heterodimer [78]. Further investigation will be required to
confirm the exact nature of the BRD4/AP1 interaction, but these results suggest that BRD4
may recruit both AP1 homodimers and AP1 heterodimers via distinct interaction surfaces
during RSV-infection.

4.4. Non-Transcriptional Roles of Dynamic BRD4 Interactors

Our discussion has focused primarily on RSV-induced protein interactors with tran-
scriptional activity, but we also observe RSV-induced interactors with roles in other contexts,
such as mRNA splicing (e.g., SF1, SF3A3, SF3B1, AKAP17A) [89,90], translation (e.g., RPS17,
EIF3D, EIF5B) [91,92], protein folding (e.g., CCT5, CCT6A, CCT8) [93], and endoplasmic
reticulum (ER)-targeting (e.g., SEC61A1, SEC61B) [94]. That is, we observe that BRD4
associates with protein complexes representing downstream elements of the central dogma
of molecular biology. This, in turn, opens the possibility that BRD4 may funnel the products
of activated genes into downstream processing complexes, thereby facilitating accelerated
alternative splicing and translation, before transport to the ER for additional processing
and secretion. In support of this, we note that alternative splicing can often be coupled
to transcription [95], and splicing factors have been observed to interact with ribosomes
and regulate translation [96,97]. While intriguing, BRD4’s role in these contexts has not
been explored in the literature. Our data will therefore serve as a useful starting point for
investigation into the potential post-transcriptional roles of BRD4.

5. Conclusions

In summary, using an unbiased affinity purification-mass spectrometry approach we
identify dynamic, bromodomain-dependent changes to the BRD4 interactome in response
to RSV infection. Taking advantage of a high-resolution mass spectrometer featuring a
trapped ion mobility spectrometer front-end, we deeply interrogate the BRD4 interactome,
identifying over 500 potential BRD4 interactors and over 270 RSV-induced changes to the
interactome. This data will provide new hypotheses for understanding the pleiotropic role
of BRD4 in the innate immune response and in viral infection.
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