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The role of autophagic kinases
in regulation of axonal function
Sarah H. Berth*, Dominick J. Rich and Thomas E. Lloyd

Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore,
MD, United States

Autophagy is an essential process for maintaining cellular homeostasis.

Highlighting the importance of proper functioning of autophagy in neurons,

disruption of autophagy is a common finding in neurodegenerative diseases.

In recent years, evidence has emerged for the role of autophagy in

regulating critical axonal functions. In this review, we discuss kinase regulation

of autophagy in neurons, and provide an overview of how autophagic

kinases regulate axonal processes, including axonal transport and axonal

degeneration and regeneration. We also examine mechanisms for disruption

of this process leading to neurodegeneration, focusing on the role of TBK1 in

pathogenesis of Amyotrophic Lateral Sclerosis.
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Introduction

Autophagy is a cellular homeostatic process in which proteins, organelles, and
cellular debris are sequestered, packaged, and delivered to the lysosome for degradation
(Maday, 2016; Malik et al., 2019). This recycling process is essential for cell growth,
survival, and development, as it regenerates raw materials including carbohydrates,
lipids, and proteins, for use in a variety of metabolic processes (Sridharan et al., 2011;
Xiang et al., 2020).

Autophagy occurs in three distinct forms: chaperone mediated autophagy (CMA),
microautophagy, and macroautophagy. Macroautophagy is the most well-studied of the
three mechanistically distinct forms of autophagy, and its role in neurodegeneration has
been widely explored. Macroautophagy is characterized by the formation of a double-
membrane structure surrounding cytosolic cargoes (Figure 1A), and the maturation
and transport of the autophagosome to the lysosome for degradation of its internal
components (Glick et al., 2010; Wang et al., 2018). Macroautophagy can be further
subdivided into organelle-specific processes including endoplasmic reticulum (ER-
phagy), mitochondria (mitophagy), lysosomes (lysophagy) and nuclei (nucleophagy)
(Heo et al., 2015; Malik et al., 2019). This review will focus on macroautophagy (hereafter
referred to as autophagy) as the primary process involved in maintenance of cellular
homeostasis in neuronal populations (Fleming et al., 2022).

Neurons, unlike most cell types, are post-mitotic and thus cannot dilute
toxic material through cell division. Therefore, autophagy is particularly important
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for survival of neurons that must last the organism’s lifetime, and
autophagy has been observed to occur constitutively in neurons
(Maday et al., 2012; Maday and Holzbaur, 2014). This baseline
level of autophagy occurs in a highly compartmentalized
manner, with autophagosome biogenesis in the distal axon
near synapses, maturation as the autophagosome is transported
retrogradely toward the soma, and eventual fusion with the
lysosome and degradation of its contents occurring at or
near the cell body (Yue, 2007; Maday and Holzbaur, 2016).
Potential sources of membrane for autophagosome biogenesis
include endoplasmic reticulum (ER) (Hayashi-Nishino et al.,
2009; Yla-Anttila et al., 2009; Hamasaki et al., 2013; Zhao
et al., 2018), mitochondria (Hailey et al., 2010) and plasma
membrane (Ravikumar et al., 2010; Nascimbeni et al., 2017).
Of these, ER is the likely source of membranes in distal
axons of neurons, as autophagosome formation has been
observed at DFCP1-positive ER subdomains in the distal axon
(Maday and Holzbaur, 2014). Axonal autophagy and synaptic
function are highly interlinked. For example, Endophilin-
A and Synaptojanin, proteins important for synaptic vesicle
endocytosis, can regulate autophagy (George et al., 2016; Soukup
et al., 2016; Vanhauwaert et al., 2017), while the presynaptic
scaffolding protein Bassoon inhibits autophagic biogenesis
(Okerlund et al., 2017). Synaptic activity regulates autophagy via
modification of the presynaptic location of the core autophagy
protein Atg9 (Yang et al., 2022). On the other hand, autophagy
regulates synaptic activity, as impaired autophagy causes
axonal ER accumulation and increased neurotransmission
(Kuijpers et al., 2021). During autophagosome maturation and
retrograde transport along the axon, autophagosomes switch
from bidirectional to primarily retrograde movement along
axons, develop increased amounts of cathepsin and undergo
acidification (Katsumata et al., 2010; Maday et al., 2012). Almost
all degradation occurs within mature lysosomes near the soma
(Maday and Holzbaur, 2016; Cheng et al., 2018). In rodent
models, it is long established that suppression of this neuronal
autophagy is sufficient to induce abnormal protein aggregation
and eventual neurodegeneration, underscoring the important
role of autophagy in neuronal homeostasis and survival (Hara
et al., 2006; Komatsu et al., 2006).

Autophagic kinase involvement

In many cell types, autophagy is a tightly regulated
degradative mechanism utilized primarily during periods of
cellular starvation (Kim et al., 2002; Komatsu et al., 2005).
Autophagic signaling and initiation require precise coordination
of several autophagic kinases and adaptor molecules capable of
sensing such changes in a cellular environment. In nutrient-
rich conditions, autophagy is normally inhibited. However,
in periods of cellular starvation, autophagy is activated
to begin recycling of intracellular materials for metabolic

FIGURE 1

Role of autophagic kinases in regulating autophagy. (A) The
autophagic kinase AMPK phosphorylates ULK1 to activate
autophagy, while mTORC1 phosphorylates ULK1 to inhibit
autophagy. ULK1 then phosphorylates Beclin-1 in the VPS34
complex to activate VPS34. VPS34 phosphorylates
phosphatidylinositol to regulate the growing autophagosome
membrane. The kinase LRRK2 phosphorylates Endophilin-A,
which promotes the formation of autophagosome membranes.
LRRK2 also phosphorylates Beclin-1 to inhibit the VSP34
complex. (B) TBK1 regulates initiation of autophagy via
phosphorylation of several autophagic proteins. TBK1
phosphorylates SMCR8, which exists in a complex with WDR41
and C9orf72 and regulates autophagic flux. TBK1
phosphorylation of Rab7A targets damaged mitochondria to
autophagosomal membranes. TBK1 also directly phosphorylates
GABARAP and LC3, which prevents premature removal of
GABARAP and LC3 from autophagosomal membranes. TBK1
enhances the targeting of ubiquinated proteins to the
phagophore via phosphorylation of the adaptor proteins OPTN
and p62. Created in BioRender.com.

availability. This nutrient-dependent regulation is facilitated by
two critical kinases that act as master sensors for autophagy:
the mammalian target of Rapamycin (mTOR) and adenosine
monophosphate activated protein kinase (AMPK). Under
nutrient rich conditions, mTOR complexes with Raptor and
mammalian lethal with Sec13 protein 8 (mLST8) to form
the mTOR Complex 1 (mTORC1) (Hara et al., 2002; Kim
et al., 2002). mTORC1 acts as a master sensor for autophagy

Frontiers in Cellular Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fncel.2022.996593
http://BioRender.com
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-16-996593 September 19, 2022 Time: 15:25 # 3

Berth et al. 10.3389/fncel.2022.996593

initiation, most notably through inhibition of Unc-51-like
Kinase 1 (ULK1) via phosphorylation (Figure 1A). ULK1,
the mammalian ortholog of yeast Atg1, is a Serine/Threonine
Kinase that plays a critical role in autophagy initiation by
forming complexes with FIP200, ATG13, and ATG101 (Chen
et al., 2014; Xiang et al., 2020). mTORC1 binds to this
ULK1 complex to phosphorylate ULK1 Ser 757, inhibiting
this complex and preventing ULK1-induced autophagosome
biogenesis (Kim et al., 2011; Saxton and Sabatini, 2017). TORC1
can phosphorylate multiple Ser sites on Atg13, inhibiting
its ability to bind to ULK1 and form the ULK1 complex
(Kamada et al., 2010). Conversely, when the cell lacks amino
acid substrates and other necessary nutrients, inactivation of
mTORC1 allows dephosphorylation and activation of the ULK1
complex. The ULK1 complex then localizes to the isolation
membrane where its kinase activity initiates formation of the
early phagophore (Ganley et al., 2009; Hosokawa et al., 2009).

AMPK plays an opposite but similarly critical role in
sensing cellular metabolism and energy levels to tightly regulate
autophagy initiation. In low energy conditions where detectable
levels of cellular cyclic adenosine monophosphate (cAMP) drop,
AMPK promotes autophagy by directly phosphorylating ULK1
(Figure 1A) at its Serine 313 and Serine 777 phosphorylation
sites (Kim et al., 2011). This phosphorylation promotes
formation of the ULK1 complex and initiates autophagy
cascades (Tong et al., 2020).

The activated ULK1 complex has a number of downstream
targets, some of which enable subsequent phagophore
formation. ULK1 directly phosphorylates the downstream
VPS34 complex to enable phagophore formation (Figure 1A).
Vacuolar protein sorting 34 (VPS34) is the sole mammalian class
III phosphoinositide 3-kinase (PI3K) critical for lipidation of the
newly forming phagophore. VPS34 lipid kinase phosphorylates
phosphatidylinositol to produce phosphatidylinositol 3-
phosphate, a constituent of the autophagosome membrane
(Kihara et al., 2001; Obara et al., 2006). In vitro studies
have shown that either nutrient deprivation or inhibition of
mTORC1 activity by Torin-1, an mTOR catalytic inhibitor,
are sufficient to inhibit ULK1 Ser757 site phosphorylation
and increase downstream phosphorylation of Beclin-1 Ser14,
indicating that disinhibition of ULK1 allows phosphorylation
of its downstream targets (Russell et al., 2013). Further, Atg14L
was observed to bind to Beclin-1 and increase phosphorylation
by ULK1, indicating that Atg14L is also a critical component of
this complex (Russell et al., 2013). Altogether, this indicates that
during autophagy induction, ULK1 phosphorylates downstream
Atg14L-bound Beclin-1, which complexes with VPS34 to form
the PI3K III complex, which can then be localized to the
growing phagophore to phosphorylate phosphatidylinositol
to produce phosphatidylinositol 3-phosphate for the initial
autophagosome membrane (Figure 1A).

Studies of autophagosome biogenesis in Drosophila motor
neurons have shown that Endophilin-A, known to be required
for endocytosis at synapses, can act as a regulator of autophagy

by promoting the formation of curved membranes and
recruiting autophagy machinery and adaptor proteins to the
newly formed phagophore (Soukup et al., 2016). Leucine-
rich repeat kinase 2 (LRRK2) regulates phosphorylation of
Endophilin-A (Figure 1A) at the Ser58 site, thus controlling
phagophore membrane formation and regulating autophagy
activation. Additionally, LRRK2 phosphorylates the Serine 295
phosphorylation site on Beclin-1 (Figure 1A), inhibiting Beclin-
1 (and thus the VPS34 complex), further supporting the role
of LRRK2 as an important inhibitory regulator of autophagy
initiation (Manzoni et al., 2018; Takagawa et al., 2018).

Tank Binding Kinase 1 (TBK1) is a Serine/Threonine
Kinase in the IKK Kinase family. TBK1 regulates diverse
cellular processes including oncogenesis, neuroinflammation,
lipid metabolism, and autophagy. TBK1 plays a major role in
autophagy and mitophagy, specifically through phosphorylation
of autophagy adaptor proteins for efficient cargo recruitment
to the nascent autophagosome. TBK1 activation occurs via
a multistep process involving K63-linked polyubiquitination
of the Lys30 and Lys401 residues of TBK1, followed by
phosphorylation of Ser373, inducing a conformational change
in the Ser/Thr Kinase Domain (Tu et al., 2013; Oakes et al.,
2017). Activated TBK1 acts as a positive regulator of autophagic
adaptor proteins (Figure 1), including Sequestosome 1
(p62/SQSTM1) and Optineurin (OPTN). Activated TBK1
can phosphorylate Ser403 on the autophagy adaptor protein
p62/SQSTM1, coordinating its recruitment to the autophagic
machinery and initiating its role in autophagic clearance and
recruitment of OPTN to mitochondria to initiate mitophagy
(Pilli et al., 2012; Matsumoto et al., 2015). TBK1 can also
directly phosphorylate Ser72 on RAB7A (Figure 1B), a late
endosome protein that is recruited to depolarized mitochondria
to promote mitophagy through the PINK1-Parkin pathway
(Heo et al., 2018). TBK1 can also affect autophagy via regulation
of the ULK1 complex (Vargas et al., 2019) or via direct
phosphorylation of the autophagosome membrane components
LC3 and GABARAP-L2 (Herhaus et al., 2020) (Figure 1B).
Finally, TBK1 phosphorylates SMCR8, which exists in a
complex with WDR41 and C9orf72, to regulate autophagic flux
(Sellier et al., 2016; Sullivan et al., 2016). As described below,
recent studies have implicated TBK1 in neurodegeneration,
though the precise mechanisms remain unclear (Figure 1B).

Regulation of axonal function by
autophagic kinases

Autophagy biogenesis and axonal
transport in neurons

Axonal transport (AT) is a highly regulated process that
utilizes the kinesin and dynein ATPase motor proteins to
deliver organelles along microtubule tracks. Growing evidence
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suggests that autophagosomal maturation and AT are linked
(Maday, 2016). AT is highly regulated by phosphotransferases
(Brady and Morfini, 2017), and in fact, several autophagic
kinases regulate AT. For example, in Drosophila, the ortholog of
ULK1 (atg1) regulates anterograde synaptic vesicle AT through
phosphorylation of the kinesin heavy chain adaptor UNC-
76 (Toda et al., 2008). Similarly, the LRRK2 kinase regulates
autophagosome AT. Hyperactivation of LRRK2 phosphoactivity
led to a specific decrease in AT of autophagosomes and
impairment of autophagosomal maturation (Boecker et al.,
2021), while inhibition of LRRK2 led to increased AT of alpha-
synuclein (Brzozowski et al., 2021). Additionally, a role for
VPS34 in mediating the attachment between ankyrin-B and the
p62 subunit of dynactin for AT has been proposed. Knocking
down VPS34 caused a reduction in VPS34 in neuronal processes
and led to axonal swellings and disruption of AT of multiple
organelles (Lorenzo et al., 2014). Thus, not only is autophagy
tightly linked to AT, but autophagic kinases themselves regulate
AT in specific ways.

Regulation of axonal ER-phagy and
mitophagy

Recent studies have provided key insights that both ER-
phagy and mitophagy are highly regulated processes within
axons. Inhibition of VPS34 led to accumulation of tubular ER
in axons and activation of ER-phagy, indicating a role for VPS34
in regulating axonal ER-phagy (Kuijpers et al., 2021). Similarly,
selective damage of mitochondria led to the recruitment
of autophagosomes to damaged mitochondria within axons
(Ashrafi et al., 2014). In a neuronal ischemia model, damaged
axonal mitochondria had increased retrograde transport to the
soma for mitophagy (Zheng et al., 2019). Indeed, mitophagy in
neurons has been primarily located in the soma in Drosophila
models (Devireddy et al., 2015; Sung et al., 2016) and in in vitro
neuronal cultures (Evans and Holzbaur, 2020). It is likely that
initial activation of mitophagy of damaged mitochondria occurs
locally in the axon, after which damaged mitochondria are
transported to the soma to complete mitophagy. As detailed
above, the autophagic kinase TBK1 regulates mitophagy via
phosphorylation of p62/SQSTM1 and Rab7A (Matsumoto et al.,
2015; Heo et al., 2018). Thus, autophagic kinases specifically
regulate axonal ER-phagy and mitophagy.

Regulation of axonal degeneration and
regeneration

Autophagic kinases play an essential role in regulation
of axonal degeneration and regeneration. ULK1 negatively
regulates axonal growth and regeneration, likely through
activation of autophagy. In a siRNA forward genetic screen,

knocking down ULK1 increased neurite outgrowth and
enhanced neurite regeneration after transection (Loh et al.,
2008). Additionally, axonal injury led to an upregulation of
ULK1 as well as other autophagy proteins within injured axons
(Ribas et al., 2015). In fact, expressing a dominant negative
ULK1 in rats or treatment with a ULK1 inhibitor showed
reduced autophagy and axonal degeneration in response to
axotomy (Vahsen et al., 2020). Thus, ULK1 likely inhibits axonal
outgrowth via activating autophagy to regulate turnover of
membrane constituents.

On the other hand, other autophagic kinases promote
axonal regeneration. The autophagic kinase VPS34 may
positively regulate axonal function, as conditional knockout
of VPS34 in mouse sensory neurons led to marked axonal
degeneration in large-diameter axons (Zhou et al., 2010).
The autophagic kinase mTOR has also been implicated in
axonal regeneration. Activation of mTOR through inhibition
of its upstream negative regulators PTEN or TSC1 enhanced
axon regeneration in retinal ganglion cells (Park et al., 2008).
Intriguingly, multiple mechanisms have been shown for mTOR
regulation of axonal regeneration. First, in addition to regulating
autophagy via inhibiting ULK1, mTORC1 also promotes local
translation in response to axonal injury via phosphorylation of
S6K and 4E-BP (Brunn et al., 1997; Laplante and Sabatini, 2012).
In the peripheral nervous system, injured sensory axons locally
upregulate mTOR (Abe et al., 2010), and inhibition of mTOR
activity led to inhibition of local axon protein synthesis and
reduced neuronal survival (Terenzio et al., 2018). This indicates
that mTOR mRNA is present in the axon to rapidly upregulate
local protein translation in response to axonal injury (Terenzio
et al., 2018). Genetic knock down of mTOR and Raptor,
components of mTORC1, suppressed axonal regeneration in
dorsal root ganglion neurons (Chen et al., 2016). Raptor
deletion reduced Stat3 signaling, a known regulator of axonal
regeneration (Bareyre et al., 2011), indicating that another role
for mTOR in promoting axonal regeneration may be through
activation of Stat3 (Chen et al., 2016). Thus, autophagic kinases
utilize distinct pathways to regulate axonal degeneration and
regeneration.

Regulation of the presynaptic terminal

Synapse formation and activity are also regulated by
autophagic kinases. In C. elegans, the ULK1 ortholog UNC-51
is colocalized with its regulator ubiquitin ligase RPM-1 at axon
termination sites (Crawley et al., 2019). Inhibition of UNC-51
by RPM-1 is required for axon termination and for maintenance
of synapses through restriction of autophagosome formation in
the distal axon (Crawley et al., 2019). Similarly in Drosophila,
overexpression of the ULK1 ortholog atg1 or treatment with
rapamycin to inhibit tor (the Drosophila ortholog of mTOR)
increased the number of neuromuscular junction boutons,
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which could be rescued with a null allele for the downstream
autophagy gene atg18, signifying that motor neuron presynaptic
terminals are regulated by autophagy (Shen and Ganetzky,
2009). In the central nervous system, synapses in dopaminergic
neurons are also regulated by mTOR. Inhibiting mTOR with
rapamycin led to an increase of axonal autophagosomes along
with a decrease in synaptic vesicle number and dopamine
transmission, suggesting that mTOR may negatively regulate
synaptic transmission (Hernandez et al., 2012). These studies
show opposing roles for mTOR and ULK1 in synapse regulation,
and underscore the role of autophagy in regulating synapse
homeostasis.

Disrupted TBK1 activity in
amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive and
fatal neurodegenerative disease. Pathologic hallmarks are the
presence of cytoplasmic ubiquitinated aggregates, consistent
with a defect in autophagy, and axonal degeneration of
motor neurons. In support of a critical role for autophagy
in ALS pathogenesis is the discovery of mutations in the
autophagic kinase TBK1 as a cause of inherited ALS and
frontotemporal dementia (Cirulli et al., 2015; Freischmidt
et al., 2015; Williams et al., 2015). Postmortem neuropathologic
findings showed p62/SQSTM1 and TDP-43 positive inclusions,
indicating impaired autophagy. ALS-linked TBK1 mutations
led to defective mitophagy, impaired autophagosome formation
and impaired phagophore elongation (Moore and Holzbaur,
2016; Catanese et al., 2019; Harding et al., 2021). TBK1 has
been linked to axonal dysfunction in several different ways.
While TBK1 knockout or mutant G271R TBK1 mice did not
have phenotypes alone, they exacerbated motor neuron (MN)
denervation in SOD1G93A mice (Brenner et al., 2019; Gerbino
et al., 2020). Further evidence for the role of TBK1 affecting
presynaptic terminals in ALS/FTD comes from a study in
which overexpressing the TBK1 ortholog ik2 in Drosophila
rescued neuromuscular junction overgrowth in a model of
FTD (Lu et al., 2020). Another link between TBK1 and
endolysomal trafficking is that TBK1 directly phosphorylates
Rab7a, a critical regulator of late endosomes. In fact, TBK1
loss of function in human iPS MNs and TBK1 patient-derived
human MNs led to a reduction of Rab7a and deficient lysosomal
activity (Hao et al., 2021). In axons, loss of TBK1 in human
iPS MNs led to overactive spontaneous firing and impaired
axonal regeneration, suggesting a link between impaired TBK1
regulation of endolysosomal trafficking and axonal dysfunction
in ALS (Hao et al., 2021). These data indicate that ALS-
causing TBK1 mutations may cause dysregulation of axonal
function through multiple pathways, including autophagosome
formation, mitophagy, and endolysosomal trafficking.

Concluding remarks

Autophagic kinases play essential roles for autophagy in
neurons. Additionally, autophagic kinases regulate diverse
axonal functions including AT, synaptic maintenance and
axonal degeneration and regeneration. ALS-causing mutations
of the autophagic kinase TBK1 highlight the importance
of these proteins in neurodegeneration. In fact, kinase
activators and inhibitors are a growing class of therapeutics,
making autophagic kinases appealing as treatment targets
(Xiang et al., 2020). Pharmaceutical modulation of several of
these kinases reviewed above are currently in development
(https://clinicaltrials.gov, NCT04892017; https://clinicaltrials.
gov, NCT02941523; Meunier et al., 2020). These examples
highlight the feasibility of targeting autophagic kinases for
therapeutic purposes. Further defining the precise mechanisms
through which autophagic kinases regulate distinct axonal
processes will aid the development of treatment targets for
neurodegeneration.
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