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Lattice Thermal Conductivity of 
MgSiO3 Perovskite from First 
Principles
Nahid Ghaderi1, Dong-Bo Zhang2, Huai Zhang1,3, Jiawei Xian1,3, Renata M. Wentzcovitch4,5 & 
Tao Sun   1,3

We investigate lattice thermal conductivity κ of MgSiO3 perovskite (pv) by ab initio lattice dynamics 
calculations combined with exact solution of linearized phonon Boltzmann equation. At room 
temperature, κ of pristine MgSiO3 pv is found to be 10.7 W/(m · K) at 0 GPa. It increases linearly with 
pressure and reaches 59.2 W/(m · K) at 100 GPa. These values are close to multi-anvil press 
measurements whereas about twice as large as those from diamond anvil cell experiments. The increase 
of k with pressure is attributed to the squeeze of weighted phase-spaces phonons get emitted or 
absorbed. Moreover, we find κ exhibits noticeable anisotropy, with κzz being the largest component 
and κ κ κ−( )/max min  being about 25%. Such extent of anisotropy is comparable to those of upper 
mantle minerals such as olivine and enstatite. By analyzing phonon mean free paths and lifetimes, we 
further show that the weak temperature dependence of κ observed in experiments should not be 
caused by phonons reaching ‘minimum’ mean free paths. These results clarify the microscopic 
mechanism of thermal transport in MgSiO3 pv, and provide reference data for understanding heat 
conduction in the Earth’s deep interior.

MgSiO3 perovskite (pv) is the most abundant mineral (80% in the pyrolite model) in the Earth’s lower mantle1. 
Its lattice thermal conductivity (κ) is under extensive investigation2–11 due to its critical role in understanding the 
dynamics and thermal evolution of the Earth. Experimental measurements of κ have been performed at room 
temperature from 0 to 144 GPa4 and from 473 to 1073 K at 26 GPa3, respectively. Theoretical simulations further 
extended the pressure (P) and temperature (T) range to that of the lower mantle (23 to 136 GPa, 2000 to 4000 K)6–11.  
These studies provide important information on the thermal transport in MgSiO3 pv, however, a consensus is yet 
to emerge on key issues such as the magnitude of κ, its P and T dependence, etc. Room temperature measurements 
using diamond anvil cell by Ohta et al.4 give relatively low κ: about 5.1 W/(m · K) at atmospheric pressure, 10.6 W/
(m · K) at 31 GPa and 37.1 W/(m · K) at 144 GPa. Similar results were obtained by first-principles simulations by 
Dekura et al.7 and Stackhouse et al.11. In contrast, measurements with multi-anvil press by Manthilake et al.3  
found much higher values: 15.6 W/(m · K) at 26 GPa and 473 K. If one extrapolates Manthilake et al.’s data to room 
temperature, the result will be nearly twice as large as that of Ohta et al. Such large κ are supported by classical 
molecular dynamics (MD) simulations by Haigis et al.8, whereas in conflict with other theoretical studies7, 10, 11. 
Besides the absolute magnitude, the P and T dependence of κ is also unresolved. Some studies indicate κ increases 
linearly with pressure9, while others found significant deviation from the linear dependence at high pressures7. 
Furthermore, standard phonon gas model (PGM) predicts κ at constant volume is inversely proportional to T in 
the classical high T limit12, but experimental measurements3 as well as MD simulations8, 9, 11 found much milder 
temperature dependence (κ ∝ T−0.43). This anomaly in κ(T) has been attributed to phonons reaching ‘minimum’ 
mean free path (MFP) such that their contribution to κ saturates13–15. However a thorough analysis on the MFP 
and lifetimes of phonons in MgSiO3 pv has not been performed and the validity of this minimum MFP argument 
remains to be verified.
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In general, theoretical investigations of lattice thermal conductivity of crystalline materials are conducted 
with two distinct approaches: MD and perturbative calculations based on PGM16–19. With the MD approach, 
one is able to treat the exact inter-atomic interactions, which can be important at high T where higher order 
(>3) anharmonic interactions become non-negligible18. The main drawback of MD is that only phonons whose 
wavelengths are commensurate to the simulation cell are present in the simulation. As a result, κ determined from 
MD depends on the size of the simulation cell (finite size effect)20. And due to constraints from computational 
resources, one may not be able to adopt sufficiently large simulation cells to minimize this effect. Also, in MD the 
atoms move as classical particles. This may introduce error when T is much lower than the Debye temperature 
and quantum effects are significant21. In contrast, PGM allows one to consider perturbatively how phonons get 
scattered by anharmonic interactions (usually truncated to the 3rd order) as well as impurities. The approxima-
tion (truncation) made on the inter-atomic interactions greatly simplifies the calculation and one is allowed to 
consider phonons of very long wave-lengths inaccessible to MD. Quantum effects can also be readily included 
in this formalism. PGM, combined with first-principles calculations of inter-atomic force constants22 and rig-
orous solution of the linearized Boltzmann transport equation (BTE) for phonons23–25, is now widely applied to 
determine the lattice thermal conductivities of crystalline materials. It works especially well in predicting κ near 
room temperature, where higher order (>3) anharmonic interactions are insignificant. Moreover, by examining 
the scattering rates (inverse of lifetimes) of individual phonons, one can gain useful insights into the microscopic 
mechanisms of thermal transport26, 27.

Here we take the perturbative approach based on PGM to determine κ of MgSiO3 pv from first principles. This 
is in line with previous studies by Dekura et al.7 and Tang et al.10. The important difference is that in the pioneer-
ing work by Dekura et al., only lifetimes of phonons at Γ point were evaluated explicitly, lifetimes of other pho-
nons were obtained by extrapolation using an approximate relation between phonon frequencies and lifetimes. 
Also, third-order anharmonic force constants were computed via density functional perturbation theory for the 
primitive cell only. These approximations may introduce additional uncertainties in κ besides those inherent 
to PGM. Tang et al. followed a more rigorous procedure by computing the third-order force constants with a 
2 × 2 × 2 supercell and evaluating lifetimes explicitly for all phonons. However, the κ they found is substantially 
lower than all other experimental and theoretical results, which is contrary to expectations. One of our aims is 
to resolve this discrepancy. Also, both Dekura et al. and Tang et al. employed the relaxation time approximation 
(RTA) to evaluate κ12. RTA greatly simplifies the solution of BTE by omitting all the off-diagonal scattering terms. 
However the effectiveness of RTA is system-dependent23, 28, 29 and it is preferable to go beyond RTA and get the 
exact solution of BTE. We chose the ShengBTE code24, a well-developed package successfully applied to many 
materials, to perform the calculations. The dependences of κ on the range of anharmonic force constants and size 
of phonon q-point meshes were carefully examined to ensure good convergence. Intriguingly, the newly predicted 
κ at room temperature is significantly higher than previous first principles calculations7, 10 and in close agreement 
with multi-anvil press measurements3. Phonon lifetimes and MFP are then analyzed to understand the P and T 
dependence of κ microscopically. Finally we evaluate κ of MgSiO3 pv along typical geotherms of the lower mantle.

Results and Discussion
We first consider κ at 300 K, where higher order (>3) anharmonic interactions are insignificant and the pertur-
bative approach based on PGM should work very well. We find κ of MgSiO3 pv is about 10.7 W/(m · K) at atmos-
pheric pressure. It increases linearly with P, reaching 23.3 W/(m · K) at 26 GPa and 78.8 W/(m · K) at 140 GPa, as 
shown in Fig. 1(a). These values are about twice as large as the data of Ohta et al.4, whereas slightly higher than 
that of Manthilake et al.3. The linear P dependence of κ originates from the fact that κ exhibits very similar density 
(ρ) dependence as P. Indeed, we find κ(ρ) can be fitted nicely (solid line in Fig. 1(b)) by the Birch-Murnaghan 
equation as
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Figure 1.  Lattice thermal conductivity of MgSiO3 pv at 300 K as a function of (a) pressure (b) density.
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where ρ0 is the equilibrium density at 0 GPa and 300 K, κ0 and κ ρ′ ≡ κ
ρ ρ

d
d0

0

 are the thermal conductivity and den-

sity derivative of thermal conductivity at ρ0, respectively. To be specific, ρ0 = 4.15 g/cm3, κ0 = 10.7 W/(m · K), 
κ ′ = .121 60  W/(m · K). An alternative form of κ(ρ) often seen in the geophysics literature is
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Fitting the calculated κ to this form yields the exponent g as 5.54 (dashed line in Fig. 1(b)), close to 5.6 found 
by Ohta et al.4. Interestingly, although our calculated κ are about twice as large as those of Ohta et al., their ρ 
dependence are quite similar.

Figure 2(a) shows the cumulative κ with respect to phonon MFP. We see that major contributions to κ are 
from phonons with MFP between 0.01 to 1 μm. At ρ = 5.33 g/cm 3 (P = 104.9 GPa), contributions from such 
phonons amount to ~84% of the total κ. For smaller ρ their contributions are less dominant, but still amount to 
~63% of κ at ρ = 4.21 g/cm3 (P = 3.9 GPa). This is in contrast to good heat conductors like Si, where ~40% of κ 
at ambient condition comes from phonons with MFP greater than 1 μm30. As shown in Fig. 2(b), phonons with 
MFP > 0.01 μm are mostly acoustic modes plus a few low frequency optical modes. Overall they represent just a 
small fraction of all phonons. This indicates that κ of MgSiO3 pv is a sensitive quantity depending critically on the 
few phonons with long MFP: if the movement of such phonons somehow get hampered by extrinsic scattering 
such as impurities or grain boundaries, κ will drop considerably. (See Supplementary Information for a prelimi-
nary analysis on the effect of grain sizes). The relatively high κ from multi-anvil press measurement has long been 
a puzzle as most previous theoretical studies7, 11 found κ close to that of DAC measurement. Our results, which 
correspond to single crystals without defects, seem to indicate that the multi-anvil press results are closer to κ of 
pristine crystals. Besides sample conditions that may affect the measured κ, the specific experimental technique 
employed may also be relevant. In a more recent study5, Ohta et al. applied the microspot angstrom method to 
determine κ at ambient condition. The κ (~8 W/(m · K)) they found is 50% higher than that of Osako and Ito2 
whereas close to their previous measurement at 11 GPa4 using the thermo-reflectance method. Further experi-
ments are called for to fully resolve these discrepancies.

A characteristic feature of κ of MgSiO3 pv is that it increases more than 5 folds from 0 GPa to 100 GPa, as indi-
cated by experiments as well as our calculations. Here we try to identify the microscopic origin of this increase. 
To simplify our analysis, we consider κ within the relaxation time approximation (RTA), which turns out to work 
well for MgSiO3 pv (within 1% of κ). Moreover, we ignore the relatively weak isotope scattering (1 to 3%). As such,
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where Cq and vq are the heat capacity and group velocity of mode q, respectively; τ0q is the anharmonic phonon 
lifetime, evaluated as
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with Γ ′ ″
±
qq q  being three-phonon scattering rates of absorption (+) and emission (−) processes. As κ0 depends on 

three quantities Cq, vq and τ0q, in the following we analyze how increasing ρ would affect each of them. A higher ρ 
gives rise to higher frequencies of phonons in MgSiO 3 pv. Accordingly for a given T the phonon occupancies nq 
become smaller, leading to a insignificant decrease in Cq; On the other hand, the phonon group velocity vq 
increases with ρ as phonons become more dispersive. However these increases are relatively mild (see the upper 

Figure 2.  (a) Cumulative κ with respect to phonon mean free path at 300 K, (b) Mean free path versus phonon 
frequency at 300 K. Vertical lines in (b) correspond to frequencies of acoustic phonons at Brillouin zone 
boundary ≡ ( )X 001

2
. Phonons reside on the left (right) side of the lines are predominately acoustic (optical). 

The corresponding pressures at ρ = 4.21 g/cm3 and 5.33 g/cm3 are 3.9 GPa and 104.9 GPa, respectively.
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panel of Fig. 3(a)). For instance, in the long wavelength limit vq become the velocities of elastic waves. From 0 GPa 
to 100 GPa, velocities of the longitudinal and transversal elastic waves increase ~30%31, much smaller than the 
5-fold increase in κ. Therefore the increase in κ is mostly due to τ0q, as shown in the lower panel of Fig. 3(a). 
Recall τ0q is determined by phonon adsorption (+) and emission (−) processes. For phonons of low frequencies, 
absorption (+) processes are the main scattering mechanism; For phonons of high frequencies, emission (−) 
processes dominate. A convenient way to see this is to consider the weighted phase space26
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which corresponds to an approximation to 1/τ0q with anharmonic interaction coefficients being identical for all 
scattering channels (see Eq. (7) in the Methods section). As shown in Fig. 3(b), ±Wq  decreases significantly at high 
ρ as phonons become more dispersive, leading to the near universal increases of τ0q for all phonons. In principle, 
τ0q are also affected by the anharmonic interaction coefficients, but their roles are likely to be secondary as 
changes in ±Wq  are already comparable in magnitude as those seen in τ0q. In summary, the increase of κ at high ρ 
is mostly due to the squeeze of the weighted phase space phonons may get emitted or absorbed.

For simplicity as well as easy comparison with experiments, so far we only considered the scalar averaged 
κ κ κ κ≡ + +( )/3xx yy zz . In general, for an orthorhombic crystal such as MgSiO3 pv the three diagonal compo-
nents of κ are not identical. The extent of this anisotropy has not been resolved. Experimental measurements were 
limited to polycrystalline samples, therefore can not discern the anisotropy in κ. Theoretical calculations gave 
conflicting results. Ammann et al.9 found noticeable anisotropy in their non-equilibrium classical MD simula-
tions whereas Stackhouse et al.11 reported that the anisotropy was within the error of their AIMD simulation. It is 
unclear whether such discrepancy is due to the different sizes of simulation cells or to the differences in the 
inter-atomic potentials. What we find in this study is that the absolute difference between the maximal (minimal) 
components of κ tensor, κmax(κmin), increases with pressure, as shown in Fig. 4(a). But the relative magnitude of 
anisotropy is nearly pressure-independent: using κ κ κ≡ −A ( )/max min  as a measure for anisotropy, A = 24.1% 
near 0 GPa and 27.1% near 100 GPa. Such extent of anisotropy is comparable to those of upper mantle minerals 
such as olivine and enstatite32. Moreover, we find κzz is the largest among the three diagonal components in the 
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pressure range we consider; κyy is the smallest at low P, but it increases the fastest with pressure and exceeds κxx 
near 60 GPa. The contrast in the P dependence of different κ components is most evident once they are normal-
ized as καα/καα0, where the subscript “0”; represents the zero pressure, as shown in Fig. 4(b). Interestingly, 
καα/καα0 follow the same order as normalized lattice parameters: the larger normalized lattice parameter (smaller 
linear compressibility), the larger καα/καα0 along that axis. Note it is καα/καα0, not καα itself, that exhibits a corre-
spondence to linear compressibility. Whether such a correspondence is universal to all materials, or reserved to 
MgSiO3 pv, will be of interest for future studies.

We now consider κ at elevated temperatures. Within standard PGM they are described by the same formula 
as κ at room temperature. In the high T classical limit, the number of phonons (nq + 1/2) becomes kBT/ħωq. 
Accordingly, Cq equals kB, τ0q and κ at constant volume are inversely proportional to T; For lower T quantum 
effects are non-negligible and κ varies slightly faster than 1/T7. Such κ(T) are in contrast to experimental meas-
urements3 where much milder dependence were found. As shown in Fig. 5(a), the measured κ is close to our 
calculated value near room temperature, however the two deviate as T increases. At 1000 K they differ by about a 
factor of two. Note experiments were performed at constant pressure, thus the measured κ(T) also contains the 
effect of thermal expansion. But as the thermal expansivity of MgSiO3 pv is small (~2 × 10−5 K−1)33, the decrease 
in κ caused by thermal expansion is insignificant (~0.8 W/(m · K)). The large discrepancy between experiment 
and calculation is puzzling as the temperature we are considering is not particularly high: the maximal T reached 
in the experiment (1073 K) is close to the Debye temperature of MgSiO3 pv and about one third of the melting 
temperature (~3000 K at 26 GPa)34. The observed deviation from the 1/T law is commonly attributed3, 8, 11 to 
phonons reaching ‘minimum’ MFP13–15, 35. According to this theory, phonon MFP cannot be smaller than the 
inter-atomic distance (about 2.0 Å in MgSiO3). Once this limit is reached, MFP would not decrease further with 
T and κ saturates. To determine whether this is indeed the case, we analyze phonon MFP and lifetimes as shown 
in Fig. 5(b). We see even at T = 1000 K, the majority of phonons, especially the low frequency modes contributing 
most to κ, have MFP much longer than 2.0 Å. Therefore it is unlikely that the observed κ(T) is due to the mini-
mum MFP. Moreover, recall MFP are products of phonon group velocities and lifetimes. In regions where phonon 
dispersions are flat, the group velocities are close to/equal zero. The corresponding MFP would be very short even 
at low T where anharmonic interactions are weak and phonons are well defined. Therefore to understand κ at 
high T, one should not focus on MFP alone, but to distinguish whether the short MFP are caused by intrinsically 
small group velocities, or short phonon lifetimes. If the lifetime is too short, say less than one vibrational period, 
then the phonon is not well defined and PGM may breakdown. For the present case, short MFP are mostly caused 
by small group velocities, as phonon lifetimes are at least 3 times longer than their periods at 1000 K. We therefore 
conclude phonons are well-defined and perturbation theory should work well under the experimental condition 
(from 473 to 1073 K at 26 GPa).

If the observed κ(T) is not due to minimum phonon MFP, then what is the culprit? In our view, radiative heat 
transport is a likely suspect. While thermal radiation is weak at room temperature, it increases rapidly with T 
(∝T3) and its influence on κ may not be easily separated from those of lattice vibrations. Gibert et al. measured 
κ of olivine and found radiative heat transport accounts for 60% of total κ at 1120 K36. Similar effects may also be 
present in MgSiO3 pv. Besides thermal radiation, anharmonic heat flux may also play a role. As shown by Hardy37, 
heat flux in the standard PGM only corresponds to the diagonal part of harmonic heat flux. While this may well 
be sufficient at room temperature, contributions from anharmonic heat fluxes may become non-negligible at 
high T16, 18. Indeed, for some model systems anharmonic fluxes were found16, 18 to contribute 40% of total lattice 
conductivity at half of the melting temperature. It will be interesting to explicitly calculate anharmonic heat fluxes 
in MgSiO3 pv and quantify their contribution to κ. However such endeavors are beyond the scope of the present 
study. For the moment, we simply assume standard PGM is valid for MgSiO3 pv at all temperatures. After all, 
precise predictions from PGM have their own merits and will serve as a benchmark for further investigations.
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With κ(P, T) at hand, we now determine κ of MgSiO3 pv in Earth’s lower mantle. Figure 6 shows κ as a func-
tion of depth along typical geotherms of the lower mantle1. Increasing depth is accompanied by rising both tem-
perature and pressure. The former will decrease κ whereas the latter increases it, and eventually κ is determined 
by these two competing factors. From 660 km to 2500 km, κ increases with depth, indicating the effect of pressure 
dominates. Near the core-mantle boundary temperature increases rapidly, and we see a decrease in κ. At the 
core-mantle boundary, κ is about 5.2 W/(m · K). Heat transfer in the mantle is dominated by convection. But in 
regions where mass transport is impeded (e.g. core-mantle boundary), conduction is the main mechanism. The 
knowledge we have on κ of MgSiO3 pv will help constrain the total heat flux between the core and the mantle, as 
well as to understand thermal evolution of the Earth.

Methods
A central quantity for studying heat transport in PGM is the phonon distribution function Nq

12. Here the sub-
script q is shorthand for phonon wave vector q and branch index s. Accordingly, phonon frequency and group 
velocity are denoted as ωq and vq. For systems with homogenous temperature T, Nq equals the equilibrium pho-
non occupancy ≡ −ωn e1/( 1)q

k T/q B . For systems under a small temperature gradient ∇T, Nq deviates from nq, 
resulting in a net heat flux ω= ∑ −

Ω
N nJ v( )

N q q q q q
1 . The prefactor N is the number of unit cells in the system, Ω 

is the unit cell volume. The leading term in Nq − nq is proportional to ∇T and, as J = −κ · ∇T (Fourier’s law), one 
can readily compute the thermal conductivity tensor κ once Nq − nq is known.
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where Γ ′ ″
±
qq q  are three-phonon scattering rates of absorption (+) and emission (−) processes, expressed as
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with ′ ″
±Vqq q  representing anharmonic interaction coefficients, Γ ′qq  is the scattering rate of isotopic disorder. This set 

of linear equations for Eq is solved iteratively38 in ShengBTE. Thermal conductivity tensor καβ is then expressed 
as

∑κ
ω

=
Ω

.αβ α βN
C v E1 1

(8)q q
q q q

The scalar average κ κ= ∑ = ∑ Λα αα Ω
C v

N q q q q
1
3

1
3

, where Λ ≡
ω

⋅
q v

E vq q

q q
 is the phonon mean free path.

The right hand side of Eq. (6) contains both diagonal and off-diagonal scattering terms. The latter couple Eq 
with ′Eq  and ″Eq , making the solution of Eq. (6) cumbersome. If one ignores all the off-diagonal terms, Eq. (6) 
becomes
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Figure 6.  Lattice thermal conductivity of MgSiO3 pv in the Earth’s lower mantle predicted from standard PGM.
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This so-called relaxation time approximation (RTA) makes Eq independent from each other and easy to solve. 
With phonon relaxation time τq defined as τ ≡ ∑ Γ + ∑ Γ + ∑ Γ−

′ ″ ′ ″
+
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−

′ ′( )N1/q q q qq q q q qq q q qq
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2
, Eq = ωqτqvq and 

κ τ= ∑αβ α βΩ
C v v

N q q q q q
1 .

To get κ from Eqs (6–8), one needs to first know the harmonic and third-order force constants, from which ωq, 
vq, Γ ′ ″

±
qq q  and Γ ′qq  are determined. For polar crystals like MgSiO3 pv, one also needs to know the Born effective 

charges and dielectric constants to deal with long-range dipole-dipole interactions39. Calculations of these quan-
tities were performed with the projector-augmented wave (PAW) method40 as implemented in the Vienna ab 
initio simulation package (VASP)41. The electron-electron exchange-correlation interaction was described with 
the local density approximation (LDA)42. A 2 × 2 × 2 supercell containing 160 atoms was employed and a 
2 × 2 × 2 Monkhorst-Pack mesh43 was used for Brillouin zone sampling. The plane-wave cutoff for electron 
wave-functions was set to 550 eV. We considered a series of densities, with static pressure P0 ranging from 0 to 
140 GPa. At each density, harmonic force constants, Born effective charges and dielectric constants were deter-
mined with density functional perturbation theory44, 45. Third order force constants were obtained by first displac-
ing atoms along symmetrically inequivalent directions, then analyzing the changes in atomic forces with respect 
to displacements. This finite-difference approach requires highly accurate atomic forces, hence a tight threshold 
(10−7 eV) was adopted for computing the electronic eigenfunctions. Once all the needed information were in 
place, they were fed into the ShengBTE code to compute κ.

The procedures as described above are all standard. Still, to get well-converged κ two things demand special 
care: (i) the range of anharmonic interactions, (ii) the size of q-point mesh for evaluating Eqs (6–8). We first con-
sider (i). Anharmonic interactions are usually short-ranged. Thus to save computational efforts it is common to 
set a cutoff when computing third order force constants. This cutoff should not be too small, otherwise the effects 
of anharmonic interactions may not be fully accounted for. Yet an unnecessarily large cutoff may only increase 
the computational costs without bringing much improvement in accuracy. After intensive tests, a cutoff of 4.0 Å 
was chosen for all densities. This is a rather conservative choice, as we found results from a smaller cutoff (3.5 Å) 
are already quite reasonable (the changes in καα are within 4%). Mode Grüneisen parameters derived from these 
third order force constants24 agree well with those from direct finite differences46, demonstrating the accuracy of 
these force constants. The averaged Grüneisen parameter is 1.48 at ρ = 4.21 g/cm3(P0 = 0 GPa), 1.08 at ρ = 5.33 g/
cm3 (P0 = 100 GPa), in good agreement with previous studies (1.44 and 1.12)3. Moreover, we repeated the calcu-
lation at P0 = 100 GPa with a 3 × 3 × 3 supercell and a cutoff of 5.0 Å. The change in καα is less than 2.5%. This 
shows that the 2 × 2 × 2 supercell and 4.0 Å cutoff are indeed sufficient for describing anharmonic interactions 
in MgSiO3 pv. We now consider (ii). The size of q-point mesh affects κ in two respects. It determines the types 
of phonons in the system, and the accessible scattering channels through which these phonons get emitted or 
absorbed. Therefore it is crucial to investigate the dependence of κ on the size of q-point mesh. We found κ eval-
uated on coarse meshes (e.g. 3 × 3 × 3) differ significantly (more than 50% in καα components) from those on 
denser meshes (e.g. 8 × 8 × 8). But once the mesh is sufficiently dense, κ becomes insensitive to further increases 
in mesh sizes. To ensure good convergence in κ, we chose a 8 × 8 × 8 q-point mesh which is equivalent to a super-
cell containing 10240 atoms. Coarse meshes correspond to small supercells with hundreds of atoms, as typically 
employed in MD simulations. Since the difference between κ from coarse and dense q-meshes is very large, MD 
simulations with small supercells would suffer significant finite size effects and cannot give well-converged κ. For 
evaluating κ at relatively low T where higher order (>3) anharmonic interactions are insignificant, the perturba-
tive approach based on PGM is more appropriate.

In theoretical calculations, it is handy to compute κ at different temperatures while keeping the density fixed. 
But in many applications knowing κ(P, T) is more convenient. To get κ(P, T), we first determined the thermal 
equation of state ρ(P, T) using the standard quasi-harmonic approximation (QHA)46, 47, then substituted it into 
κ(ρ, T) to get κ(ρ(P, T), T). QHA has long been applied to predict the structural parameters48, thermal equation of 
state33, as well as thermal elasticity31, 49 of MgSiO3 pv. Its effectiveness for this system is now firmly established47, 50.  
In particular, the deviatoric thermal stresses were found to be less than 0.2 GPa at 300 K and about 2 GPa at condi-
tions of the Earth’s core-mantle boundary (P = 135 GPa, T = 4000 K)49, therefore the pressure predicted by QHA 
can be regarded as hydrostatic, just like the static pressure P0. For a given ρ, P and P0 are close (within 3 to 5 GPa) 
at room temperature. Their difference grows with T and reaches about 34 GPa at core-mantle boundary.

Data Availability.  The data for this paper are available from T.S. (tsun@ucas.ac.cn).
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