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Abstract: Type 2 diabetes (T2D) is a chronic metabolic disease, which could affect the daily life of
patients and increase their risk of developing other diseases. Synthetic anti-diabetic drugs usually
show severe side effects. In the last few decades, plant-derived drugs have been intensively studied,
particularly because of a rapid development of the instruments used in analytical chemistry. We
tested the efficacy of Gundelia tournefortii L. (GT) in increasing the translocation of glucose transporter-
4 (GLUT4) to the myocyte plasma membrane (PM), as a main strategy to manage T2D. In this
study, GT methanol extract was sub-fractionated into 10 samples using flash chromatography. The
toxicity of the fractions on L6 muscle cells, stably expressing GLUTmyc, was evaluated using the
MTT assay. The efficacy with which GLUT4 was attached to the L6 PM was evaluated at non-toxic
concentrations. Fraction 6 was the most effective, as it stimulated GLUT4 translocation in the absence
and presence of insulin, 3.5 and 5.2 times (at 250 µg/mL), respectively. Fraction 1 and 3 showed
no significant effects on GLUT4 translocation, while other fractions increased GLUT4 translocation
up to 2.0 times. Gas chromatography–mass spectrometry of silylated fractions revealed 98 distinct
compounds. Among those compounds, 25 were considered anti-diabetic and glucose disposal agents.
These findings suggest that GT methanol sub-fractions exert an anti-diabetic effect by modulating
GLUT4 translocation in L6 muscle cells, and indicate the potential of GT extracts as novel therapeutic
agents for T2D.
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1. Introduction

Type 2 diabetes (T2D) is one of the leading causes of early mortality and morbidity
globally, and is associated with various critical complications including, but not limited to,
neuropathy, cardiovascular diseases [1] and hyperuricemia [2,3]. According to the World
Health Organization (WHO), more than 422 million people worldwide were diabetic in
2014, and this number is expected to double in 2040. The prevalence of diabetes is the
highest in the Middle East (13.7% in 2014), where the number of diabetic patients reached
43 million in 2014 [4,5]. T2D is mainly characterized by insulin resistance in hepatocytes,
adipocytes, and myocytes [6,7]. Insulin resistance in skeletal muscle plays a critical role
in the development of T2D. Insulin-stimulated glucose uptake into muscle cells accounts
for approximately 75% of whole-body insulin-activated glucose disposal and nutrient
utilization. In healthy subjects, insulin stimulates the mobilization of glucose transporter
type 4 (GLUT4) to the surface of muscle fibers, and thereby enhances glucose uptake.
Unfortunately, this process is impaired in patients with insulin resistance and diabetes [6].
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The GLUT4 protein is expressed in cardiac and skeletal muscles, as well as brown and
white adipocytes [6]. Unlike most other cells in which GLUTs are unregulated, GLUT4
distribution on the surface of muscle, liver, and fat cells is rapidly up-regulated several
times in response to insulin and exercise. This process is known as GLUT4 translocation, as
it largely requires changes in the distribution of GLUT4 between intracellular compartments
and the plasma membrane (PM) [6,7].

Both T2D and insulin resistance can be prevented and managed by maintaining
a healthy lifestyle. In addition, natural medicine, one of the therapeutic approaches
of complementary and alternative medicine, has attracted considerable attention from
individuals with T2D, especially because of its low cost and minimal side effects. Many of
the active phytochemicals in herbs, especially polyphenolic compounds, are reportedly
anti-diabetic agents [4].

Gundelia tournefortii L. (GT), a vegetable that is similar to artichoke, grows in the
semi-arid climate of many countries in the Mediterranean region. Its common name is
tumble thistle, also known as Tournefort’s gundelia, and it belongs to the Asteraceae or
Compositae family. It is a spiny perennial, which grows to 30 cm in height, and may
reach as high as 50 cm. The parts above the surface of the soil may break from the root
and be blown away by the wind as tumbleweed, thereby facilitating seed dispersal. As
a wild edible plant, GT has therapeutic effects against bacteria, cancer, epilepsy, stomach
disorders, and diabetes [8,9].

The anti-diabetic activity of GT was evaluated in vivo in dexamethasone-induced
diabetic mice. Oral administration of GT in diabetic mice led to significantly reduced levels
of serum glucose [10]. Concomitantly, GT extracts displayed anti-diabetic activity in vitro
as they enhanced GLUT4 translocation to the PM [9].

Using gas chromatography–mass spectrometry (GC/MS) analysis, we previously
reported 44 new compounds among GT methanol and hexane extracts [9]. Sterols, esters,
phenolic compounds, saturated and unsaturated fatty acids, and aromatic compounds
were all detected. Only six components, namely, stigmasterol, β-sitosterol, linoleic acid,
α-linolenic acid, stearic acid, and palmitic acid, have been previously reported [9,11].
Herein, we evaluated the efficacy of 10 sub-fractions of methanol GT extract in promoting
GLUT4 entry into the PM of muscle cells. The chemical composition of the 10 fractions was
identified, and their potential anti-diabetic mechanisms of action are herein reported.

2. Materials and Methods

Materials: The rat L6 muscle cell line, stably expressing myc-tagged GLUT4
(L6-GLUT4myc cells), was obtained from Kerafast (Boston, MA, USA). Fetal bovine serum,
modified Eagle’s medium (α-MEM), standard culture medium, and all other tissue culture
reagents were purchased from Biological Industries (Beit Haemek, Israel). Horseradish per-
oxidase (HRP)-conjugated goat anti-rabbit antibodies were obtained from Promega (Madi-
son, WI, USA). Polyclonal anti-myc (A-14); the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) reagent; methoxyamine hydrochloride; pyridine; N-methyl-N-
(trimethylsilyl)-trifluoroacetamide (MSTFA); and other standard chemicals were purchased
from Sigma Aldrich (St. Louis, MO, USA).

2.1. Plant Extract Preparation

The aerial parts of the GT plant were collected from the northern Negev area in
Israel from early March 2018 (the geographic coordinates (latitude and longitude) are
30◦30′0.00′′ N, 34◦55′1.20′′ E). The air-dried aerial parts (200 g) of the GT plant were
powdered and mixed with 1 L of methanol and placed in an Erlenmeyer flask. The mixture
in the Erlenmeyer flask was sonicated for 2 h at 50 ◦C, and then left in dark glass bottles
for 24 h for complete extraction, to yield a dark green extract. The extract was filtered and
concentrated by a rotary vacuum evaporator. The yield of the extracts was 6.1%. The stock
extracts were maintained at −20 ◦C in an airtight glass container.
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2.2. Flash Chromatography Extract Fractionation

The GT crude extract was further purified by normal phase column chromatography
in a Teledyne ISCO flash chromatography system (Lincoln, NE, USA), equipped with an
ultraviolet detector. The solvent was evaporated under reduced pressure, and the residue
was dissolved in ethanol. About 3 g of silica, 40–60 µm, was added to the mixture. The
solvent was evaporated under reduced pressure, and the residue was transferred to a
cartridge and connected to a gold silica 40 g column (Teledyne ISCO). The chromatographic
separation was performed in a RediSep Column (Teledyne ISCO). The mobile phase
gradient comprised hexane: ethyl acetate: ethanol at a 40 mL/min flow rate, as shown
in Table 1. Wavelengths of 254 nm and 210 nm were used for detection. Ten samples
were collected.

Table 1. Gradient conditions.

Hexane EtoAc EtOH Time (min)

From 0% To 100% 30.2
100% 15

From 0% To 100% 15
100% 15

EtoAc, ethyl acetate; EtOH, ethanol.

2.3. Silylation Derivatization

A volume of 40 µL of 40 mg/mL methoxyamine hydrochloride (MeOX) solution in
pyridine was added to each dried sample (10 mg), with 10 µL of ribitol standard solution
(0.2 mg/mL). The samples were then shaken for 1.5 h at 37 ◦C, after which 90 µL of MSTFA
was immediately added to each sample cap and shaken at maximum speed for 30 min
at 37 ◦C. The contents were transferred to glass vials with micro-serts and immediately
capped [12]. Each derivatized sample (1 µL) was injected into the gas chromatograph
coupled with a mass spectrometer.

2.4. Gas Chromatography–Mass Spectrometry Analysis

GC/MS analysis was performed on a Agilent 6850 GC, equipped with Agilent 5975C
single quadrupole MS, CTC-PAL RSI 85 auto-sampler, and HP-5MS capillary column
(0.25 µm × 30 m × 0.25 mm). The following conditions were applied: injector temper-
ature, 250 ◦C; initial temperature, 50 ◦C for 5 min; gradient of 5 ◦C/min until 180 ◦C;
gradient of 10 ◦C/min until 270 ◦C and a hold time of 10 mi., and increasing to 320 ◦C.
The MS parameters were set as follows: source temperature, 230 ◦C; transfer line, 325 ◦C;
quadrupole: 150 ◦C; Detector: 325; positive ion monitoring; and electron ionization (EI)-MS
measurement at 70 eV [12]. Helium was used as a carrier gas, at 0.6 mL/min.

2.5. Identification of Components

The percentage composition of the samples was computed from the GC peak areas.
Library searches were conducted using the National Institute of Standards and Technology
GC/MS Library and mass spectra from the literature. Component relative percentages
were calculated based on GC peak areas without using correction factors [12]. The GC/MS
chromatogram is presented in Supplementary Figure S1.

Cell culture: The L6-GLUT4myc cells were grown in a humidified atmosphere of air
and 5% CO2 at 37 ◦C. Myoblasts were maintained in α-MEM supplemented with 10% fetal
bovine serum (FBS), 100 U/mL penicillin, and 0.1 mg/mL streptomycin.

2.6. MTT Assay

The L6-GLUT4myc cells were seeded in 96-well plates at a density of 20,000 cells per
well, in the presence of increasing concentrations of GT fractions (0–500 µg/mL) for 24 h.
The viability of those cells was evaluated by performing the MTT assay [13]. The culture
medium was replaced with 200 µL of 0.5 mg/mL fresh MTT medium in each well, and cells
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were cultivated for another 4 h in an incubator within a dark room. The MTT medium was
removed and 100 µL isopropanol was added to each well. The color density was measured
at 620 nm with a microplate reader (Anthos, Biochrom, Cambridge, UK). The effects of the
extracted fraction on cell viability were expressed using the following formula:

Percent viability = (A620 nm of fraction treated sample/A620 nm of untreated sample) × 100

2.7. Determination of Surface GLUT4myc

The GLUT4myc distribution on the PM of intact cells was assayed as previously
described [13,14]. Briefly, cells were grown in 24-well plates for 1 day, after which GT
extract fractions were added and left for 20 h. The mixtures were serum-starved for 3 h
(in the presence of GT extract) and then treated either with or without 100 nM insulin for
20 min. The cells were washed with ice-cold phosphate-buffered saline (PBS), and then
fixed with paraformaldehyde, and blocked with goat serum. The anti-myc antibody was
added to the mixture, which was left for 1 h at 4 ◦C. The cells were again washed, and the
secondary antibody conjugated to horseradish peroxidase was added and left for 1 h at
4 ◦C. The cells were then washed with PBS. We were able to detect and compare the relative
amounts of GLUT4 on the PM of treated cells with those on the PM of vehicle-untreated
cells. The o-phenylenediamine dihydrochloride reagent was used to develop the color,
which was measured at 492 nm.

Statistical Analysis

Results were presented as the mean± SEM. Error limits were cited, and error bars were
plotted and represent simple standard deviations of the mean. When comparing different
samples, results were considered to be statistically different when p < 0.05. Data were
analyzed using t-test statistical calculations conducted with the SPSS version 21.0 software.

3. Results

Using GC/MS analysis, we previously reported 44 new compounds among methanol
and hexane extracts of the aerial parts of GT. Sterols, esters, phenolic compounds, saturated
and unsaturated fatty acids, and aromatic compounds were detected [9]. To determine
the anti-diabetic effects of GT methanol extracts and the potential anti-diabetic active
fractions/phytochemicals, 10 sub-fractions were prepared from GT methanol extracts. The
anti-diabetic effects of the sub-fractions were evaluated in L6-GLUT4myc cells.

3.1. GT Methanol Extract Fractionation and Chemical Detection

GT methanol extract was sub-fractioned into 10 samples via flash chromatography, as
described in the methods section. To maximize the number of detected compounds, the
fractions were silylated before GC/MS analysis.

The compounds detected in fractions 1 to 10 (ranging from 3 to 29 compounds) are
listed in Table 2, and their potential anti-diabetic activity is presented. The main compounds
in each fraction are highlighted in bold (Table 2) and mentioned in Supplementary Figure S1.
The structures of the phytochemicals known to exhibit anti-diabetic activity and enhance
GLUT4 activity are shown in Figure 1.



Molecules 2021, 26, 3785 5 of 27
Molecules 2021, 26, x FOR PEER REVIEW 5 of 25 
 

 

 

Figure 1. Cont.



Molecules 2021, 26, 3785 6 of 27
Molecules 2021, 26, x FOR PEER REVIEW 6 of 25 
 

 

 
Figure 1. Chemical structure of the anti-diabetic and GLUT4 translocation enhancer phytochemicals exciting in the 10 GT 
fractions. 

3.2. Toxicity of GT Fractions and Effects on GLUT4 Translocation 
The MTT assay was adopted to assess the toxicity of fractions on the L6-GLUT4myc 

cells. The cells were exposed to increasing concentrations of the GT extract fractions up to 
500 μg/mL for 24 h. No toxic effects were observed for: fractions 1 to 3, and 8 to 10, up to 
500 μg/mL; as well as fraction 5, up to 125 μg/mL; and fractions 4, 6, and 7, up to 250 
μg/mL (Figure 2 and Table 3). To assess the efficacy of the fractions in promoting GLUT4 
translocation to the muscle cell membrane, the L6-GLUT4myc cells were incubated with 
125 and 250 μg/mL of each fraction for 23 h, both in the presence and absence of insulin. 
(Fractions 9 and 10 were evaluated at concentrations of 63 and 125 μg/mL, respectively, 
owing to the limitation of their fractionated volumes). 

HO OH

OH

HO

O OH

Quinic acid

OH

O

OH

HO

3,4-dihydroxybenzoic acid

O

OH

OH

HO

Caffeic acid

O

O

OHOH

Chrysophanol

N
H

O

OH

O

Pyroglutamic acid

O

O

OH

HO
OH

Genistein

OH

OH

OH

OH

HO

HO

myo-Inositol

OH
HO

O

HO

O

OH

O
OH

OH

Chlorogenic acid

O

OH

OH

HO

HO

OH

D-Pinitol

Figure 1. Chemical structure of the anti-diabetic and GLUT4 translocation enhancer phytochemicals exciting in the
10 GT fractions.

3.2. Toxicity of GT Fractions and Effects on GLUT4 Translocation

The MTT assay was adopted to assess the toxicity of fractions on the L6-GLUT4myc
cells. The cells were exposed to increasing concentrations of the GT extract fractions up
to 500 µg/mL for 24 h. No toxic effects were observed for: fractions 1 to 3, and 8 to 10,
up to 500 µg/mL; as well as fraction 5, up to 125 µg/mL; and fractions 4, 6, and 7, up
to 250 µg/mL (Figure 2 and Table 3). To assess the efficacy of the fractions in promoting
GLUT4 translocation to the muscle cell membrane, the L6-GLUT4myc cells were incubated
with 125 and 250 µg/mL of each fraction for 23 h, both in the presence and absence
of insulin. (Fractions 9 and 10 were evaluated at concentrations of 63 and 125 µg/mL,
respectively, owing to the limitation of their fractionated volumes).
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Figure 2. Effect of the Ten Gundelia T. fractions (A–J) on cell viability by MTT assay. L6-GLUT4myc cells (20,000 cell/well)
and exposed to GT fractions for 20 h. Values given represent means± SEM (% of untreated control cells) of three independent
experiments carried out in triplicates.

The results indicated that fraction 6 was the most efficient, as it enhanced GLUT4
translocation about 3.5 times in the absence of insulin, and 5.2 times in the presence of
insulin when treated with 250 µg/mL. Fractions 1 and 3 had no significant effects on
GLUT4 translocation. At 250 µg/mL, fractions 4 and 7 increased GLUT4 translocation
2.0 and 1.5 times, respectively, in the absence of insulin. The other fractions enhanced
GLUT4 translocation about 1.3 to 1.5 times in the absence of insulin at 125 µg/mL, and up
to 2.9 times in the presence of insulin (Figure 3 and Table 3).
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Figure 3. GLUT4 translocation to the plasma membrane. For the evaluation of the GLUT4 L6-GLUT4myc, cells
(150,000 cell/well) were exposed to GT fractions (A–J) for 20 h. Serum depleted cells were treated without (−) or with
(+)1 µM insulin for 20 min at 37 ◦C and surface myc-tagged GLUT4 density was quantified using the antibody coupled col-
orimetric assay. Values given represent means ± SEM (relative to untreated control cells) of three independent experiments
carried out in triplicates.

3.3. GT Fraction Components Attributed to GLUT4 Translocation

In the first fraction, 18 compounds were detected. Six compounds were identified as
glucose disposal enhancers, especially in muscle cells. However, this first fraction did not
enhance GLUT4 translocation in L6-GLUT4myc cells. This might have been due to the
antagonistic effects of other chemicals. Only three compounds were detected in fraction 2:
palmitic acid, β-amyrin, and lupeol. All are known to enhance glucose disposal in muscle
except for palmitic acid.

Nine compounds in fraction 3 had anti-diabetic activity (Table 2). However, fraction 3
did not affect GLUT4 translocation to the PM. Most of the nine compounds were present at
very low levels (up to 2.5%), except ursolic acid, ursolic aldehyde, and palmitic acid, which
accounted for 38.46%, 19.3%, and 8.2%, respectively. Ursolic acid and palmitate are known
to augment GLUT4 translocation in muscle cells. Conversely, brucine, a toxic alkaloid, is an
inhibitor of the AKT, ERK, and mTOR signaling pathways [15]. It accounted for 11.65% of
the fraction and might be one of the major antagonists of GLUT4 translocation enhancers.

Six compounds out of the 14 detected in fraction 4 had anti-diabetic activity (Table 2).
Although brucine (believed to inhibit GLUT4 translocation) accounted for half of this
fraction, it enhanced GLUT4 translocation 3.5 times at 0.25 mg/mL under basal conditions.
This could have been due to the presence of four other compounds known to stimulate
GLUT4 translocation in muscle cells, namely, hydroxylamine, myristic acid, palmitic acid,
and stearic acid.

Half of the molecules in fraction 5 were considered to be anti-diabetic. A phenolic
derivative of benzoic acid, 4-hydroxybenzoic acid, accounted for 76% of the entire fraction.
It reportedly reduces plasma glucose levels in streptozotocin-induced diabetic rats, without
affecting either serum insulin levels or liver glycogen content [16,17].

Six of the 15 compounds detected in fraction 6, namely 4-hydroxybenzoic acid, iso-
vanillic acid, azelaic acid, quinic acid, palmitic acid, and stearic acid, are known to enhance
glucose disposal (Table 2). These active compounds accounted for 48% of the fraction.
Furthermore, 33% of all compounds in fraction 7 (six out of 16 compounds) were glucose dis-
posal enhancers. None of the other compounds are known to affect GLUT4 translocation.
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In fraction 8, only seven of the 23 detected compounds were associated with anti-
diabetic activity. Similarly, only four compounds out of the 16 in fraction 9 had anti-diabetic
activity. Remarkably, myo-inositol (which accounted for about 23% of the compounds
detected in fraction 8) stimulates GLUT4 translocation to the PM in L6 myotubes and the
muscles of mice [18]. Five of the 29 compounds in fraction 10 are known to enhance GLUT4
translocation to the PM (Table 2).

Table 2. Phytochemicals of Gundelia tournefortii methanol extract fractions verified by gas chromatography–mass spectrometry.

Fraction 1

Peak Name Rt % Area Match
Factor Association with Diabetes References

1 Hydroxylamine 15.28 0.60 93.2 Enhances glucose uptake in C2C12 skeletal
muscle cells [19]

2 Glycerol 20.34 0.10 86.6

3 Neophytadiene 33.02 0.46 93.3

4 Myristic acid 33.22 0.08 81.2 Enhances basal glucose uptake in myotubes [20]

5 3,7,11,15-Tetramethyl-2-
hexadecen-1-ol 33.67 0.20 90.8

6 Methyl palmitate 34.28 1.80 94.6

7 Palmitic acid 35.81 0.70 95.7 Enhances basal glucose uptake in myotubes [21,22]

8 9,12-Octadecadienoic acid,
methyl ester, (E,E)- 36.34 0.67 93.1

9 9-Octadecenoic acid
(Z)-methyl ester 36.41 0.87 89.4

10 Methyl stearate 36.68 0.15 88.9

11 α-Linolenic acid 37.04 0.30 86.3 Enhances insulin secretion from pancreatic
beta cells [23]

12 Stearic acid 37.86 0.43 93.7 Enhances basal glucose uptake in myotubes [23]

13 Dinonyl phthalate 45.19 0.11 82.2

14 24-Noroleana-3,12-diene 47.32 0.48 83.7

15 β-amyrin acetate 54.89 18.74 93.3

16 Lupeol 55.40 49.25 82.4 Stimulates glucose utilization by
skeletal muscles [24]

17 Cycloartenyl acetate 56.37 8.19 83.3

18 Lupeol-trifluoroacetate 56.53 16.88 82.8 Stimulates glucose utilization by
skeletal muscles [24]

Fraction 2

Peak Name Rt % Area Match
Factor Association with Diabetes References

1 Palmitic acid 35.81 11.2 91.6 Enhances basal glucose uptake in myotubes [21,22]

2 β-Amyrin 53.60 35.00 90.3
Reduces elevated plasma glucose levels
during the oral glucose tolerance test in

mice and α-glucosidase inhibitor
[25,26]

3 Lupeol 55.31 53.79 86.1 Stimulates glucose utilization by
skeletal muscles [24]
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Table 2. Cont.

Fraction 3

Peak Name Rt % Area Match
Factor Association with Diabetes References

1 Benzoic acid 19.13 0.19 91.1

2 Glycerol 20.34 0.11 88.9

3 4-
(Methoxycarbonyl)phenol 25.67 1.88 93.4

4 Lauric acid 29.39 0.39 82.3 Enhances glucose-stimulated
insulin secretion [27]

5 Azelaic acid 32.45 1.13 88.1
Restores normal levels of plasma glucose,
insulin, HbA1c, Hb, liver glycogen, and

carbohydrate in diabetic mice
[28]

6 Myristic acid 33.21 0.53 94.6 Enhances basal glucose uptake in myotubes [20]

7 Pentadecanoic acid 34.61 0.07 86.2

8 Palmitic acid 35.82 8.22 98.7 Enhances basal glucose uptake in myotubes [21,22]

9 Heptadecanoic acid 36.88 0.22 86.8

10 Linoelaidic acid 37.57 1.41 92.8

11 9-Octadecenoic acid, (E)- 37.62 2.88 96

12 Stearic acid 37.86 2.56 97.1 Enhances basal glucose uptake in myotubes [23]

13 Eicosanoic acid 39.61 0.48 88.6

14 Glyceryl palmitate 40.96 3.54 86

15 Glycerol monostearate 43.08 1.28 93.5

16 Lignoceric acid 43.68 0.50 87.1

17 Stigmasterol 52.84 2.62 94.5 Increases GLUT4 translocation
and expression [29]

18 β-Sitosterol 53.65 2.54 90.9
Improves glycemic control through

activation of insulin receptors and GLUT4
in adipose tissue

[30]

19 Ursolic acid 56.32 38.46 91.3 Stimulates glucose uptake in 3T3-L1
adipocytes and α-glucosidase inhibitor [31]

20 Ursolic aldehyde 56.86 19.33 59.4 Ursolic acid analogs are
α-glucosidase inhibitors [25]

21 Brucine 57.35 11.65 91.7

Fraction 4

Peak Name Rt % Area Match
Factor Association with Diabetes References

1 Hydroxylamine 15.28 0.22 83.9 Enhances glucose uptake in C2C12 skeletal
muscle cells [19]

2 Glycerol 20.34 0.61 91

3 Benzeneacetic acid 20.60 2.83 94.7

4 Suberic acid 30.51 0.46 83.8

5 Azelaic acid 32.45 5.87 92.1
Restores normal levels of plasma glucose,
insulin, HbA1c, Hb, liver glycogen, and

carbohydrate in diabetic mice
[28]

6 Myristic acid 33.21 0.64 88.5 Enhances basal glucose uptake in myotubes [20]
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Table 2. Cont.

Fraction 4

Peak Name Rt % Area Match
Factor Association with Diabetes References

7 Gallic acid 34.99 0.74 81.9

8 Palmitic acid 35.82 11.79 98.6 Enhances basal glucose uptake in myotubes [21,22]

9 Linoelaidic acid 37.57 3.04 83.9

10 Stearic acid 37.86 5.64 95 Enhances basal glucose uptake in myotubes [23]

11 Glyceryl palmitate 40.96 7.82 90

12 Glycerol monostearate 43.08 4.77 91.2

13 Stigmasterol 52.84 2.14 85.1 Increases GLUT4 translocation
and expression [29]

14 Brucine 57.36 53.42 91.7

Fraction 5

Peak Name Rt % Area Match
Factor Association with Diabetes References

1 Lactic Acid 13.71 0.28 86.2
2 Glycerol 20.34 0.26 92.6

3 Benzeneacetic acid 20.59 1.10 95.6

4 4-Hydroxybenzoic acid 28.93 76.20 98.9 Increases glucose consumption in normal
and diabetic rats [16,17]

5 Isovanillic acid 31.89 0.29 83 Stimulates a dose-dependent increase in
glucose transport through GLUT4 [32]

6 Azelaic acid 32.45 0.55 89.9
Restores normal levels of plasma glucose,
insulin, HbA1c, Hb, liver glycogen, and

carbohydrate in diabetic mice
[28]

7 D-Pinitol 33.93 0.39 86.4

Stimulates translocation of GLUT4 in
skeletal muscle of C57BL/6 mice and
induces translocation of GLUT4 to the

plasma membrane

[18,33]

8 Palmitic acid 35.81 3.18 98.6 Enhances basal glucose uptake in myotubes [21,22]

9 Stearic acid 37.86 1.99 94.7 Enhances basal glucose uptake in myotubes [23]

10 Glyceryl palmitate 40.96 4.56 96

11 Glycerol monostearate 43.08 3.45 94.1

12 Brucine 57.30 7.75 90.2

Fraction 6

Peak Name Rt % Area Match
Factor Association with Diabetes References

1 Lactic Acid 13.69 0.66 92.7

2 Glycerol 20.34 0.62 91.8

3 4-Hydroxybenzoic acid 28.89 7.67 98.2 Increases glucose consumption in normal
and diabetic rats [16,17]

4 Isovanillic acid 31.89 8.35 96.8 Stimulates a dose-dependent increase in
glucose transport through GLUT4 [32]

5 Azelaic acid 32.45 1.14 92.9
Restores normal levels of plasma glucose,
insulin, HbA1c, Hb, liver glycogen, and

carbohydrate in diabetic mice
[28]
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Table 2. Cont.

Fraction 6

Peak Name Rt % Area Match
Factor Association with Diabetes References

6 Quinic acid 33.88 4.21 87.7
Enhances glucose-stimulated insulin

secretion in both INS-1E cells and
mouse islets

[34]

7 Dihydroferulic acid 34.01 2.61 94.2

8 4-Coumaric acid 34.57 7.73 96.5

9 Indole-5-carboxylic acid 35.67 16.26 84.9

10 Palmitic acid 35.81 6.18 98 Enhances basal glucose uptake in myotubes [21,22]

11 Isoferulic acid 36.42 9.52 94.6

12 Stearic acid 37.86 5.18 96.3 Enhances basal glucose uptake in myotubes [23]

13 Glyceryl palmitate 40.95 11.71 96.3

14 Glycerol monostearate 43.08 9.65 97.1

15 Questinol 52.85 8.50 82.1

Fraction 7

Peak Name Rt % Area Match
Factor Association with Diabetes References

1 Propanoic acid 16.86 2.74 91.1

2 Glycerol 20.34 1.40 93.8

3 Succinic acid 21.20 47.86 98.1

4 4-Hydroxybenzoic acid 28.89 0.36 87.8 Increases glucose consumption in normal
and diabetic rats [16,17]

5 Azelaic acid 32.45 7.81 94.6
Restores normal levels of plasma glucose,
insulin, HbA1c, Hb, liver glycogen, and

carbohydrate in diabetic mice
[28]

6 D-Ribonic acid 32.66 1.45 90

7 Protocatechuic acid 32.94 12.24 95.9
Protects mesangial cells against high

glucose damage via inhibition of the p38
MAPK signaling pathway

[35–37]

8 Quinic acid 33.88 1.01 83.8
Enhances glucose-stimulated insulin

secretion in both INS-1E cells and
mouse islets

[34]

9 Syringic acid 34.09 1.49 94.3

10 Caffeic acid 36.93 12.81 95.8 Reduces insulin resistance and modulates
glucose uptake in HepG2 cells [38]

11 1,2-Hexadecanediol 37.56 5.02 82.7

12 Stearic acid 37.86 2.03 95.2 Enhances basal glucose uptake in myotubes [23]

13 Glyceryl palmitate 40.95 1.37 90.3

14 Chrysophanol 43.05 1.60 85.2 Increases GLUT4 expression in myotubes [39]

15 Decanedioic acid,
bis(2-ethylhexyl) ester 43.27 0.82 81.9
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Table 2. Cont.

Fraction 8

Peak Name Rt % Area Match
Factor Association with Diabetes References

1 Hydroxylamine 15.28 0.28 90.8 Enhances glucose uptake in C2C12 skeletal
muscle cells [19]

2 Hydracrylic acid 16.33 1.65 94.7

3 Glycerol 20.34 0.46 93.7

4 Succinic acid 21.22 42.22 98.3

5 Uracil 21.92 14.05 97.1

6 5-Methylpyrimidine-2,4-
diol 23.59 5.37 91.8

7
4,5-Dihydro-4-hydroxy-5-
(hydroxymethyl)-2(3H)-

furanone
26.22 7.73 86.3

8 Pyroglutamic acid 26.52 2.87 83.2 Reduces oral glucose tolerance and serum
insulin levels in rats [40]

9 3,4,5-Trihydroxytetrahydro-
2H-pyran-2-one 29.22 4.04 87.1

10
3,4-Dihydroxy-5-

(hydroxymethyl)dihydrofuran-
2(3H)-one

29.31 1.34 93.6

11 D-(+)-Ribono-1,4-lactone 30.39 0.77 89

12 Xylonic acid 32.65 0.70 90.9

13 Protocatechuic acid 32.94 0.76 91.7
Protects mesangial cells against high

glucose damage via inhibition of the p38
MAPK signaling pathway

[35–37]

14 Quinic acid 33.89 1.70 84.9
Enhances glucose-stimulated insulin

secretion in both INS-1E cells and
mouse islets

[34]

15 Gulonic acid
gamma-lactone 34.33 1.34 83.5

16 D-Gluconic acid 35.76 1.84 92.9

17 Caffeic acid 36.93 0.66 92.9 Reduces insulin resistance and modulates
glucose uptake in HepG2 cells [38]

18 Stearic acid 37.86 1.67 96.7 Enhances basal glucose uptake in myotubes [23]

19 Glyceryl palmitate 40.95 0.83 86.4

20 Glycerol monostearate 43.08 0.64 84.1

21 Decanedioic acid,
bis(2-ethylhexyl) ester 43.28 0.97 89.9

22 Genistein 50.21 0.26 83.4 Improves insulin secretion from pancreatic
beta cells [41]

23 Brucine 57.30 7.84 91.6
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Table 2. Cont.

Fraction 9

Peak Name Rt % Area Match
Factor Association with Diabetes References

1 Hydracrylic acid 16.34 0.44 93

2 Urea 19.16 2.42 95.1

3 Glycerol 20.37 35.50 97.8

4 Butanedioic acid 21.20 1.98 97.7

5 Meso-erythritol 26.60 1.97 97.8

6 2-Isopropylmalic acid 27.99 0.67 92.4

7 2-Deoxy-D-ribitol 28.73 0.73 93

8 Quinic acid 33.89 7.75 89.4
Enhances glucose-stimulated insulin

secretion in both INS-1E cells and
mouse islets

[34]

9 D-(-)-Fructose 34.11 8.16 95.9

10 L-(-)-Sorbose 34.25 4.30 96

11 D-Sorbitol 34.88 4.79 98

12 Myo-Inositol 35.18 22.82 96.3

Stimulates translocation of GLUT4 in
skeletal muscle of C57BL/6 mice and
induces translocation of GLUT4 to the

plasma membrane

[18,33]

13 D-Gluconic acid 35.76 0.75 91.5

14 Caffeic acid 36.93 1.71 95.1 Reduces insulin resistance and modulates
glucose uptake in HepG2 cells [38]

15 D-(+)-Trehalose 43.33 3.94 95.1

16 Chlorogenic acid 50.61 2.06 80.5 Reduces insulin resistance and modulates
glucose uptake in HepG2 cells [38]

Fraction 10

Peak Name Rt % Area Match
Factor Association with Diabetes References

1 L-Proline 16.99 4.91 91.8

2 L-Valine 18.50 1.11 95.5

3 Urea 19.08 0.69 96.4

4 L-Leucine 20.14 0.08 90.1

5 Glycerol 20.34 2.69 97.3

6 Butanedioic acid 21.19 0.43 96.1

7 Glyceric acid 21.88 0.99 95.8

8 Serine 22.66 0.32 95.3

9 L-Threonine 23.37 0.71 90.7

10 3-Aminoisobutyric acid 25.01 0.26 91.9

11 Pyroglutamic acid 26.52 3.94 96.7 Reduces oral glucose tolerance and serum
insulin levels in rats [40]

12 4-Aminobutanoic acid 26.75 3.15 94.8

13 Threonic acid 27.44 0.25 92.6

14 L-Threonic acid 27.86 0.31 93.3
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Table 2. Cont.

Fraction 10

Peak Name Rt % Area Match
Factor Association with Diabetes References

15 Phenylalanine 28.98 0.67 96.1

16 Asparagine 30.11 0.18 85.2

17 D-(+)-Arabitol 31.00 0.35 88.8

18 Xylitol 31.00 0.35 87.4

19 Quinic acid 33.90 58.03 89.9
Enhances glucose-stimulated insulin

secretion in both INS-1E cells and
mouse islets

[34]

20 D-(-)-Fructose 34.11 2.16 91.8

21 L-(-)-Sorbose 34.25 0.66 93.8

22 D-(+)-Talose 34.45 0.37 86.1

23 L-Tyrosine 34.72 0.32 85

24 D-Sorbitol 34.87 0.92 96.9

25 Myo-inositol 35.18 12.01 96

Stimulates translocation of GLUT4 in
skeletal muscle of C57BL/6 mice and
induces translocation of GLUT4 to the

plasma membrane

[18,33]

26 D-Gluconic acid 35.81 0.70 84.9

27 Caffeic acid 36.93 0.67 94 Reduces insulin resistance and modulates
glucose uptake in HepG2 cells [38]

28 D-(+)-Trehalose 43.33 4.34 96.2

29 Chlorogenic acid 50.61 1.56 80.8 Reduces insulin resistance and modulates
glucose uptake in HepG2 cells [38]

HbA1c, glycated hemoglobin; Hb, hemoglobin; GLUT4, glucose transporter type 4.

Table 3. Summary of the cytotoxicity and anti-diabetic activity of GT fractions.

Fraction Number
Cytotoxicity (µg/mL),

Safe Up to:

GLUT4 Translocation (% Relative to Controls)
at 125 µg/mL

− Insulin Relative to
Control without Insulin

+ Insulin Relative to
Control with Insulin

1 500 1.14 0.94
2 500 1.18 1.40
3 500 1.10 1.00
4 250 1.59 1.08
5 125 1.30 1.40
6 250 1.65 1.95
7 250 1.38 0.96
8 500 1.36 1.19
9 500 1.46 1.24

10 500 1.42 1.48
GT, Gundelia tournefortii; GLUT4, glucose transporter type 4.

4. Discussion

Phytochemicals and herbal extracts have become major factors of drug development
programs, particularly because of minimal costs and fewer adverse effects [42]. Indeed,
anti-diabetic herbal drugs are usually effective and lead to fewer side effects [43]. Recently,
we reported that GT methanol extract could efficiently promote GLUT4 translocation to
the PM of L6 muscle cells [9].
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In the current study, GT methanol extract was sub-fractioned into 10 samples via flash
chromatography. We detected 25 distinct anti-diabetic molecules, among which the major
molecules were: lupeol (fractions 1 and 2); lupeol-trifluoroacetate (fraction 1); palmitic acid
(fractions 2 and 4); β-amyrin (fraction 2); ursolic acid and ursolic aldehyde (fraction 3);
4-hydroxybenzoic acid (fraction 5); 3,4-dihydroxybenzoic acid and caffeic acid (fraction 7);
myo-inositol (fractions 9 and 10); and quinic acid (fraction 10). All fractions (except 1 and 3)
were able to efficiently stimulate GLUT4 translocation to the PM of L6-GLUT4myc cells.
The translocation of GLUT4 to the PM is the main process that accelerates glucose uptake
into cells, in response to insulin or other stimuli [7].

4.1. Lupeol and Lupeol-Trifluoroacetate

Lupeol and lupeol derivatives increased GLUT4 translocation to the PM in L6 muscle
cells, by up to 2.0 times [24]. Lupeol stimulation of glucose uptake is associated with the
activation of the IRS-1/PI3K/AKT-dependent signaling pathway in L6 cells, which leads to
enhanced translocation of GLUT4 [24]. Although lupeol and lupeol-trifluoroacetate were
both present in fraction 1, no significant effects on GLUT4 translocation were observed.
This might have been due to the antagonistic effects of other chemicals. For instance,
methyl palmitate opens K channels [44], which in turn reduces GLUT4 translocation to the
PM [45]. Lupeol also accounted for 11.2% of fraction 2. This fraction contained only three
compounds, all of which are known to promote GLUT4 translocation to the PM (Table 2).
Interestingly, lupeol can reportedly bind directly to GLUT4 [46], and this action might
enhance its activation of the IRS-1/PI3K/AKT-dependent signaling pathway [24].

4.2. Palmitic Acid

Palmitic acid was present in fractions 1 to 6, but was observed at high concentrations
in fractions 2 and 4 alone (about 11%). Glucose uptake is enhanced in skeletal muscle
treated with 300 µM palmitic acid for up to 60 min [22]. Similarly, short-term treatment
of adipocytes with fatty acids increases basal glucose uptake [47,48]. However, long-term
exposure (16–24 h) of myocytes to palmitate induces insulin resistance [21,49,50].

In the current study, L6 cells were exposed to GT fractions for 23 h and palmitic acid
accounted for 0.7%, 11.2%, 8.2%, 11.8%, 3.2%, and 6.2% in fractions 1 to 6, respectively. The
presence of relatively high levels of palmitic acid in fractions 2, 3, and 4 could explain the
relatively lower translocation levels observed in those fractions. In fraction 2, only three
compounds were detected: β-amyrin, lupeol, and palmitic acid. The first two compounds
are known to enhance glucose uptake and GLUT4 translocation [26,51,52]. However,
GLUT4 translocation in L6 cells treated with 250 µg/mL of fraction 2 was increased by
only 1.3 times in the presence of insulin and 1.22 times in the absence of insulin (relative to
the insulin control). This could be attributed to the negative effects of palmitic acid.

Fraction 3 did not affect GLUT4 translocation, while fraction 4 increased GLUT4
translocation by 1.6 times at 125 µg/mL and 2.0 times at 250 µg/mL, in the absence of
insulin. No significant effects were observed in the presence of insulin (Figure 3. These
results could be attributed to the high levels of brucine (50.5%). Brucine is an inhibitor
of the AKT, ERK, and mTOR signaling pathways [15] and might be a major antagonist of
GLUT4 translocation enhancers.

Brucine accounted for 11.6%, 53.4%, 7.7%, and 7.8% of fractions 3, 4, 5, and 8. The
present findings might explain why the highest levels of GLUT4 translocation were ob-
served in L6 cells treated with fraction 6 (3.5 times basal levels in the absence of insulin, and
5.2 times basal levels in the presence of insulin, when treated with 250 µg/mL; Figure 3).
These results could also be attributed to the high levels of GLUT4 activators in fraction 6,
as six out of the 15 compounds detected in that fraction are known to enhance glucose
disposal. Those six compounds were 4-hydroxybenzoic acid, isovanillic acid, azelaic acid,
quinic acid, palmitic acid, and stearic acid (Table 2). These active compounds accounted
for 32.8% of fraction 6.
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4.3. β-Amyrin

Fraction 2 was the only fraction in which β-amyrin was detected (35%), and β-amyrin
acetate accounted for 18.7% of fraction 1. A previous study reported that β-amyrin can
reduce the elevated plasma glucose levels in streptozotocin-induced diabetic mice during
an oral glucose tolerance test [26]. In an independent study, β-amyrin palmitate led to
similar results in diabetic rats [52].

Interestingly, membrane GLUT4 levels and glucose uptake in 3T3-L1 adipocytes
treated with β-amyrin were significantly higher than in control cells [51]. Therefore, the
increased GLUT4 translocation observed in cells treated with fraction 2 could be attributed,
at least in part, to β-amyrin. To the best of our knowledge, β-amyrin acetate does not affect
glucose disposal nor GLUT4 translocation. This could partially explain the neutral effects
of fraction 1 on GLUT4 translocation.

4.4. Ursolic Acid and Ursolic Aldehyde

Ursolic acid and ursolic aldehyde were detected in fraction 3 alone, accounting for
38.5% and 19.3%, respectively. Some studies have shown that ursolic acid inhibits protein
tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling, and improves
insulin sensitivity [53,54]. Ursolic acid combined with rosiglitazone improves insulin
sensitivity by increasing skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation
in diabetic mice fed a high-fat diet [55].

Remarkably, ursolic acid stimulates GLUT4 translocation and glucose uptake in 3T3-
L1 adipocytes through the PI3K pathway [31]. Ursolic acid derivatives reportedly inhibit
α-glucosidase activity [25]. Other ursolic acid derivatives inhibit intestinal glucose uptake
in Caco-2 cells and stimulate insulin secretion in diabetic rats [56]. Even though ursolic
acid is known to enhance GLUT4 translocation, fraction 3 showed no significant effects on
GLUT4. This could be attributed to the presence of brucine, an inhibitor of the AKT, ERK,
and mTOR signaling pathways [15], which likely prevents GLUT4 translocation to the PM.

4.5. 4-Hydroxybenzoic Acid and 3,4-Dihydroxybenzoic Acid

In fraction 5, 4-hydroxybenzoic acid accounted for 76.2%; in fraction 6, 7.7%; and in
fraction 7, 0.36%. Oral administration of 4-hydroxybenzoic acid lowers blood glucose levels
in streptozotocin-induced diabetic rats and normal rats [16,17]. However, its activity could
be attributed mainly to the stimulation of insulin secretion [16,17], rather than the direct
activation of glucose transporters. This could explain the low levels of GLUT4 translocation
in cells exposed to fraction 5, which mainly comprised 4-hydroxybenzoic acid.

The high efficiency of fraction 6 was not related to the presence of 4-hydroxybenzoic
acid. One derivative of this compound, 3,4-dihydroxybenzoic acid, also known as protocat-
echuic acid, accounted for 12.2% of fraction 7. Interestingly, protocatechuic acid is known
to reverse hyperglycemia in diabetic rats [57]. Notably, it mimics insulin as it activates the
INSR/PI3K/AKT and AMPK pathways, both in vitro and in vivo. It also triggers glucose
uptake through GLUT4 translocation [36]. Therefore, we attributed the enhancement of
GLUT4 translocation in fraction 7 in part to protocatechuic acid.

4.6. Caffeic Acid

Caffeic acid accounted for 12.8% of fraction 7, and 1% of fractions 8, 9, and 10 each.
It is associated with the phosphorylation of AKT [58], an upstream activator of GLUT4
translocation. Caffeic acid also attenuates insulin resistance and modulates glucose uptake
in HepG2 cells [38]. Those findings are consistent with the present results, as fraction 5
induced a significant increase in GLUT4 translocation. The activity of fractions 8 to 10
cannot be attributed to caffeic acid, owing to its low levels in those fractions.

4.7. Myo-Inositol and Quinic Acid

Myo-inositol accounted for 22.8% of fraction 9 and 12.01% of fraction 10. Inositol
derivatives stimulate the uptake of glucose, accompanied by the translocation of GLUT4
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to the PM in L6 myotubes. Myo-inositol increases GLUT4 translocation in the skeletal
muscles of mice and lowers postprandial blood glucose levels [18]. It also activates the
AMPK pathway and increases GLUT4 expression [59], leading to GLUT4 translocation
and cumulative glucose uptake. These findings are consistent with our observations in
fractions 9 and 10, both of which activated GLUT4 translocation. Quinic acid was present
in fractions 6 to 10. However, its anti-diabetic activity is associated with the promotion of
insulin secretion from pancreatic beta cells [34].

In summary, 25 out of the 98 distinct compounds detected in the 10 GT fractions under
investigation showed anti-diabetic activity. Most of those compounds enhanced glucose
disposal and GLUT4 translocation to the PM. These active compounds accounted for about
25% of the total number of compounds detected. In addition to the main compounds dis-
cussed above, 14 other chemicals present at low levels also showed anti-diabetic properties
(Table 2).

5. Conclusions

The GT methanol extract sub-fractions (except fractions 1 and 3) significantly stimu-
lated GLUT4 translocation to the PM of L6 myocytes. Among the compounds detected,
25% are reportedly anti-diabetic agents, while 20% are known to enhance either GLUT4
transport or translocation to the PM. The activity of these fractions should be exam-
ined in diabetic animal models and human subjects before they can be prescribed as
anti-diabetic therapies.

Supplementary Materials: Supplementary material Figure S1: GC-MS chromatograms of the Gun-
delia tournefortii fractions (frc. 1- frc. 10). Major peaks are labeled with the compounds identified.
Zoom; region of the elution of some compounds.
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