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A novel cascade biorefinery strategy toward phenolic monomers and carbon quantum
dots (CQDs) is proposed here via coupling catalytic hydrogenolysis and hydrothermal
treatment. Birch wood was first treated with catalytic hydrogenolysis to afford a high yield
of monomeric phenols (44.6 wt%), in which 4-propanol guaiacol (10.2 wt%) and 4-
propanol syringol (29.7 wt%) were identified as the two major phenolic products with
89% selectivity. An available carbohydrate pulp retaining 82.4% cellulose and 71.6%
hemicellulose was also obtained simultaneously, which was further used for the synthesis
of CQDs by a one-step hydrothermal process. The as-prepared CQDs exhibited excellent
selectivity and detection limits for several heavy metal cations, especially for Fe3+ ions in an
aqueous solution. Those cost-efficient CQDs showed great potential in fluorescent sensor
in situ environmental analyses. These findings provide a promising path toward developing
high-performance sensors on environmental monitoring and a new route for the high
value-added utilization of lignocellulosic biomass.

Keywords: phenolic monomer, reductive catalytic fractionation, carbon quantum dots, fluorescent sensing,
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INTRODUCTION

Lignocellulosic biomass, sustainable and high-energy content stored in the biosphere, is regarded as a
promising feedstock for the production of sustainable materials and chemicals (Li et al., 2020). Lignin
as the largest naturally occurring aromatic/phenolic compound accounts for 15–40% of
lignocellulosic biomass (Ragauskas et al., 2014). Depolymerizing lignin into monomeric phenols
would be a vital starting point for improving the resulting lignin fraction utilization (Sun et al., 2020).
However, the current lignocellulosic biorefinery focuses on carbohydrate (cellulose and
hemicellulose) valorization, including sulfite, kraft, and organosolv pretreated processes. During
those processes, stable C–C linkages would inevitably be formed in the separated lignin samples,
which predominantly affect the depolymerization of lignin into monomeric phenols (Renders et al.,
2017). Therefore, the harnessing of lignin in a practical manner is still a major challenge.

Numerous efforts have been made to transfer the lignin into low–molecular weight aromatics,
which would compete directly against existing chemicals derived from petroleum. The reductive
catalytic fractionation (RCF) (also denominated as “lignin-first” strategy) can convert protolignin
into monomeric phenols with a high yield, while keeping carbohydrates with very high retention
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in the solid residues (Renders et al., 2017). The biorefinery
approach of the RCF would achieve high yields of overall
products from all three biopolymers (cellulose,
hemicellulose, and lignin) via a combined process, which
remains enormous potential to advance biorefinery
technology and economy (Schutyser et al., 2018; Wang et al.,
2020c). Until now, heterogeneous metal catalysts, including
noble [Pd (Zhang et al., 2019), Ru (Van den Bosch et al., 2015a;
Li and Song, 2019), Pt (Xu et al., 2012), and Rh (Liu Y. et al.,
2019)] or non-noble [Ni (Wang et al., 2019), Mo (Xiao et al.,
2017; Sun et al., 2019), and Cu (Sun et al., 2018)] metals and
bimetallic catalysts [NiMo (Wang Y.-Y. et al., 2016), MoZn
(Wang et al., 2018), and Zn/Pd/C (Parsell et al., 2015)], were
usually employed for lignin depolymerization. During RCF,
the utilization of metal catalysts can motivate the cleavage of
ether C–O bonds and avoid the formation of new stable C–C
bonds of protolignin (Renders et al., 2017). Generally, the
selective control of phenolic monomers with different end-
chains at the para position has been achieved through the
selection of catalysts, resulting in the formation of propyl-
(Parsell et al., 2015), propenyl- (Galkin and Samec, 2014),
propanol- (Van den Bosch et al., 2015a), ethyl-, and allyl
ether (Xiao et al., 2017; Sun et al., 2019)-substituted phenols.
The solid residues of the RCF process are mainly composed of
almost all the hemicellulose and cellulose components.
Although high yields of phenolic monomers were obtained
during RCF, only few studies have focused on the
further application of the carbohydrate in the solid
fraction. Zhang et al. (2019) reported that cellulose and
hemicellulose components in solid pulp could be
enzymatically hydrolyzed into monosaccharides with 90%
yield of glucose and 85% yield of xylose, respectively. Van
den Bosch et al. (2015b) studied the chemocatalytic conversion
of hemicellulose residues into pentitols and cellulose into
hexitols by using a Ru/C catalyst. In our previous work, we
reported that the solid pulp obtained from Pd-catalyzed
Eucalyptus wood could be efficiently converted into levulinic
acid and furfural using FeCl3 catalysis process (Chen et al.,
2020). Therefore, the exploration of high-value added solid
pulp utilization would advance the transformation of all
components of biomass.

Carbon quantum dots (CQDs), a novel fluorescent carbon
material, have attracted tremendous attention because of their
unique physicochemical properties and potential applications.
CQDs exhibit a large variety of merits, such as stable fluorescence
intensity, good water solubility, excellent biocompatibility, and
high photostability (Lim et al., 2015). CQDs demonstrate great
potential for various applications in fields of cellular imaging,
biosensors, photocatalysis, and light-emitting diodes (Qiao et al.,
2019). Given the importance of CQDs, the synthesis of CQDs
from a wide range of carbon sources has been explored by
hydrothermal treatments, including chitosan (Liang et al.,
2016), polyaniline (Qin et al., 2012), sodium citrate (Liu Y.
et al., 2017), and carbon paper (Devi et al., 2018). Recently,
biomass materials are considered as the potential substitutional
feedstocks due to their green, renewable, and available nature.
Therefore, the solid carbohydrate pulp, which is generated from

RCF of biomass, would be a promising candidate for CQD
production.

We have previously reported the RCF of lignocellulosic
biomass by using Ru (Li and Song, 2019), Mo (Xiao et al.,
2017; Sun et al., 2019), Pd (Zhang et al., 2019; Wang et al.,
2020b; Chen et al., 2020), and Ni catalysts (Liu X. et al., 2019;
Wang et al., 2019). The further exploration of the transformation
of biomass based on the RCF process remains desirable. In the
present work, birch wood first underwent catalytic
hydrogenolysis to afford a high yield of monomeric phenols.
Subsequently, the solid carbohydrate pulp was further treated
using a hydrothermal process for the synthesis of CQDs. Finally,
the method introduced in this study delivers the enlightening
insights to generate value-added chemicals and CQDs from
birch wood.

MATERIALS AND METHODS

Materials
Birch wood (Betula alnoides) was harvested in Yunnan Province,
southwest of China, which consisted of cellulose (38.6%),
hemicellulose (22.5%), and lignin (20.1%). The dried birch was
grounded to obtain 40–60 mesh wood particles, and the birch
powder was extracted with toluene–ethanol (2:1, v/v) for 6 h to
remove extractives. The dewaxed birch powder was dried at 60°C.
Pd/C catalyst, AlCl3, CeH12N3O15, CaCl2, FeCl2·4H2O,
CoCl2·6H2O, FeCl3·6H2O, CuCl2·2H2O, KCl, MgCl2, and
ZnCl2 were purchased from Energy Chemical (China).

Experiment Procedure
The dewaxed birch (1.0 g), methanol (40 ml), and Pd/C (100 mg,
10 wt%) were added into a Parr reactor. The reactor was purged
with N2 and pressurized with 3 MPa H2. The mixture was treated
at 240°C for 4 h. After reaction, the mixture was immediately
cooled by ice water and then filtered with a Buchner funnel. The
insoluble fractions were thoroughly washed with methanol and
freeze-dried for further experiment. The soluble fraction
containing phenolic compounds was collected for further
analysis.

The insoluble fractions consisted of carbohydrate pulp and
Pd/C, which could be separated according to 300 mesh screening.
Then, the carbohydrate pulp was used to fabricate CQDs. In brief,
0.5 g of solid pulp and 10 ml of water were mixed. The mixture
was then ultrasonicated for 30 min to obtain a well-dispersed
solution. The mixture was heated to 200°C and maintained for
5 h. Upon completion of the treatment, the mixture was cooled
and filtered to obtain the supernatant. The brown supernatant
containing water-soluble CQDs was dialyzed in a dialysis
membrane (MWCO of 500 Da) for 72 h. The purified CQDs
were freeze-dried for further characterization.

Analysis of Lignin Products
The soluble fraction was extracted with CH2Cl2–H2O.
Subsequently, CH2Cl2 in the organic phase was removed,
giving the brown “lignin oil.” The analyses of lignin oil
including GC-MS, GC, and gel permeation chromatography
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(GPC) were described earlier (Chen et al., 2020). The
monomeric phenol yields and carbohydrate retention were
also calculated based on the equations as described by Zhang
et al. (2019).

Characterization of CQDs
The characterization of CQDs including atomic force microscopy
(AFM) image, transmission electron microscopy (TEM) image,
X-ray photoelectron spectroscopy (XPS), Fourier transform
infrared (FT-IR) spectra, X-ray diffraction (XRD) analysis, and
ultraviolet–visible (UV/Vis) spectra were extensively detected as
described earlier (Liu et al., 2020).

Quinine sulfate with a 54% quantum yield (QY) in 0.1 M
H2SO4 was used as the standard sample for the calculation of the
QY (Sahu et al., 2012). The QY of CQDs was calculated using the
equation as described by Liu et al. (2020).

Fluorescent Detection of Metal Ions
The CQD solution was initially prepared with a concentration of
0.02 mg/ml. Various metal ions including AlCl3, CeH12N3O15,
CaCl2, FeCl2·4H2O, CoCl2·6H2O, FeCl3·6H2O, CuCl2·2H2O, KCl,
MgCl2, and ZnCl2 were employed for the selectivity study. The
concentration of metal ion salt solutions was 2,000 μM, and the
pH was adjusted to 3. To evaluate the sensitivity toward Fe3+,
different concentrations of Fe3+ (0–400 μM) were added into
the prepared CQD solution for photoluminescence spectra
measurement. During the process, 2 ml metal ion salt solution
was poured into 2 ml CQD solution and incubated for 5 min. The
fluorescent intensity of the CQDs was detected under excitation
wavelength at 350 nm, which was named as I. The fluorescent
intensity for CQD solution was defined as I0.

RESULTS AND DISCUSSION

Phenolic Monomers From RCF of Birch
A wide variety of heterogeneous metal catalysts were used for
catalytic hydrogenolysis of lignocellulosic biomass. Considering
the phenolic monomer yield, carbohydrate pulp retention, and
catalytic ability, Pd/C catalyst was chosen for the RCF of birch
(Zhang et al., 2019). The birch wood was treated with Pd/C at
240°C for 4 h using 3 MPa H2 in methanol, giving a soluble
fraction and solid carbohydrate residues. The soluble fraction was
extracted with CH2Cl2–H2O. The brown soluble oily products in
the organic phase contained phenolic monomers, dimers, and
oligomers, while the aqueous phase mainly composed of sugars.
The phenolic monomer yield, the molecular weight of the lignin
oily products, and the carbohydrate retention in the solid residues
were systematically analyzed. The molecular weight of lignin oil
was 440 g mol−1, which was significantly decreased as compared
to that of the isolated cellulolytic enzyme lignin (CEL,
18,300 g mol−1) (Wen et al., 2013) and milled wood lignin
(MWL, 10,860 g/mol) from birch (Zhou et al., 2012). As
shown in Figure 1A, it was also shown that the total yields of
monomeric phenols reached 44.6 wt%. The phenolic monomer
yield from the catalytic hydrogenolysis of birch using the Pd/C
catalyst was comparable to other reported Pd/C-catalyzed
hydrogenolysis of biomass. Zhang et al. (2019) investigated the
RCF of bamboo in the presence of Pd/C catalyst, and 41.7 wt% of
phenolic monomer yield was obtained. Parsell et al. (2015)
reported a bimetallic Zn/Pd/C catalyst that converts lignin in
intact lignocellulosic biomass directly to two methoxyphenol
products (2-methoxy-4-propylphenol and 2,6-dimethoxy-4-
propylphenol), which resulted in 40–54% of the available

FIGURE 1 | (A) Phenolic monomer yield, sugar retention, (B) gas chromatogram, and (C) molecular weight distribution after RCF of birch.
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lignin. The catalytic conversion of lignin in birch to aromatic
products by using the Pd/C catalyst was also explored, with a total
yield of aromatic products of 49% (Galkin and Samec, 2014).
Notably, analysis of the crude bio-oil by GC and GC-MS as
illustrated in Figure 1B and Supplementary Table S2 indicated
that 4-propanol guaiacol (10.2 wt%) and 4-propanol syringol
(29.7 wt%) were the major products of Pd/C-catalyzed
hydrogenolysis of birch wood. This result was further
supported by the 2D HSQC NMR spectra of the lignin oil,
where newly dominant cross-peaks corresponding to propanol
moieties were clearly observed, as we previously reported (Chen
et al., 2020). Moreover, the selectivity of those twomajor aromatic

phenols reached 89% based on a total monomers yield of 44.6 wt
%. Additionally, the direct RCF of birch also afforded the
carbohydrate pulp remained as a solid residue with 82.4 wt%
C6 and 71.6 wt% C5 retention according to the chemical
composition analysis (Figure 1A; Supplementary Table S1),
which makes it a promising candidate for the co-production
of CQDs.

Structural Characterization of the CQDs
CQDs were synthesized by a facile hydrothermal treatment
using carbohydrate pulp as the carbon source. The effect of
reaction time on the QY of CQDs was investigated at 200°C

FIGURE 2 | (A) TEM and (B) AFM images of the CQDs.

FIGURE 3 | (A) XRD patterns, (B) FT-IR spectra, (C) XPS spectra of CQDs, (D) C1s, and (E) O1s high-resolution spectra of the CQDs.
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(Supplementary Figure S3). The QY of CQDs enhanced
with the extending of retention time from 4 to 8 h, while it
decreased with the further prolonging time. Hence, the
optimal reaction condition for the synthesis of CQDs was
established as 200°C and 5 h, from which the QY of CQDs
was calculated to be 21.7%.

The microstructure and morphology of CQDs were
characterized by TEM, which illustrated that CQDs had
spherical morphologies and were uniformly dispersed in
aqueous solutions. As shown in Figure 2A, the particle size of
CQDs was distributed in the range of 4.0–6.3 nm, and the average
diameter of CQDs was calculated to be 5.24 nm. Figure 2B
demonstrates the topographic morphology of the CQDs, and
the inset displays an AFM trace between four particles. The AFM
image indicates that the heights of the prepared CQDs were in the
range of 1–3.6 nm.

The XRD analysis was applied to characterize the crystalline
structure of CQDs. As shown in Figure 3A, the XRD pattern of
CQDs has a broad diffraction peak at 23.1°, which was identical to
that of a graphitic structure (Dong et al., 2012). The peak at 15.6°

in the carbohydrate pulp corresponded to the amorphous
structure (Supplementary Figure S4). As compared to the
peak in carbohydrate pulp, the shifted peak was correlated
with the crystal transition from amorphous pulp into
crystalline CQDs.

The detailed functional groups in CQDs were identified by
FT-IR (Figure 3B). A broad peak at 3,325 cm−1 is assigned to
O–H stretching vibration (Ramanan et al., 2018). The peaks at
2,936 cm−1 and 1713 cm−1 are related to the stretching
vibration of C–H and carboxyl (–COOH), respectively
(Yang et al., 2018). In addition, the bands observed at
1,614 cm−1 and 1,200 cm−1 reveal the presence of C�C and
C–O–C functional groups (Li et al., 2015). A weak signal at
1,047 cm−1 could be ascribed to the absorption of C–O–C and
C–O. The FT-IR analysis suggested the existence of
hydrophilic functional groups on the surface of CQDs. The
oxygen-containing functional groups remarkably improved
the stability and dispersion of CQDs in aqueous solutions
(Wang et al., 2015).

To further probe the surface composition and valence state of
the CQDs, XPS spectroscopy measurement was performed. The
XPS survey spectrum of CQDs presents obvious bands centered
at 284.2 and 531.5 eV, corresponding to C1s and O1s signals,
respectively (Figure 3C). The high-resolution C1s and O1s XPS
spectra of CQDs were also analyzed. The configuration of carbon
was governed by the sp2 hybridized C–C bonds with minor
existence of hydrocarbon groups and–COOH groups (Wang
M. et al., 2020). As illustrated in Figure 3D, the high-
resolution C1s spectrum exhibited four peaks at 284.6, 285.9,
287.4, and 288.5 eV, which are attributed to C-C/C�C, C-O, C�O
and –COOH bonds, respectively (Xu et al., 2020). In the high-
resolution O1s spectrum (Figure 3E), the peaks at 531.8, 532.5,
and 533.2 eV are corresponding to C�O, C-O-C, and C-OH
groups, respectively (Miao et al., 2018). The XPS results indicated
that the prepared CQDs contained some main groups such as
carbonyl and carboxyl, which were consistent with the FT-IR
analysis.

Optical Properties
The optical properties of the CQD aqueous solution were
systematically studied according to fluorescence
spectroscopies and UV–Vis. The CQD solution emitted
bright blue fluorescence at UV illumination of 365 nm and
displayed superior aqueous dispersibility. As shown in
Figure 4A, the UV–Vis spectra of CQDs had a strong
absorption peak at 277 nm and a weak shoulder peak at
331 nm. The peak at 277 nm is attributed to the π–π*
transition of the C�C bond, in which the orbital was sp2-
hybridized clusters (Guo et al., 2016). The peak at 331 nm is
assigned to the n–π* transition of the C�O groups (Zhang and
Chen, 2014). Figure 4B illustrates the fluorescence emission
spectra of the CQDs under various excitation wavelengths. The
emission peaks of CQDs were gradually red-shifted with the
increase in excitation wavelength from 320 to 410 nm. The
CQDs exhibited a maximum emission at 440 nm when the
excitation wavelength was 350 nm. This result suggested that
the fluorescence emission spectra of CQDs were heavily
dependent on the excitation wavelength. In addition, the
O-containing groups on sp2-hybridized carbon could induce
local distortion, and the O-related defect state can further cause
energy gaps. The electrons from the ground state are excited to
the various energy levels of π* by excitation. The surface excited
electrons are trapped by the O-related defect state, resulting in
the back-transition of the electrons from the excited state to

FIGURE 4 | (A) UV–Vis absorption spectra of CQDs and the excitation/
emission fluorescent spectra of CQDs. (B) Fluorescent emission spectra of
CQDs at different range of excitation wavelengths.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org December 2021 | Volume 9 | Article 8031385

Chen et al. Integrated Cascade Biorefinery of Birch

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


ground state (Yang et al., 2019). Therefore, the O-related defect
state was an important factor for the bright blue fluorescence of
the obtained CQDs.

Detection of Fe3+ Ions
In this study, CQDs with excellent fluorescence performance
were successfully prepared using the solid carbohydrate pulp as
precursor. The fluorescence quenching performance of the as-
prepared CQDs in the presence of different metal ions was
evaluated. A series of metal ions, including Al3+, Ca2+, Ce4+,
Co2+, Cu2+, Fe2+, Fe3+, K+, Mg2+, and Zn2+ ions, were mixed
with the CQD aqueous solution using an excitation wavelength
of 350 nm for fluorescence detection. The corresponding
fluorescence emission spectra are depicted in Figure 5A. The
marked fluorescence quenching appeared when Fe3+ ions were
added to the CQD solution. As shown in Figure 5B, the I/I0
results indicated that the Fe3+ ions displayed the severe
fluorescence quenching capability as compared with other
metal ions. It has been reported that the fluorescence
quenching phenomenon was attributed to the electron
transfer from oxygen-rich groups of CQDs and metal ions
(Liu W. et al., 2017). Therefore, the superior fluorescent
selectivity of CQDs toward Fe3+ ions was due to the strong
coordination between Fe3+ ions and carboxyl groups on the
surface of CQDs.

The sensitivity of Fe3+ ion sensing of the CQDs was carried
out under various Fe3+ concentrations. As illustrated in

Figure 5C, the fluorescence intensity of CQDs decreased
with the enhancement of the Fe3+ ion concentrations.
Varying the Fe3+ ion concentration from 0 to 60 μM, the
variation of emission intensity (I/I0 value) displayed a good
linear relationship with a correlation coefficient R2 � 0.994
(Figure 5D). The limit of detection (LOD) was calculated to be
0.978 μM based on the three times standard deviation rule
(LOD � 3σ/k, n � 11). As shown in Table 1, the as-prepared
CQDs for the detection of Fe3+ ions were comparable to
the reported CQDs synthesized by other precursors. The
presented CQDs possessed smaller size (5.24 nm), higher
QY (21.7%), and wider linear range (0–60 μM) of Fe3+ ions
as compared with the reported CQDs. The selectivity and
sensitivity studies of the as-prepared CQDs suggest the
promising applications of CQDs in the fluorescent sensor
for the detection of Fe3+ ions.

Synergistic Biorefinery Based on Catalytic
Hydrogenolysis and Hydrothermal
Treatment
The combination of catalytic hydrogenolysis and hydrothermal
treatment opens a new direction for biorefinery configurations
and synergies. The lignin portion of birch wood was first
employed by Pd/C-catalyzed hydrogenolysis, while
simultaneously leaving behind an essentially intact solid
carbohydrate pulp that can be further processed via

FIGURE 5 | (A) Fluorescent emission spectra of CQDs under various metal ions. (B) The relative fluorescent intensities (I/I0) of CQDs under various metal ions. (C)
Fluorescent emission spectra of CQDs under various Fe3+ ion concentrations. (D) The dependence of I/I0 value on the different Fe3+ ion concentrations.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org December 2021 | Volume 9 | Article 8031386

Chen et al. Integrated Cascade Biorefinery of Birch

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


hydrothermal treatment. Finally, upon the treatment of birch
wood (1 g) with Pd/C in methanol under 240°C for 4 h, lignin
component (224 mg) can be depolymerized into monomers
(100 mg), dimers, and oligomers. An available carbohydrate
pulp containing cellulose (318 mg) and hemicellulose (161 mg)
was further used for the synthesis of CQDs by a one-step
hydrothermal process. The detailed process for transforming
birch wood into phenolic monomers and CQDs is shown in
Figure 6. Lignin is an amorphous and three-dimensional
phenolic polymer of methoxylated phenylpropane units
consisting of several types of linkages, with the most abundant
being the β-O-4 ether linkage. Lignin in the birch wood was
subjected to Pd/C-catalyzed hydrogenolysis for efficient C–O
bond cleavage to obtain phenolic monomers (Parsell et al.,
2013). The carbohydrates of birch were recovered and further
treated for the preparation of the CQDs. The fluorescence of
CQDs was quenched when Fe3+ ions were added into the CQDs
solution. Generally, the mechanism of the fluorescence
quenching phenomenon is divided into static and dynamic
quenching. The observed quenching may be static quenching,
resulting from the formation of a complex between the ground
state of fluorescence groups and the quenching agent (Shangguan
et al., 2017).

CONCLUSION

In summary, we have demonstrated the integration of catalytic
hydrogenolysis and hydrothermal treatment that provided a
simple strategy toward the production of phenolic monomers
and CQDs from lignocellulosic biomass. The efficient catalytic
hydrogenolysis of birch wood with Pd/C afforded lignin
monomers with a high yield of 44.6 wt%. An available
carbohydrate pulp retaining 82.4% cellulose and 71.6%
hemicellulose was obtained simultaneously. Hydrothermal
treatment of the pulp led to the synthesis of CQDs with a
yield of 21.7%. The as-prepared CQDs exhibited effective
sensing potential for Fe3+ ions in an aqueous solution. It is
anticipated that this study provides an integrated biorefinery
strategy for developing new avenues for generating value-
added chemicals from lignocellulosic biomass.
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TABLE 1 | Comparison of the reported CQDs for Fe3+ detection.

Carbon source Size (nm) QY (%) Linear range (μM) References

Coriander leaves 1.5–2.98 6.48 0–6 Sachdev and Gopinath (2015)
Papaya 3.4 18.98 1–8 Wang et al. (2016a)
Potato 0.2–2.2 6.14 5–50 Xu et al. (2014)
Black tea 4.6 — 0.25–60 Song et al. (2017)
Egg white 2.1 64 50–250 Zhang et al. (2015)
Prunus avium fruit 7 13 0–100 Edison et al. (2016)
Honey 2 19.8 0–100 Yang et al. (2014)
Goose feathers 21.5 17.1 2–7 Liu et al. (2015)
Konjac flour 3.37 22 — Teng et al. (2014)
Carbohydrate pulp 5.24 21.7 0–60 This work

FIGURE 6 | Schematic diagram for the reductive catalytic fractionation (RCF) of birch and the preparation of fluorescent CQDs.
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