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Purpose: To describe spectral-domain OCT (SD-OCT) features, age, gender, and systemic variables that
may be used in machine/deep learning studies to identify high-risk patient subpopulations with high risk of
progression to geographic atrophy (GA) and visual acuity (VA) loss in the short term.

Design: Prospective, longitudinal study.
Participants: We analyzed imaging data from patients with intermediate age-related macular degeneration

(iAMD) (N ¼ 316) enrolled in the Age-Related Eye Disease Study 2 (AREDS2) Ancillary SD-OCT with adequate SD-
OCT imaging for repeated measures.

Methods: Qualitative and quantitative multimodal variables from the database were derived at each yearly
visit over 5 years. Based on statistical analyses developed in the field of cardiology, an algorithm was developed
and used to select person-years without GA on color fundus photography or SD-OCT at baseline. The analysis
used machine learning approaches to generate classification trees. Eyes were stratified as low, average, above
average, and high risk in 1 or 2 years, based on OCT and demographic features by the risk of GA development or
decreased VA by 5þ and 10þ letters.

Main Outcome Measures: New onset of SD-OCTedetermined GA and VA loss.
Results: We identified multiple retinal and subretinal SD-OCT and demographic features from the baseline

visit, each of which independently conveyed low to high risk of new-onset GA or VA loss on each of the follow-up
visits at 1 or 2 years.

Conclusions: We propose a risk-stratified classification of iAMD based on the combination of OCT-derived
retinal features, age, gender, and systemic variables for progression to OCT-determined GA or VA loss. After
external validation, the composite early end points may be used as exclusion or inclusion criteria for future clinical
studies of iAMD focused on prevention of GA progression or VA loss. Ophthalmology
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Translation of pathophysiological insight of intermediate
age-related macular degeneration (iAMD) to clinical studies
requires better understanding of the timeline of visible
biomarkers that manifest throughout the stages of iAMD.
Despite the widespread use of spectral-domain OCT (SD-
OCT), which is invaluable in monitoring late age-related
macular degeneration (AMD), there is an insufficient un-
derstanding of the combination of specific structural
biomarkers that predict progression to late disease,
either choroidal neovascularization (NV) or geographic at-
rophy (GA).
ª 2022 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
The interplay among patterns of injury, SD-OCT find-
ings, and systemic health is also not well understood. Thus,
there is a critical need for cost-effective, incisive classifi-
cation systems for iAMD; these will require integration of
SD-OCT findings that have historically been studied in
isolation. Spectral-domain OCT imaging of retinal layers
and drusen substructures characterizes pathologies and
progressive changes in AMD.1 The investigation of the
combination of imaging biomarkers associated with
pathways of progression to GA will enable cost-effective,
clinical studies based on disease pathobiology.
1https://doi.org/10.1016/j.xops.2022.100160
ISSN 2666-9145/22
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An extremely valuable dataset of iAMD eyes that can be
used for identification of SD-OCT biomarkers of disease
progression is the Age-Related Eye Disease Study 2
(AREDS2) Ancillary SD-OCT (A2A) study. It is an
observational, ancillary, prospective study of a subset of
eyes from AREDS2 that included a group of control eyes of
age-matched adults. The AREDS2 trial was a multicenter,
prospective, randomized trial conducted to test the effect of
oral nutritional supplements on the progression of AMD on
color photographs. The A2A study provided the largest and
most comprehensive longitudinal dataset of SD-OCT im-
ages, demographic, and systemic information in iAMD. The
study included 316 patients with 1499 visits in 7.4 years,
with a mean follow-up of 4.3 years. Using this dataset, our
group has previously shown that abnormalities in the retinal
pigment epithelium-drusen complex (RPEDC) volume,
retinal pigment epithelium (RPE) abnormal thinning vol-
ume, drusen substructures, and hyper-reflective foci (HRF)
axial distance severity score were preatrophic markers that
predicted the 2-year progression to GA as defined by color
photographs.2e4 We also developed a risk-assessment
model based on age and SD-OCT features for progression
to color photographyedetermined GA over up to 5 years.4

Because of recent advances in multimodal imaging of GA,
the retina community is progressing toward a modern
definition of GA based on high-resolution SD-OCT,5e9

which allows early GA identification before lesions are
apparent on color fundus images. Thus, this analysis adop-
ted an updated definition of GA based on SD-OCT.1,3,4

With the use of the dataset from the A2A trial, the goal of
this work was to determine short-term (1- and 2-year) SD-
OCT predictors of GA and visual loss in iAMD patients.
We hypothesized that from a comprehensive dataset with
SD-OCTebased imaging at multiple intervals in eyes with
iAMD, we can identify the most important predictors of
visual acuity (VA) loss or GA and create cluster predictors
to classify iAMD eyes into categories of likelihood to
progress to these end points. Next, we sought to estimate the
rate of progression from iAMD to the end point of GA or
visual loss using a combination of SD-OCT imaging bio-
markers, demographic, and clinical factors.
Methods

Database

This analysis used longitudinal data from A2A SD-OCT (Clin-
icalTrials.gov identifier NCT00734487), a prospective, observa-
tional, ancillary study of a subset of eyes from AREDS2.10 The
AREDS2 study (ClinicalTrials.gov identifier NCT00345176) was
a multicenter, randomized trial that studied the effects of oral
nutritional supplements on the progression of AMD on color
fundus photography.2 The A2A SD-OCT study followed 316
participants with AMD from 4 AREDS2 clinical sites in the United
States (National Eye Institute, Duke Eye Center, Devers Eye
Institute, and Emory Eye Center) as described previously.3,4 The
study was approved by the Institutional Review Board at each of
the 4 clinical sites. Informed written consent was obtained before
enrollment from each study participant, and the research protocol
followed tenets of human research as presented in the
Declaration of Helsinki. Data were collected, stored, and
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managed in compliance with Health Insurance Portability and
Accountability Act guidelines.

All A2A participants had been determined to have iAMD with
(1) bilateral large drusen �125 mm or noncentral GA (no advanced
AMD) or (2) large drusen or noncentral GA in 1 eye and
“advanced” AMD (NV or central GA) in the fellow eye.2 The eyes
could have an AREDS Simple Scale Score of 2, 3, or 4 and were
required to lack “advanced” AMD as defined in AREDS and
AREDS2 as the presence of NV or central GA.2,11 Only study
eyes with large drusen without GA were included in the current
study.

The A2A dataset consisted of 316 participants (aged 51e88
years) with at least 1 iAMD eye at baseline, 301 at year 1, 285 at
year 2, 267 at year 3, 167 at year 4, and 77 at year 5 or beyond,
with demographics (gender, age, and race) and annual examina-
tion, systemic, and eye health data for the period of the AREDS2
study (smoking, use of statins, acetaminophen, aspirin, nonste-
roidal anti-inflammatory drugs, cataract surgery, weight, diet
report, diabetes status, AMD treatment, and supplement use). To
improve the long-term analysis of AMD features beyond the 5
years in the AREDS2 trial, subjects enrolled in the A2A SD-OCT
study were asked to return for an additional extension visit that
allowed for data capture for up to 7.4 years. Annual SD-OCT
imaging was captured with the same investigational tabletop SD-
OCT imaging system (Bioptigen) at all 4 sites using the imaging
specifications described previously.3 Spectral-domain OCT volume
scans were de-identified and graded using the Duke Optical
Coherence Tomography Retinal Analysis Program.3,12 Certified,
masked graders in the Duke Advanced Research in SS/SD-OCT
Imaging laboratory analyzed the SD-OCT scan volumes of study
and fellow eyes for acceptable quality and for the presence of
qualitative and quantitative SD-OCT measures of macular pathol-
ogy. These SD-OCT variables (hyperreflective foci axial distance
score, subretinal drusenoid deposits [SDDs], RPE atrophy,
photoreceptor loss, neurosensory (NS) retina volume, RPE drusen
complex volume, drusen volume, RPE drusen complex abnormal
thinning volume, and choroidal thickness) have been previously
described in detail.3,4 In concordance with recent definitions by
other groups,5e9 OCT-GA was defined as the presence of all 3
of the following criteria: (1) "RPE atrophy or absence," (2)
"choroid hyper-transmission," and (3) "outer plexiform layer dip-
ping toward the RPE," together over an area that is at least 175 mm
in at least 1 direction. Each of the 3 criteria was defined previ-
ously.1,3,4 To evaluate the reproducibility of SD-OCT gradings, 2
independent graders graded a randomly selected subset of 63 study
eyes at various times. Based on the Fleiss’ kappa statistic, good to
excellent agreement was found between the independent graders3,4

for the SD-OCT findings used in our work.
The variables included as inputs for the model presented in this

article consisted of age, gender, systemic variables such as aspirin
use and smoking status, and SD-OCT grading variables.1,3,4 A
complete list of variables is included in Supplementary Table S1
(available at www.ophthalmologyscience.org); these variables
were defined in prior publications.1,3,4

Machine Learning Analytical Approach

Our methods incorporated subsequent repeated measures of the
risk factors to enable a more confident classification of risk of
progression. The analytical scaffold structures data were based on
the person-years methods that have been used and validated since
the Framingham Heart Study.13 The approach in this method treats
each observation interval as a small follow-up study. Measure-
ments of variables were made at the interval’s baseline and used to
predict an outcome event in the follow-up interval. Observations
over several intervals are pooled into a single sample (pool).

http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://www.ophthalmologyscience.org
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Compared with the previous analyses,1,3,4 in which the prediction
of disease is based only on the baseline measurements, this method
incorporates subsequent repeated measures of the risk factors and
enables more confident estimation of the turning points of
progression.

We used the merged iAMD database from the prospective A2A
SD-OCT study, which was cross-referenced, combined, and audi-
ted (K.S., C.T.). This study used longitudinal data from the 316
study participants with analyses across 1499 visits over 7.4 years.
Further data handling, statistical computing, modeling, and algo-
rithms were executed using custom codes (S.H., D.B.) in the R
language and environment (free software, version 3.4.2).

By using SD-OCT grading variables with which to build and
implement the analytical methodology, a separate database was
built for each outcome. The outcomes of interest were GA, vision
loss of 5þ letters, vision loss of 10þ letters, and combination of
GA and vision loss of 5þ and 10þ letters. Each database was
appropriately structured per the patient-year approach before
feeding to the machine learning algorithm. From all visits of every
eye (from baseline to maximum follow-up year 7 when present),
every combination of 2 visits (referred to here as “visit pairs”) was
used to define an interval: The earlier visit is the starting point or
relative baseline, and the later visit is the outcome assessment time
point. The interval of observation within each visit pair was defined
by the length of follow-up: Interval duration of interest was
approximately 1 year or 2 years. For each of these follow-up in-
tervals, we extracted a separate database for the 1-year pool and the
2-year pool. For each outcome, visit pairs were selected for in-
clusion in the analysis pool only if the relative baseline visit in that
pair/interval was free of the outcome of interest.

Next, each database for a combination of pooled interval and
outcome of interest (e.g., new GA over 1-year interval or vision
loss of 10þ letters over 2-year interval) was fed into the machine
learning algorithm to explore time relationships between the group
of clinical health variables and SD-OCT features of iAMD, that
had been individually explored, and the outcome of progression.
As such, machine learning algorithms evaluated the outcome for
composite precursors at each follow-up interval of interest. For
each outcome, 2 decision trees were run, 1 for each interval pool
(1-year and 2-year). Decision trees consist of recursive partitioning
on binary decisions, ensuring generalization to a holdout sample.
The final result was a validated decision tree for each interval pool.

We performed 5-fold cross-validation to tune the hyper-
parameters of our machine learning model and trained a model
with the tuned parameters on the full dataset afterward. In the 5-
fold cross-validation, each mutually exclusive subset or "fold"
was based on a single testing set, which was composed of 20% of
participants who were exclusive to the fold. The resulting receiver
operating characteristic was used to choose the operating point for
the reported sensitivity and specificity to minimize the Index of
Union, which is equal to the number of false predictions (false-
negatives and false-positives) in the validation set.14

Machine Learning Output

In classification or decision trees, each branching point represents
the decision that separates the data between the classes most
evenly. One can follow the branches in the tree to understand what
successive decisions lead to the most distal branches, which are
termed “nodes.” A node is a combination of variables that defines a
certain category of risk, leading to a particular outcome. Eyes were
stratified, based on node risk, by the risk of GA development or
VA loss as low (< 15% risk), average (15%e25%), above average
(26%e45%), and high risk (> 45%) in 1 or 2 years. The per-
centage cutoffs for OCT-GA were chosen a priori based on the
4-year incidence of new GA of approximately 20%;15 therefore,
conservatively we expected an incidence of GA < 15% at 2
years and labeled this as "low risk." According to prior research,
the estimates for vision loss of 10 to 15 letters over 2 to 3 years
range from approximately 10%e15% for nonatrophic (early and
intermediate) AMD16 and 40%e50% for atrophic AMD.17e19 As
a result, we proposed the categorization of VA loss of 5 or 10
letters over 1 or 2 years as < 15% low, 15%e25% average, 26%e
45% above average, and > 45% high.

As part of the final processing, the trees were systematically
truncated at the level above any branching point that yielded small
sample size in the node (K.S., E.M.L.). The criteria used to truncate
were (1) if the lower-risk arm below the branching point (where the
distribution of rare events is of interest) had fewer than 5 events or
(2) if the higher-risk arm below the branching point (where the
distribution of frequent events is of interest) had fewer than 5
nonevents. The rationale for choosing 5 events when truncating
trees was due to the fact that for a chi-square test to be valid, the
expected number of observations is required to be > 5 per cell.
Nodes or end-branches of each tree were characterized by the
subgroup of characteristics that defines the corresponding group of
eyes. Accordingly, nodes were risk-stratified based on the 4 risk
categories described. Furthermore, the rates of events in each node
were extracted into contingency 2 � 2 tables in MS Office Excel
and compared with the rest of the nodes combined. Based on
contingency tables, odds ratios (OR) were calculated manually
using MS Office Excel, and chi-square P values were calculated
using the online calculator tool http://vassarstats.net/ (K.S.).

Summary of Methods

This study uses the existing database from the A2A study10 in
which SD-OCT images were captured from AMD subjects annu-
ally for 7 years. The data points used in this study were derived
from 1 eye from each participant and compiled into the master
dataset. The variables were derived from grading of SD-OCT im-
ages for certain features, and for the outcome of interest, GA as
defined on SD-OCT. The master dataset was processed using a
Machine Learning algorithm, using assumptions and methods
extrapolated from the Framingham Heart Study.13 The result of this
processing was 4 longitudinal cohort datasets, each intended for a
separate follow-up analysis: the 1-year cohort, the 2-year cohort,
the 3-year cohort, and the 4-year cohort.

In the master dataset, each participant should have 7 annual data
points (visits V1 to V7), assuming a nil attrition rate. Figure 1
shows an illustrative example. If it satisfies the inclusion/
exclusion criteria, each of these data points (V1 to V7) may be
considered as a baseline visit (Fig 1, rows). Each baseline visit
was then paired with each and any of the visits that occur later
(Fig 1, columns). The resulting pairs form the follow-up intervals
(Fig 1, the 21 cells highlighted). Each follow-up interval was
treated as if it were an independent participant (also called person-
year) in the respective longitudinal cohort. For example, only the
“2-year follow-up intervals” contribute to the “2-year cohort.”
Each longitudinal cohort dataset was fed into a recursive parti-
tioning analysis. The output of such analysis was in the form of a
decision tree. The end nodes of the decision tree are subgroups of
eyes with similar features that convey a certain risk for progression
to the outcome (GA or VA loss).

Results

Earlier reports on analyses from the A2A study presented
results related to demographics such as age and gender,
systemic variables such as aspirin use and smoking status,
and results related to quantitative modeling on OCT.1,3,4
3
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Figure 1. Example illustrating key methodology. In the master dataset,
each participant should have 7 annual data points (visits V1 to V7). Each
can be considered as a baseline visit (rows). Each baseline visit was then
paired with each and any of the subsequent visits (columns). The resulting
pairs form the follow-up intervals (21 cells highlighted).
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Classification Trees for SD-OCT�Determined
GA

One Year. In the classification tree for OCT-determined GA
at 1 year, using 837 eye 1-year intervals, we found that HRF
axial distance score, a measure of HRF severity driven by
location toward the inner retina and number of HRF,16

drives the classification tree (Fig 2). The presence of HRF
is associated with a 6.93% likelihood of conversion to GA
in 1 year. The combination of high HRF axial distance
score (� 80th percentile of the baseline values), NS
retinal volume < 90th percentile, high RPEDC abnormal
thinning volume (� 70th percentile), and high RPEDC
volume (� 70th percentile), confers a 75% risk of OCT-
determined GA at 1 year (node H). The OR of GA devel-
opment over 1 year in the presence of all these features is
44.83 (Table 1; 95% confidence interval [CI], 8.83e227.60,
P < 0.01).

This classification tree reveals that over the 5 years
analyzed, we captured 58 events, defined as study eyes with
iAMD that converted to GA. Because 58 of the 316 iAMD
eyes that were enrolled in the A2A study converted to GA,
the incidence of GA conversion is 18.35% in 5 years, or
3.67% per year, consistent with previous literature that used
color photos for GA determination.20 The out-of-sample
area under the curve (AUC) on the cross-validated model
is 0.80 (80% chance that the model will have a better
aggregated classification performance than classification at
random), with sensitivity of 0.72 and specificity of 0.78.

Two Years. In the classification tree for OCT-
determined GA at 2 years, analyzing 628 distinct 2-year
intervals during the study duration for all the study eyes,
4

we demonstrate that the driving variable at the top of the
decision tree is photoreceptor outer segment loss over RPE
atrophy (Fig 3). The combination of absence of
photoreceptor outer segment loss over RPE atrophy, HRF
axial distance score � 50th percentile, choroid thickness
� 20th percentile, age � 80 years, and RPEDC abnormal
thinning volume � 50 percentile confers a 47% risk of
OCT-determined GA at 2 years (Fig 3; node D). The OR
of GA development in the presence of all these features
compared with the absence of these features is 13.52
(Table 1; 95% CI, 5.19e35.27, P < 0.01). The out-of-
sample AUC on the cross-validated model is 0.75, with
sensitivity of 0.65 and specificity of 0.71.
Classification Trees for VA Loss

VA Loss ‡ 5 Letters at 1 Year. In the classification tree for
VA loss � 5 Early Treatment Diabetic Retinopathy Study
(ETDRS) letters at 1 year, the combination of thinner
choroid (< 66.6th percentile of baseline values) and poorer
contralateral eye VA (< 50th percentile) confers a 27% risk
of having VA loss � 5 letters at 1 year (Fig 4; node C).
Conversely, a thicker choroid appears to be protective,
conferring an only 13% risk of VA loss � 5 letters at 1
year (Fig 4; node A). This classification tree has a small
number of branches, because trees were truncated at the
level above any branching point that yielded fewer than 5
events in the low-risk arm or high-risk arm. The out-of-
sample AUC on the cross-validated model is 0.76, with
sensitivity of 0.73 and specificity of 0.68.

VA Loss ‡ 5 Letters at 2 Years. In the classification tree
for VA loss � 5 letters during a 2-year interval (Fig 5),
using 828 eye 2-year intervals, we found that contralateral
eye VA strongly drives the classification tree. Contralateral
eye VA ETDRS score < 78 letters (Snellen equivalent 20/
30) is associated with a 28% likelihood of VA loss � 5
letters at 2 years. The combination of contralateral eye VA
< 78 letters, NS retina volume � 15th percentile, SDDs, and
RPEDC volume � 85th percentile confers a 66% risk of VA
loss � 5 letters at 2 years (node F). The OR of VA loss � 5
letters in the presence of all these features is 5.29 (Table 2;
95% CI, 2.51e11.16, P < 0.01). The out-of-sample AUC
on the cross-validated model is 0.67, with sensitivity of 0.68
and specificity of 0.61.

VA Loss ‡ 10 Letters at 1 Year. In the decision tree for
VA loss � 10 letters at 1 year, using 1106 eye-year events,
we found that contralateral (fellow) eye macular edema on
OCT is important in this classification (Fig 6). Macular
edema on OCT in the contralateral eye is associated with
a 7.4% likelihood of VA loss � 10 ETDRS letters at 1
year. The combination of contralateral eye macular edema
on OCT, standard RPEDC abnormal thinning volume (<
95th percentile), lower aspirin use (< 2 per day), high
HRF axial distance score (� 85th percentile), and thin
choroid (< 10th percentile) confers a 42% risk of VA loss
� 10 letters at 1 year (Fig 6; node D). The out-of-sample
AUC on the cross-validated model is 0.65, with sensitivity
of 0.60 and specificity of 0.59. Absence of contralateral eye
edema on OCT (Fig 6; node A) appears to be protective in



Figure 2. Classification tree for spectral-domain (SD)-OCT geographic atrophy (GA) at the 1-year interval. RPE ¼ retinal pigment epithelium; RPEDC ¼
retinal pigment epithelium drusen complex.

Table 1. SD-OCT GA at 1- and 2-Year Intervals

Node

1-Year Interval 2-Year Interval

N
Count

GA
Count (%) OR (95% CI)

P
Value

N
Count

GA
Count (%) OR(95% CI)

P
Value

A 372 4 (1) 0.08 (0.03e0.23) <0.01 330 7 (2) 0.14 (0.06e0.32) <0.01
B 272 16 (6) 0.78 (0.43e1.41) 0.41 165 8 (5) 0.55 (0.25e1.21) 0.14
C 9 0 (<33)* - - 26 0 (<12)* - -
D 19 6 (32) 6.80 (2.48e18.62) <0.01 19 9 (47) 13.52 (5.19e35.27) <0.01
E 24 0 (<12.5)* - - 31 3 (10) 1.35 (0.39e4.61) 0.64
F 105 18 (17) 3.58 (1.97e6.52) <0.01 28 10 (36) 8.45 (3.64e19.61) <0.01
G 28 8 (29) 6.07 (2.55e14.47) <0.01 11 0 (<27)* - -
H 8 6 (75) 44.83 (8.83e227.60) <0.01 18 10 (56) 19.36 (7.21e51.96) <0.01
Total 837 58 (7) 628 47 (7)

CI ¼ confidence interval; GA ¼ geographic atrophy; OR ¼ odds ratio; SD-OCT ¼ spectral-domain OCT.
*Proportions in cells with a count of zero (out of N observations) are estimated using the Rule of 3 whereby the 95% CI for the proportion (%) is between
0 and 3/N.
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Figure 3. Classification tree for spectral-domain (SD)-OCT geographic atrophy (GA) at the 2-year interval. RPE ¼ retinal pigment epithelium; RPEDC ¼
retinal pigment epithelium drusen complex.
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this classification analysis (4.1% risk, OR, 0.31, 95% CI,
0.19e0.50, P < 0.01).

VA Loss ‡ 10 Letters at 2 Years. Using 828 eye 2-year
intervals, we noted that NS retina volume is at the first
branching point in this classification tree (Fig 7). The
combination of NS retina volume � 85th percentile, high
drusen volume (� 90th percentile), and standard choroid
thickness (< 66.6th percentile) confers 67% risk of VA loss
� 10 letters at 2 years (Fig 7; node D). The OR for VA loss
� 10 letters at the 2-year interval in the presence of all these
features is 17.20 (Table 3; 95% CI, 5.07e58.32, P < 0.01).
The combination of thin NS retina volume < 15th
percentile, poorer contralateral eye VA (< 50th percentile),
and high aspirin use (� 2 per day) confers a 58% risk of
VA loss � 10 letters at the 2-year interval (Fig 7; node G),
whereas aspirin use of < 2 per day confers 24% risk (node
F). The out-of-sample AUC on the cross-validated model is
0.64, with sensitivity of 0.58 and specificity of 0.56.
6

Classification Trees for Composite End Points
(OCT-GA and Visual Loss)

Next, we attempted to develop classification trees for the
combination of structural (OCT-GA) and functional (visual
loss) end points. The analyses of OCT-GA with VA loss �
5 letters or � 10 letters at 1 year and OCT-GA with VA loss
� 10 letters at 2 years were not feasible because of a low
number of events for the combined outcome.

In the classification tree for OCT-determined GA with
VA loss � 5 letters at the 2-year interval (Fig 8), using 543
eye 2-year intervals, we found that the presence of low-
reflective drusen drives the classification tree and is asso-
ciated with an 8% risk of GA development with VA loss �
5 letters at 2 years (node D). The OR of GA development
with VA loss of � 5 letters in the presence of low-reflective
drusen is 4.13 (Table 4; 95% CI, 1.63e10.45, P < 0.01). By
contrast, the absence of low reflective drusen and low HRF



Figure 4. Classification tree for visual acuity (VA) loss � 5 letters at the 1-year interval.
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score < 50th percentile are protective for GA development
with VA loss (Fig 8; node A: 0% risk, OR, 0.04, 95% CI,
0e0.72, P ¼ 0.03).
Discussion

The failure of prior interventions for GA may be due to gaps
in our current understanding of the pathobiology of dry
AMD, patient selection, application of the therapy too late in
the disease process, and a paucity of useful alternative
clinical trial end points. Future therapeutic trials are likely to
be most readily accepted and promising in the early and
intermediate stages of dry AMD, in which an intervention
would be applied before irreversible loss of vision. The first
challenge, that of determining vision function end points
useful in early-intermediate AMD patients with the essen-
tially unaffected best-corrected VA, is currently being
addressed by natural history studies such as that recently
completed at Duke University,20 the International AMD
Ryan Initiative Study20 led by the National Eye Institute
and the MACUSTAR initiative in Europe.21 The second
challenge, that of patient selection, is just as crucial for
the success of future trials of iAMD, given the numerous
historical failures to date and the need for shorter-term
clinical trials. Thus, the goal of the current work was to
begin to address these limitations and to formulate recom-
mendations for future clinical trials in terms of patient
selection.
Identification of individual, specific SD-OCT patterns
that can predict advancing disease was the main aim of
several studies analyzing data from the A2A SD-OCT study.
In iAMD, drusen-related reflectivity patterns3 and HRF1,22

were found to represent early indicators of disease
progression. New-onset GA as defined on color photo-
graphs was preceded by SD-OCT findings of atypical dru-
sen,3 OCT-reflective drusen substructures,1 HRF,22,23 and
quantitative SD-OCT measurements.24 Prior work by Toth
et al revealed that the strongest biomarkers of progression
were age, HRF, a greater RPEDC abnormal thinning
volume and RPE layer atrophy.4 These findings were
recapitulated in the current work on short-term predictors
of progression to SD-OCT-determined GA in iAMD.

Machine learning analyses applied on longitudinal OCT
imaging data have recently emerged as powerful approaches
for predictive modeling for a plethora of ophthalmic appli-
cations, including in AMD. Examples include drusen
regression in early-intermediate AMD,25 anti-vascular
endothelial growth factor treatment response26 and
progression to late AMD stages,27 and progression of
GA.28 Bogunovic et al25 used a longitudinal dataset from
a prospective, observational study of OCT images from 61
eyes with early-intermediate AMD from 38 patients to
propose a predictive model of drusen regression. The au-
thors developed a machine learning method based on sur-
vival analysis and leave-1-patient-out cross-validation to
predict individual druse regression (AUC 0.75 within the
first 2 years). This pilot study, although the first to allow a
7



Figure 5. Classification tree for visual acuity (VA) loss � 5 letters at the 2-year interval. CT ¼ choroidal thickness; NS ¼ neurosensory; RPEDC ¼ retinal
pigment epithelium drusen complex; SDD ¼ subretinal drusenoid deposit.
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personalized and reproducible prediction of drusen regres-
sion, was limited by the small sample size, lack of inclusion
of SDDs in the model, and absence of a data-driven link
between drusen regression to progression and advanced
Table 2. VA Loss � 5 Letters

1-Year Interval

Node
N

Count
GA

Count (%) OR (95% CI)
P

Value

A 322 42 (13) 0.50 (0.35e0.72) <0.01
B 272 45 (17) 0.73 (0.51e1.05) 0.09
C 512 136 (27) 2.11 (1.56e2.85) <0.01
D - - - -
E - - - -
F - - - -
G - - - -
Total 1106 223 (20)

CI ¼ confidence interval; GA ¼ geographic atrophy; OR ¼ odds ratio; VA ¼

8

AMD stages. Using image features characterizing drusen
area, volume, height, and reflectivity in a dataset of 330 eyes
in 244 patients, de Sisternes et al27 developed a statistical
model that predicted the conversion from early-
at 1- and 2-Year Intervals

2-Year Interval

N
Count

GA
Count (%) OR(95% CI) P Value

363 77 (21) 0.54 (0.39e0.74) <0.01
125 16 (13) 0.33 (0.19e0.57) <0.01
24 10 (42) 1.87 (0.82e4.28) 0.14
59 10 (17) 0.50 (0.25e1.01) 0.05
126 48 (38) 1.73 (1.16e2.58) 0.01
32 21 (66) 5.29 (2.51e11.16) <0.01
99 50 (51) 3.07 (2.00e4.71) <0.01

828 232 (28)

visual acuity.



Figure 6. Classification tree for visual acuity (VA) loss � 10 letters at the 1-year interval. RPEDC ¼ retinal pigment epithelium drusen complex.
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intermediate AMD to exudative AMD in less than 5 years.
Another model based on quantitative characteristics of GA
lesions was developed in a smaller study of 118 SD-OCT
scans from 38 eyes of 29 patients to estimate future
growth of GA at a given time (median follow-up of 2.25
years). The SD-OCT biomarkers that were most predictive
of future regions of GA growth were thicknesses or SDD,
changes in reflectivity, and loss of outer retinal bands and
changes in thickness of inner retinal bands.28 Through a
different machine learning method, Schmidt-Erfurth et al29

used retinal imaging, demographic, and genetic data to
generate and validate a predictive model for assessing risk
of conversion from iAMD to CNV and GA in fellow eyes
of patients with neovascular AMD that participated in the
HARBOR clinical trial of intravitreal ranibizumab. Of 495
eyes analyzed, 45 (9.09%) converted to GA within 2
years. Both the A2A and HARBOR cohorts were
classified as iAMD, but all eyes in the A2A cohort had
large drusen. The performance characteristics of the
predictive model for GA was 0.8, comparable to our
random forest model (AUC of 0.80, sensitivity 0.72 and
specificity 0.78). The features identified to be most
important for conversion to GA were centered on NS
retinal features (outer retinal thickness, HRF, and drusen
area) and age. Interestingly, these features displayed
distinct patterns from those predicting progression to
neovascular AMD.29 In contrast with the prior work, ours
is the first machine learning analysis that determined
short-term (1-year and 2-year) SD-OCT predictors of GA
and visual loss in iAMD. Our findings on retinal thicknesses
predicting GA onset at 1 or 2 years are in line with the work
of de Sisternes et al27 and Schmidt-Erfurth et al,29 whereas
SDD appears to be a biomarker for short-term vision loss. It
is also worth noting that the presence of age and other de-
mographic risk factors were not identified at high levels in
classification/decision trees for GA at 1 year or for
9



Figure 7. Classification tree for visual acuity (VA) loss � 10 letters at the 2-year interval. NS ¼ neurosensory.

Table 3. VA Loss �10 Letters at 1- and 2-Year Intervals

1-Year Interval 2-Year Interval

Node
N

Count
GA

Count (%) OR (95% CI)
P

Value
N

Count
GA

Count (%) OR(95% CI)
P

Value

A 641 26 (4) 0.31 (0.19e0.50) <0.01 541 36 (7) 0.29 (0.18e0.45) <0.01
B 289 20 (7) 0.91 (0.54e1.53) 0.71 92 12 (13) 1.21 (0.63e2.32) 0.56
C 95 13 (14) 2.16 (1.15e4.08) 0.02 10 0 (<30)* - -
D 12 5 (42) 9.43 (2.93e30.42) <0.01 12 8 (67) 17.20 (5.07e58.32) <0.01
E 20 1 (5) 0.65 (0.09e4.94) 0.68 47 3 (6) 0.52 (0.16e1.72) 0.29
F 19 8 (42) 9.96 (3.89e25.51) <0.01 114 27 (24) 3.05 (1.85e5.03) <0.01
G 8 0 (<38)* - - 12 7 (58) 11.88 (3.69e38.26) <0.01
H 22 9 (41) 9.59 (3.97e23.17) <0.01 - - - -
Total 1106 82 (7) 828 93 (11)

CI ¼ confidence interval; GA ¼ geographic atrophy; OR ¼ odds ratio; VA ¼ visual acuity.
*Proportions in cells with a count of zero (out of N observations) are estimated using the Rule of 3 whereby the 95% CI for the proportion (%) is between
0 and 3/N.
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Figure 8. Classification tree for spectral-domain (SD)-OCT geographic atrophy (GA) with visual acuity (VA) loss � 5 letters at the 2-year interval.
CT ¼ choroidal thickness; RPEDC ¼ retinal pigment epithelium drusen complex; SDD ¼ subretinal drusenoid deposit.
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visual loss at 1 and 2 years, suggesting that age was not as
strongly predictive of these outcomes as for SD-OCT GA at
2 years.
Table 4. SD-OCT GA with VA Loss � 5 Letters at the 2-Year
Interval

2-Year Interval

Node
N

Count
GA

Count (%) OR (95% CI)
P

Value

A 156 0 (<2)* - -
B 47 0 (<6)* - -
C 89 6 (7) 1.57 (0.61e4.02) 0.35
D 251 20 (8) 4.13 (1.63e10.45) <0.01
Total 543 26 (5)

CI ¼ confidence interval; GA ¼ geographic atrophy; OR ¼ odds ratio;
SD-OCT ¼ spectral-domain OCT; VA ¼ visual acuity.
*Proportions in cells with a count of zero (out of N observations) are
estimated using the Rule of 3 whereby the 95% CI for the proportion (%) is
between 0 and 3/N.
In the current analysis, we found that for the end point
GA onset at 1 year, the combination of high HRF axial
distance score, NS retinal volume < 90th percentile, high
RPEDC abnormal thinning volume, and high RPEDC vol-
ume confers a very high (75%) risk of OCT-determined GA
at 1 year. In the case of GA onset at 2 years, the presence of
photoreceptor outer segment loss over RPE atrophy gener-
ated opposing trends in the presence of different risk factors.
In combination with high drusen volume, it conferred a high
risk of GA onset at 2 years (56% risk; OR, 19.36). The
absence of photoreceptor outer segment loss over RPE at-
rophy, however, was not protective when encountered in
combination with age � 80 years and high RPEDC
abnormal thinning volume, conferring a 47% risk of OCT-
determined GA at 2 years (OR, 13.52). In addition,
extremely high “hyperreflective foci axial distance score” �
19 had limited discriminative power and would benefit from
external validation, especially that this specific branch of the
tree may or may not be reproducible in another dataset. In
summary, these results suggest that presence of individual
features in isolation is not always predictive of GA, but that
11
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the combination of biomarkers is associated with non-
exudative AMD progression. These results suggest that the
inter-relationship between these variables appears to be most
important.

In the classification tree for VA loss � 5 letters during a
2-year interval, contralateral eye VA was associated with a
moderate risk and with a high risk in combination with other
features (NS retina volume � 15th percentile, SDD, and
RPEDC volume � 85th percentile). By contrast, the com-
bination of good VA � 78 ETDRS letters (Snellen equiv-
alent 20/30) and thin NS retina volume (< 15th percentile)
resulted in a relatively high (51%) risk of VA loss. This
again points to the importance of NS retinal volume in
AMD disease progression and confirms that the same SD-
OCT features in combination with other OCT biomarkers
can be protective or represent a risk factor for GA and VA
loss. In the context of more pronounced VA loss (� 10
letters) at 1 year, intraretinal cystoid spaces termed “macular
edema” in the contralateral eye in combination with lower
aspirin use (< 2 per day) or high aspirin use conferred a
high risk of VA loss if found in conjunction with different
OCT biomarkers. This finding was interesting in the light of
a recent study by Chew et al, in which aspirin use was not
associated significantly with progression to late AMD in
either the AREDS or AREDS2.15 Aspirin use is not uniform
in terms of indications, which are usually independent of
eye disease, and across various countries. As a result, it
may be difficult to generalize findings on aspirin as a risk
factor in a US-based population to other worldwide co-
horts, as well as in the same population in the future if
aspirin indications were to change.

The combination of OCT and visual function (VA) bio-
markers can aid in patient selection for clinical trials with
specific end points of interest. Although it was not feasible
to explore the exact causes of visual loss in the A2A study,
there may have been a multitude of causes of visual loss in
addition to GA. OCT studies showed that loss of photore-
ceptors and localized microperimetry changes precedes
frank central GA.30 Even if the current quantitative
measurements were determined using high-density scans
from investigational Bioptigen SD-OCT units in the A2A
study, the general trends shown in the classification trees
provided can be used to guide patient selection. For
example, if a 1-year study of iAMD is planned with a pri-
mary outcome of GA development in this short time period,
the most suitable candidates would be patients with the
following combination of features on OCT: prominent HRF,
thin NS retina, and high drusen complex volume or marked
thinning of the RPE-drusen complex representing prea-
trophic changes.

Although most classification trees generated in this work
were complex, some findings are easier to translate into a
clinical trial design. For example, in the classification tree
for OCT-determined GA at 2 years, photoreceptor loss over
RPE atrophy had a 34% risk (as opposed to the 7% of the
original cohort). This is an example of a result with potential
relevance for patients and regulatory agencies because these
findings would inform clinical trial design through focused
patient selection. The risk of GA development, as computed
12
by the machine learning algorithms, can be used for power
calculations to determine the sample sizes of iAMD patients
for the planned clinical trial. A reading center will need to be
involved in subject selection to advise on the qualitative
presence or absence of SD-OCT characteristics (e.g., HRF,
photoreceptor outer segment loss, RPE atrophy, thin
choroid, macular edema) uncovered by the classification
trees. The VA of the contralateral fellow eye will be an
additional important consideration for subject inclusion.

Although at the time the AREDS2 trial and A2A sub-
study were conducted, visual function measurements other
than best-corrected VA were not available, more recent
evidence suggests that alternative visual function end points
may be helpful in further guiding patient selection for
clinical trials of iAMD.31e33 Prevention of progression from
intermediate dry AMD to neovascular AMD or GA is key to
maintaining functioning vision. In addition, several authors
have examined different outcomes or end points in dry
AMD, which included patient-centric outcomes and psy-
chophysical tests.31,32,34 This cumulative body of work
supports the notion that alternative functional end points
together with patient-centric outcomes can be additive to
structural outcomes (SD-OCT based) for short-term clinical
trials testing the efficacy of therapies in this patient
population.

Study Limitations

Our study has several limitations, most notably the sample
size of 316 participants, although this is larger than in prior
machine learning studies in AMD. The A2A cohort is the
largest dataset of iAMD patients with extensive SD-OCT
image grading and automated segmentation. A main
concern is that some of the OCT features may not be
modeled in small sample sizes along some of the branches
of the classification trees, leading to overfitting in the model.
As a result, caution should be exercised when attempting to
generalize results beyond the analyzed population. Another
limitation is the narrow cohort definition, which has the
potential to limit its applicability in AMD care. However,
the A2A study cohort was narrowly defined to address the
existing research gaps to best allow defining outcomes for
trials that target prevention of atrophy. Of more than 20
recent clinical trials investigating therapeutic options
currently in development for non-neovascular AMD, only 1
study relied on the criterion of newly developed atrophy to
define its primary outcome.35 Trials that focus on the
prevention of progression from iAMD to the more
visually significant form (i.e., advanced non-neovascular
AMD) are scarce.36 The A2A study, which enrolled a
uniquely specific cohort of iAMD, is novel because of its
ability to provide classification of iAMD patients
according to their risk of atrophy based on a relatively
small number of clinical and SD-OCT features.

The current analysis examines the data using the
approach used in the Framingham Heart Study, which
revolutionized the design of cohorts by optimizing the use
of longitudinal data. In this work, we have pooled the same
eyes as person-years. This method was theoretically and
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clinically validated for use in cardiac ischemic disease and
generally accepted for use in the literature in chronic dis-
eases that accrue risk factors over time and are irreversible,
including diseases of aging such as AMD. Because this is
the first time that the methods from the Framingham Heart
Study were translated to the field of AMD, external vali-
dation will be necessary to provide concrete proof of the
independence of eyes used in the analysis.

We were unable to verify the external validity of the
findings of this study because of the scarcity of SD-OCT
databases with similar follow-up of iAMD. Future work
including external validation, more training data, and
application of these machine learning algorithms in a large,
longitudinal standard of care SD-OCT dataset would aid in
validating our results and would enable retinal specialists to
make accurate predictions of GA progression and VA loss.
Another limitation may be due to potential inaccuracies
resulting from the automated segmentation of quantitative
SD-OCT features. Although the segmentation and grading
methods used here have been previously published and
tested for accuracy, a margin of error in baseline and follow-
up measurements is expected.
Conclusions

Our machine learning algorithms predict progression from
early-intermediate stages of AMD within short-term in-
tervals. The clinical importance of such methods is that
they dissect the novel composite end points of GA pro-
gression and VA loss, and pave the way for future external
validation studies that would allow (1) identification of
patients most suitable for clinical trials and (2) tailoring
standard-of-care follow-up and clinical decision-making.
Our approach is innovative, because it used computa-
tional analysis of images in addition to existing clinical
data, which would be relatively easy to introduce in the
clinical workflow. However, its major limitation is that
findings are not externally validated. External validation
can be performed in the near future when new datasets
become available for longitudinal analysis. For example,
the MACUSTAR dataset,21 which is designed with the aim
to identify AMD end points, is promising for an enhanced
subclassification and prediction of disease progression and
will enable earlier treatment and superior clinical outcomes
in AMD patients.
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