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Abstract
Introduction  Hepatic encephalopathy (HE) is defined as a specific type of cerebral dysfunction that encompasses 
a wide range of cognitive, psychomotor, and psychiatric disturbances. The burgeoning field of Artificial Intelligence 
(AI), particularly Machine Learning (ML), offers promising avenues for early detection and enhanced control of HE. This 
scoping review aims to provide a consolidated overview of AI’s role in the diagnosis and management of HE, thereby 
informing and guiding future research endeavors in this domain.

Methods  We followed Arksey and O’Malley’s methodological framework to perform this scoping review, using 
PubMed, Web of Science, Scopus, ScienceDirect, and IEEE databases to find relevant articles. We also utilized the 
PRISMA standard to report our review in a standardized manner. Studies that focused on the applications of AI or ML 
techniques in relation to the prediction or diagnosis of HE disease were included.

Results  Out of the 231 articles identified, 20 were ultimately included in this scoping review. The integration 
of artificial neural networks and expert systems represented an early and pioneering approach in applying AI to 
HE. Among supervised learning algorithms, Support Vector Machine emerged as the most frequently employed 
technique in HE research, based on our review of the selected studies. Notably, the primary application of AI in HE 
studies has been predictive modeling (n = 14), followed by five studies focused on classifying HE stages and one study 
analyzing patient survival using AI methodologies.

Conclusions  This scoping review highlights the growing use of AI and ML diagnostic models and predictive tools 
utilizing various data types. These advancements have the potential to positively impact patient outcomes. Future 
research should focus on validating and implementing these AI models in clinical settings to assess their real-world 
effectiveness in improving patient care.
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Introduction
Hepatic encephalopathy (HE) is a brain disorder caused 
by liver failure and/or portal-systemic shunting. It pres-
ents as a distinct form of cerebral dysfunction, encom-
passing a wide range of cognitive, psychomotor, and 
psychiatric disturbances—ranging from subtle changes 
in mental status to coma. Figure 1 illustrates the relation-
ship between liver cirrhosis and HE, as well as the asso-
ciated types of symptoms [1–3]. This condition arises as 
a complication of both chronic and acute liver diseases 
[4, 5]. HE is classified into three major types based on 
its underlying causes: Type A, resulting from acute liver 
failure; Type B, associated with transjugular intrahepatic 
portosystemic shunt (TIPS); and Type C, linked to cir-
rhosis. In addition to these classifications, there exists 
Minimal HE (MHE), recognized as the earliest and mild-
est form of HE. MHE is prevalent in 80% of cirrhotic 
patients and significantly diminishes their quality of life 
[3, 6, 7]. Despite lacking clinical evidence for diagnosis, 
individuals with MHE exhibit gradual changes in psy-
chomotor or neuropsychological functions [8]. Notably, 
MHE carries a poor prognosis, with predicted one and 
three-year survival rates of 42% and 23%, respectively, in 
the absence of liver transplantation [7]. The intensity of 

this condition underscores the need for comprehensive 
understanding and effective management strategies.

HE presents a significant diagnostic challenge due 
to its clinical overlap with various medical, neurologi-
cal, and psychiatric conditions, complicating differential 
diagnosis and increasing vulnerability to additional brain 
injuries [9]. In response to this complexity, the Interna-
tional Society of Hepatic Encephalopathy and Nitrogen 
Metabolism introduced a revised classification system in 
2011, dividing HE into two main categories: covert and 
overt [10]. MHE, as we discussed earlier, belongs to the 
covert category [11]. Covert HE is characterized by subtle 
neurocognitive impairments that often go undetected in 
routine clinical assessments, leading to underdiagnosis 
and inadequate treatment. Early identification of covert 
HE is critical for timely intervention, preventing disease 
progression and recurrence, improving patient quality 
of life, and potentially reducing mortality [12–14]. Given 
the high prevalence of MHE and the limitations of cur-
rent screening methods, there is a growing need for the 
development and implementation of more sensitive and 
accessible diagnostic tools [15–17].

In contrast, overt HE is a more advanced and clini-
cally evident manifestation of the condition, presenting 
marked neurological and psychiatric symptoms that are 

Fig. 1  Relationship between liver cirrhosis and HE, illustrating the associated symptom types
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typically identifiable through standard clinical evalu-
ation. It is a common and severe complication among 
individuals with cirrhosis, affecting approximately 
30–50% of patients, with an estimated annual risk of 
20% [18]. Recent advancements in artificial intelligence 
(AI) offer promising opportunities to enhance the diag-
nostic landscape of HE. AI-based methods can uncover 
latent patterns in laboratory results, clinical records, and 
electroencephalogram (EEG) data, surpassing traditional 
diagnostic approaches in both speed and accuracy [19, 
20]. By overcoming current limitations in early detection, 
AI has the potential to significantly improve the progno-
sis and management of both covert and overt forms of 
HE, ultimately leading to better clinical outcomes.

AI constitutes a broad category encompassing diverse 
algorithms capable of discerning patterns within exten-
sive datasets, providing valuable inferences and insights. 
Within this domain, machine learning (ML), a special-
ized scientific discipline and subset of AI, is focused on 
enabling computers to learn from data [21]. ML holds a 
significant role in the field of medical imaging, facilitating 
operations such as detection, segmentation, registration, 
integration, guided treatment, annotation, and recovery 
on images [22]. Originating in the 1950s and 1960s, the 
historical evolution of ML in medicine saw the develop-
ment of algorithms for modeling and analyzing extensive 
datasets, with prominent contributions from Hunt et al. 
in symbolic learning [22], Nilsson in statistical meth-
ods [23], and Rosenblatt in neural networks [24]. One of 
the most transformative branches of ML is deep learn-
ing (DL), which employs multi-layered artificial neural 
networks (ANN) to model complex patterns and repre-
sentations in data. By processing data through multiple 
layers of neurons, DL algorithms can automatically learn 
to extract features and make predictions with minimal 
human intervention, making them particularly effective 
for tasks such as image and speech recognition [25]. The 
ongoing trajectory of ML in medicine, with its promise to 
enhance accuracy and efficiency of diagnoses resulting in 
improved patient safety [26–29], has recently manifested 
in the application of AI, particularly ML, to HE research. 
Employing both clinical and laboratory data, as well as 
medical images, these approaches contribute to the in-
time diagnosis, and enhanced control of HE.

There are a considerable number of studies using 
AI and ML in the field of HE. In one study, researchers 
employed demographic and clinical data as input for a 
prediction model, utilizing the ANN method, to predict 
HE [30]. Conversely, another investigation employed 
weighted support vector machine (SVM), weighted ran-
dom forest (RF), and logistic regression algorithms for 
a similar purpose [19]. Notably, the majority of stud-
ies focusing on HE have extensively incorporated image 
processing methods, indicative of the widespread 

application of AI in this domain. For instance, research-
ers utilized diffusion White Matter Imaging and a ML 
technique based on Bayesian principles to classify and 
differentiate images of cirrhosis patients into two groups: 
those with and without MHE. This study identified two 
distinct areas in White Matter that effectively distin-
guished between these patient groups [31]. Additionally, 
the integration of EEG images with clinical data served 
as input for an ANN model and an expert system, aid-
ing in the identification of EEG changes associated with 
HE patients [19]. Another study employed ML methods 
to predict 28-day mortality in patients [32]. These diverse 
approaches underscore the versatility of AI in leveraging 
various data sources for the diagnosis and prognostica-
tion of HE.

Although one previous review explored the use of AI 
for diagnosing MHE using handwriting and speech data 
[33], a comprehensive synthesis of AI and ML applica-
tions across the broader spectrum of HE is still lacking. 
Our scoping review aims to address that gap by mapping 
current research, summarizing methodologies, and iden-
tifying key limitations and opportunities. In doing so, it 
provides a foundation for future studies and supports the 
advancement of AI-driven approaches for improving HE 
diagnosis and management.

Methods
The method we have used is based on Arksey and 
O’Malley’s methodological framework. In this frame-
work, a five-step guideline including the following steps 
is provided [34]:

1.	 Identification of the research question
2.	 Identification of relevant studies
3.	 Selection of included studies
4.	 Charting of the key elements
5.	 Summarizing and reporting the results

We also used the PRISMAScR, a PRISMA extension 
intended to apply for reporting scoping reviews, which 
is included in Supplementary File 1. This standard, pub-
lished in 2018, contains 20 essential and two optional 
items and helps to improve the reporting of scoping 
reviews [35].

Identifying the research question
What are the different applications of AI, especially ML 
and DL, in the field of HE? And what ML algorithms have 
been employed in the existing literature?

Identifying the relevant studies
Search strategy
A comprehensive search strategy was developed by com-
bining relevant keywords to retrieve all studies on HE 
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involving AI or ML approaches. To ensure broad cov-
erage in PubMed, a set of Medical Subject Headings 
(MeSH) terms was also incorporated. Table  1 presents 
the keywords used across all databases, while the com-
plete search strategy for PubMed is provided in Table 2. 
Search strategies for the remaining databases are detailed 
in Supplementary File 2.

Information sources
We searched PubMed, Web of Science (WOS), Sco-
pus, ScienceDirect, and IEEE Xplore to identify relevant 
articles published up to May 14, 2025. No geographic 
or temporal restrictions were applied, but searches were 
limited to studies published in English.

All search results were imported into the Zotero refer-
ence management software (version 6.0.30), and dupli-
cate records were removed. The initial search yielded 231 
citations across the five databases. After removing dupli-
cates, 149 unique articles remained for screening. Title 
and abstract screening excluded 112 studies that did not 
meet the inclusion criteria. An additional 17 studies were 
excluded during the full-text review based on predefined 
exclusion criteria. Ultimately, 20 studies were included 
for data extraction (Fig. 2).

Study selection and eligibility criteria
Original studies published in peer-reviewed journals and 
written in English were considered for inclusion. Studies 
were eligible if they met both of the following criteria:

1.	 Applied at least one AI method, including ML or DL 
algorithms, in the context of HE.

2.	 Focused on the application of AI or ML techniques 
for the prediction or diagnosis of HE.

Studies were excluded if they met at least one of the fol-
lowing criteria:

1.	 Investigated AI applications in liver diseases other 
than HE.

2.	 Did not involve ML or DL methods specifically 
related to HE.

3.	 Were review articles or non-peer-reviewed 
publications, including editorials, conference 
abstracts, book chapters, or study protocols.

Screening process
The screening process was conducted by the first author, 
who reviewed the titles and abstracts of all retrieved 

Table 1  Search keywords used to create the search strategy
Concepts for AI/ML methods Concepts for HE
“Machine Learning”, “Artificial Intelligence”, “Neural Network”, “Deep Learning”, “Computer-assisted”, “Computer Vision”, “Deep Net-
work”, “Computer-aided”, “Convolutional Network”, “Recurrent Network”, “Graph Network”, Backprop∗, “Support vector”, Ensemble∗, 
“Random forest∗”, “Nearest neighbor∗”, “K-nearest neighbor∗”, “Gradient boost∗”, XGBoost∗, Segmentation, “instance learning”, 
“multi-instance learning”, “Active Learning”,” Transfer Learning”, “Reinforcement Learning”, “Predictive Modeling”, “Feature Engineering”, 
“Hyperparameter Tuning”, “Data Augmentation”, “Expert system*”, “Computational Intelligence”, “Machine Intelligence”, “Computer 
Reasoning”, “Knowledge Representation”, “Knowledge acquisition”,” Computing Methodologies”, “Long Short-Term Memor Net-
work*”, “Gated Recurrent Units”, “Generative Adversarial Network*”, “Deep Belief Networks”, “Radial Basis Function Network*”

“Hepatic En-
cephalopath*”, 
“Portal-Systemic 
Encephalopath*”, 
“Hepatic Coma”, 
“Hepatocer-
ebral En-
cephalopathies”, 
“Hepatic Stupor”, 
“Fulminant 
Hepatic Failure”, 
“Portosystemic 
Encephalopathy”

Table 2  PubMed database search strategy
PubMed search strategy
(“hepatic encephalopath*“[Title/Abstract] OR “portal systemic encephalopath*“[Title/Abstract] OR “Hepatic Coma“[Title/Abstract] OR “He-
patic Stupor“[Title/Abstract] OR “Fulminant Hepatic Failure“[Title/Abstract] OR “Portosystemic Encephalopathy“[Title/Abstract] OR “Hepatic 
Encephalopathy“[MeSH Terms] OR “liver failure, acute“[MeSH Terms]) AND (“Machine Learning“[Title/Abstract] OR “Artificial Intelligence“[Title/Abstract] 
OR “Neural Network“[Title/Abstract] OR “Deep Learning“[Title/Abstract] OR “Computer-assisted“[Title/Abstract] OR “Computer Vision“[Title/Abstract] 
OR “Deep Network“[Title/Abstract] OR “Computer-aided“[Title/Abstract] OR “Convolutional Network“[Title/Abstract] OR “Recurrent Network“[Title/
Abstract] OR “Graph Network“[Title/Abstract] OR “backprop*“[Title/Abstract] OR “Support vector“[Title/Abstract] OR “ensemble*“[Title/Abstract] OR 
“random forest*“[Title/Abstract] OR “nearest neighbor*“[Title/Abstract] OR “k nearest neighbor*“[Title/Abstract] OR “gradient boost*“[Title/Abstract] OR 
“xgboost*“[Title/Abstract] OR “Segmentation“[Title/Abstract] OR “instance learning“[Title/Abstract] OR “multi-instance learning“[Title/Abstract] OR 
“Active Learning“[Title/Abstract] OR “Transfer Learning“[Title/Abstract] OR “Reinforcement Learning“[Title/Abstract] OR “Predictive Modeling“[Title/
Abstract] OR “Feature Engineering“[Title/Abstract] OR “Hyperparameter Tuning“[Title/Abstract] OR “Data Augmentation“[Title/Abstract] OR “expert 
system*“[Title/Abstract] OR “Computational Intelligence“[Title/Abstract] OR “Machine Intelligence“[Title/Abstract] OR “Computer Reasoning“[Title/Ab-
stract] OR “Knowledge Representation“[Title/Abstract] OR “Knowledge acquisition“[Title/Abstract] OR “Computing Methodologies“[Title/Abstract] OR 
“Gated Recurrent Units“[Title/Abstract] OR “generative adversarial network*“[Title/Abstract] OR “Deep Belief Networks“[Title/Abstract] OR “radial basis 
function network*“[Title/Abstract] OR “Machine Learning“[MeSH Terms] OR “Artificial Intelligence“[MeSH Terms] OR “neural networks, computer“[MeSH 
Terms] OR “Deep Learning“[MeSH Terms] OR “diagnosis, computer assisted“[MeSH Terms])
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Fig. 2  Flowchart of study selection. Note: Some excluded studies may have met multiple exclusion criteria, but only the primary reason for exclusion is 
reported
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articles based on the predefined inclusion and exclusion 
criteria. Irrelevant studies were excluded at this stage. 
For any articles where eligibility was uncertain, the first 
author consulted with the co-authors, and a consensus 
was reached through group discussion. Full-text arti-
cles of potentially relevant studies were then assessed 
by the first author to determine final eligibility for data 
extraction.

Charting the data
To guide the data extraction process, preliminary meet-
ings were held to determine key variables, and a struc-
tured checklist was developed. The initial checklist was 
designed by the first author based on two comparable 
studies in the field [36, 37]. The checklist was reviewed 
and refined through group discussion with co-authors 
to ensure alignment with the study objectives and the 
specific context of HE. Given the limited number of 
AI-related studies in this field, HE-related articles were 
categorized into four groups based on the type of HE 
investigated: post-TIPS HE, overt HE, covert HE (includ-
ing MHE), and studies encompassing all stages of HE.

Data extraction was conducted independently by the 
first author, who aggregated the results. A thorough 
review and verification of the extracted data were also 
performed by the same author to ensure accuracy and 
consistency. In terms of AI applications, studies were 
categorized into three major groups: classification, pre-
diction, and survival analysis. The classification and pre-
diction categories were further subdivided based on the 
primary type of input data used. For instance, when a 
study utilized multiple data sources, categorization was 
based on the data type that played the most critical role 
in the applied method. As a result, five types of input data 
were identified across the included studies:

1.	 Electroencephalography (EEG) data: EEG data 
are generated by recording the brain’s electrical 
activity using electrodes placed on the scalp. 
These electrodes are connected to a device that 
amplifies and captures the brain’s electrical signals 
as waveforms, allowing for analysis of neurological 
function [38, 39].

2.	 Magnetic Resonance Imaging (MRI) data: MRI 
data are obtained through a non-invasive imaging 
technique that uses powerful magnetic fields and 
radio waves to produce detailed anatomical and 
functional images of soft tissues, including the brain 
[40].

3.	 Clinical and Laboratory data: Clinical data 
encompasses a broad range of information pertaining 
to a patient’s medical history, symptoms, physical 
examination findings, diagnostic results, treatments, 
and outcomes. Laboratory data, on the other hand, 

specifically refers to information obtained through 
the analysis of patient samples in a laboratory setting. 
This includes results from blood tests, urine tests, 
genetic tests, microbiology cultures, and other types 
of analyses performed on patient specimens.

4.	 Computed tomography (CT) images: Images that are 
created through a medical imaging procedure that 
utilizes X-rays to produce detailed cross-sectional 
images of the body [41].

5.	 Video-oculography: Video-oculography is a 
technique for capturing eye movement using 
digital video cameras. This represents a notable 
advancement from electronystagmography, which 
relies on the corneo-retinal potential, similar to a 
battery effect in the eye. As the eyes shift side to side 
and up and down, the positive and negative signals of 
the corneo-retinal potential are recorded [42].

Data items
For each eligible article, data items containing informa-
tion regarding the characteristics of the studies and their 
data relevant to the purpose of our review were extracted 
and are shown in Table  3. Each study could have used 
more than one technique.

Collating, summarizing, and reporting results
We used different charts and tables to summarize and 
report the results.

Result
Of the 20 eligible articles, more than half of them (n = 11) 
were conducted in China [29–31, 43–50]. The first study 
was published in 2005 [19], and five studies were pub-
lished by 2017 [19, 30, 43, 45, 51]. However, the num-
ber of studies increased, with 15 more published during 
2020–2025 [16, 29, 31, 32, 44, 46–50, 52–56].

AI/ML techniques in research of HE
The combination of artificial neural network and expert 
system was the first technique used in AI studies related 
to HE [19, 51]. Studies from 2015 to 2017 focused on 
SVM and Bayesian algorithms [30, 43, 45]. However, 
the focus on various AI algorithms has increased since 
2020, and other algorithms including RF, extreme gradi-
ent boosting (XGBoost), LR, K-nearest neighbors (KNN), 
Catboost, etc [16, 29, 32, 46, 49, 50, 52–56]. have also 
been used in recent years, but in these studies, the most 
widely used algorithm is the SVM, as one of the algo-
rithms used in 6 studies was SVM [16, 50, 52, 54–56], 
and in 4 studies only the SVM algorithm was used [31, 
44, 47, 48].

All these algorithms are listed by frequency and num-
ber of input data in Fig. 3. Figure 4 is a network diagram 
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of relationships between algorithm types, data types, and 
HE types.

AI applications in HE disease and research
The most common application of AI in HE research has 
been prediction (n = 14) [16, 29–31, 43–46, 49, 50, 52, 
53, 55, 56], while five studies focused on classifying HE 
degrees [19, 47, 48, 51, 54], and only one study analyzed 
patient survival using AI techniques [32].

Classification of HE
EEG images  Regarding EEG images, two pioneering 
studies in this field were conducted by A. Pellegrini and 
their colleagues. In the first study [19], demographic, clin-
ical, and laboratory data of cirrhosis patients were input 
into an ANN and an expert system. These data were then 
classified into five classes: normal EEG, EEG with normal 
limits, mild signs of HE, distinctive features of HE, and 
signs of severe HE. The agreement between the system’s 
classification and that of an expert electroencephalogra-
pher was subsequently measured. In the subsequent study 
[51], employing the same methodology as the previous 
one, classification was performed. Subsequently, with a 
one-year follow-up of the patients, the incidence of bouts 
of overt HE in each class was detected.

MRI images  In a study, Yue Cheng et al. (2021) took rest-
ing-state MRI images of patients with liver cirrhosis with 
HE, patients with liver cirrhosis without HE, and healthy 
subjects, and then used the features of these images as 
data to classify these three groups using the SVM algo-
rithm. The classification algorithm achieved an accuracy 
of 72.5% [48]. Two years later, in 2023, another study was 
conducted with a similar method and classification to the 
study by Yue Cheng et al. The SVM classification algo-
rithm achieved an accuracy of 96% and an area under the 
curve (AUC) of 93% [47].

Video-oculography  Only one study has used video-
oculography technology to aid in the diagnosis of MHE 
by analyzing eye movements with ML tools. First, eye 
movements of subjects with different tests were recorded 
through an automated gaze tracking system and 150 fea-
tures were extracted for each patient. Then, by performing 
statistical tests, 14 features were found to be significant 
and were selected for use in ML classification algorithms 
including SVM, KNN, linear discriminant and two algo-
rithms from the ensemble algorithm category including 
subspace discriminant and bagged tree. The SVM algo-
rithm had the highest performance with an accuracy of 
96.7% [54].
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Fig. 4  Network diagram of relationships between algorithms, data types, and types of HE in included studies

 

Fig. 3  AI/ML algorithms and their input data types
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Prediction of HE
MRI images  In this subgroup of MRI images, five stud-
ies, conducted exclusively in China, utilized MRI tech-
niques to generate input images for ML algorithms [30, 
31, 43–45]. The objective across all studies was to distin-
guish patients with MHE from those without HE. Three 
studies solely employed the SVM algorithm [31, 44, 45], 
while one study utilized an ML algorithm based on Bayes-
ian techniques known as Graphical model-based multi-
variate analysis (GAMMA) [30]. Another study employed 
several algorithms, including SVM, GAMMA, multilayer 
perceptron (MLP), and C4.5 [43]. Notably, in the study by 
Gaoyan Zhang et al., the SVM algorithm demonstrated 
the highest accuracy, reaching 88.71% [44].
Recently, in 2025, a study in Italy used MRI images 
to predict and grade cirrhotic patients with overt HE 
(grades 1 and 2), cirrhotic patients without HE, and con-
trols (non-cirrhotic individuals). First, MRI images were 
preprocessed with the Principal Component Analysis 
(PCA) method and feature selection was performed. 
Then, various ML algorithms including decision tree, RF, 
KNN, SVM, and MLP were used for prediction. As the 
best classification algorithms between different classes, 
the MLP predicted patients versus controls with 100% 
accuracy, the KNN algorithm predicted patients with or 
without HE with 76.5% accuracy, and the MLP algorithm 
predicted the grade of HE (HE grade 1, HE grade ≥ 2) 
with 94.1% accuracy [55].

Clinical and laboratory data  In recent years, there has 
been a growing emphasis on using AI techniques to pre-
dict HE using clinical and laboratory data, with two stud-
ies conducted in 2021 focusing on this approach [16, 29]. 
One study aimed to predict overt HE within the first three 
months after TIPS, utilizing an ANN algorithm and prog-
nostic nomograms [29]. It achieved a concordance index 
(C-index) value of 0.816. The concordance index is a use-
ful metric for assessing the predictive power of a model 
and comparing different models in terms of their ability to 
rank or order outcomes correctly [57].
Another study focused on predicting HE in cirrhosis 
patients [16]. Due to the imbalance in the number of 
patients with and without HE, and to enhance perfor-
mance, the study employed weighted ML algorithm 
models, including weighted SVM and weighted RF. These 
models were compared with non-weighted models, such 
as SVM and RF. Although the SVM model demonstrated 
the highest accuracy in test data, with a value of 0.93, fur-
ther examination revealed that the weighted RF model 
outperformed others, particularly in handling unbal-
anced HE data for external validation.

Additionally, a study employed AI techniques to com-
pare microbial compositions in stool and saliva sam-
ples of cirrhosis patients and their association with the 

presence or absence of HE. Various algorithms were 
utilized, and ultimately, the RF algorithm, incorporating 
both microbial inputs, achieved the highest AUC value of 
0.73 [52].

In 2023, a prospective, multicenter study used thyroid 
hormone levels collected and analyzed from patients’ 
serum and followed during hospitalization to predict 
overt HE. The researchers achieved an AUC of 0.75% by 
training and finally testing a logistic regression algorithm 
[53].

In a retrospective study, researchers analyzed 327 
patients who underwent TIPS surgery for liver cirrhosis. 
Feature selection was performed with a sequential fea-
ture selection model with five-way cross-validation, and 
7 features were ultimately selected to build the models. 
Three machine learning models were developed using 
SVM, logistic regression, and CatBoost algorithms. The 
SVM algorithm performed best with an accuracy of 75% 
and an AUC of 83% [56].

A study was conducted on 218 patients with liver cir-
rhosis who were simultaneously diagnosed with acute 
variceal bleeding with the aim of developing a ML model 
to predict the occurrence of overt HE after TIPS. The 
dataset included basic demographic characteristics 
(gender, age, etiology) along with clinical, biochemi-
cal, and procedural data. Three algorithms including RF, 
XGBoost, and LR were validated through 10-fold cross-
validation. Among the evaluated models, logistic regres-
sion showed the highest performance with an AUC of 
82.5% [49].

CT images  In a study, the RF algorithm was utilized to 
extract radiomics features from CT images and predict 
HE after portosystemic bypass or shunting, achieving an 
accuracy of 90% [46].
A multicenter retrospective study of 130 patients with 
cirrhosis who underwent TIPS surgery over a period 
of approximately five years was conducted. Pre-TIPS 
contrast-enhanced CT images were collected for VAT 
segmentation and radiomic feature extraction. Least 
absolute shrinkage and selection operator regression with 
ten-fold cross validation were performed for dimension-
ality reduction. Logistic regression with regularization, 
SVM, and RF were used to build the model. The mean 
AUC in the test sets was 84% [50].

Survival analysis
Regarding survival analysis, only one study conducted in 
Massachusetts aimed to predict the 28-day mortality of 
HE patients [32]. This study employed four different ML 
algorithms—ANN, gradient boosting machine (GBM), 
RF, and bagging trees—all utilizing clinical data as input. 
Notably, the ANN algorithm demonstrated the highest 
predictive performance, achieving an AUC value of 0.837.
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Table 3 summarizes the model performance measures 
from the reviewed studies focusing on AI applications in 
HE disease. These studies underscore the potential of AI 
approaches in enhancing diagnostic accuracy and sur-
vival analysis, which can ultimately result in improved 
patient outcomes.

Discussion
HE poses a significant challenge, characterized by a dismal 
prognosis and low survival rates, underscoring the criti-
cal need for accurate prediction and identification of indi-
viduals at risk [6]. In recent years, the surge in AI and ML 
applications has prompted researchers to explore avenues 
for enhancing diagnostic precision and, ultimately, patient 
outcomes [58]. This scoping review represents the inau-
gural effort to elucidate the role of AI and ML techniques 
in HE care and research. Our analysis encompassed 20 
studies spanning from 2005 to 2025, all leveraging AI/ML 
methodologies. Notably, the studies were frequently con-
strained by limited data availability, with 17 studies featur-
ing between 35 and 327 entries [19, 29–31, 43–52, 54–56], 
while only three studies boasted larger datasets of 601, 602 
and 1256 entries [16, 32, 53]. Critically, seven studies exhib-
ited poorly defined training and test sets from 35 to 168 
[19, 30, 31, 43–48, 50, 54, 55]. Algorithmic accuracy ranged 
between 47% and 96.7%, underlining the pivotal impor-
tance of ample dataset sizes for robust model training. Fur-
thermore, 11 studies implemented validation methods [16, 
44–50, 52, 54, 56]. Validation methods are employed to 
optimize model hyperparameters and estimate validation 
errors [59]. Noteworthy findings from our investigation 
revealed that the highest algorithmic accuracy was associ-
ated with the study with a small input volume but used a 
5-fold validation method with 1000 iterations, demonstrat-
ing the importance of using validation methods [54]. This 
iterative approach facilitated the development of a model 
exhibiting superior performance [60].

We found that early studies primarily focused on 
employing a combination of ANN and expert systems 
to classify EEG images in HE staging [19, 51]. Despite 
working with relatively small datasets, these algorithms 
demonstrated noteworthy performance. ANN are com-
monly associated with contemporary ML techniques, 
while expert systems are considered part of traditional 
AI due to their rule-based and knowledge-oriented 
approach [61, 62]. The fusion of these methodologies into 
ANN and expert systems represents a hybrid approach, 
integrating aspects from both traditional and modern 
AI. The study conducted by P. Amodio et al. revealed 
that this combined algorithm provides classifications of 
HE stages that generally align with a significant level of 
accuracy compared to assessments by Electroencepha-
lography specialists [19, 51]. However, there is a notice-
able gap in information regarding the model’s accuracy in 

the current literature, emphasizing the need for further 
investigation in future research endeavors.

Between 2015 and 2020, a notable shift was observed 
towards predicting diseases from MRI images, employ-
ing a variety of both traditional and emerging ML algo-
rithms, such as MLP [43], C4.5 [43], notably SVM [31, 
43–45] and Bayesian techniques like multivariate analy-
sis based on graphical models [30, 43]. Among these, 
SVM emerged as the predominant algorithm in the stud-
ies, demonstrating its efficacy as a supervised learning 
technique [31, 44, 45]. Notably, in studies focusing on 
liver disease prediction, SVM has exhibited remarkable 
performance, as exemplified by Vijayarani et al.‘s study, 
where SVM outperformed Naïve Bayes with an accuracy 
of 79.66%, which was about 19% more than Naïve Bayes 
algorithm [63]. Similarly, in another study comparing 
six supervised algorithms for liver disease classification, 
SVM ranked fourth in accuracy at 64% but displayed the 
highest sensitivity at 88% [64]. This consistent efficacy 
underscores SVM’s status as a robust tool in disease pre-
diction research, particularly in liver diseases [65], owing 
to its ability to handle high-dimensional data and high 
discrimination power with limited sample sizes [66]. This 
advantage becomes particularly crucial given our review 
findings, revealing a high number of input variables rela-
tive to observations in HE diagnosis studies, coupled 
with a limited number of HE patient samples.

In 2021 and 2022, a notable shift occurred towards 
leveraging AI techniques utilizing clinical and laboratory 
data for predicting HE [16, 52]. One study employed vari-
ous weighted ML algorithms to address unbalanced data, 
resulting in enhanced prediction models [16]. Addition-
ally, the RF algorithm demonstrated promising results in 
such studies [16, 52], with accuracy ranging from 62 to 
93% in this group.

Between 2023 and 2025, the landscape of algorithms 
and data types utilized in predicting and classifying HE 
has evolved significantly. Recent studies have employed 
a diverse array of both traditional ML and modern tech-
niques, such as logistic regression, SVM, RF, and more 
sophisticated models like XGBoost and CatBoost [47, 49, 
50, 53–56]. Notably, a study introduced features extracted 
from video-oculography to classify covert HE, achieving 
impressive accuracy with the SVM algorithm at 96.7% [54]. 
This emphasizes the potential of integrating novel data 
types to enhance diagnostic precision. Furthermore, the 
incorporation of newer algorithms like CatBoost demon-
strates a growing trend toward advanced ML techniques. 
CatBoost is particularly noteworthy as it is designed to 
handle categorical features efficiently while mitigating 
overfitting, making it well-suited for clinical datasets [67]. 
Zhe Zhange et al.’s study used ML algorithms to predict 
28-day mortality in HE patients [32]. In this study, four 
traditional and advanced AI algorithms were used, and the 
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ANN algorithm obtained the highest prediction perfor-
mance. It is worth noting that real-time prediction of mor-
tality risk among HE patients admitted to the ICU could, in 
turn, optimize treatment to improve clinical prognosis [68].

Modern AI algorithms, including ML models like RF, 
show promise in the classification of medical MRI images, 
particularly in predicting HE disease. These models often 
achieve high accuracy rates, with studies reporting perfor-
mance ranging from 58.82 to 96.02% for various algorithms 
[31, 43–45, 47, 48, 55]. For instance, the SVM model has 
been a standout, achieving accuracies of 96.7% in Spain and 
96.02% in China for classifying covert HE [47, 54]. Addi-
tionally, logistic regression continues to demonstrate strong 
performance, with an accuracy of 87.56% reported for pre-
dicting HE using clinical and laboratory data [16]. In a com-
prehensive study from 2024, multiple algorithms—including 
RF and logistic regression—were evaluated for predicting 
HE after TIPS. The logistic regression model achieved an 
AUC of 83%, showcasing its effectiveness, while RF per-
formed competitively as well [50]. Furthermore, the usage 
of ensemble methods, such as bagged trees and subspace 
discriminants, has shown effectiveness in increasing classi-
fication accuracy for covert HE [54]. Assessing the perfor-
mance of both traditional and contemporary AI algorithms 
is crucial in the context of HE disease. Each approach offers 
distinct advantages yet determining the definitive superior-
ity between traditional and contemporary methods remains 
challenging. The integration of various techniques, along 
with the emerging use of advanced models like CatBoost, 
indicates a progressive enhancement in HE diagnostics 
[56]. Overall, the growing trend toward integrating modern 
algorithms and varied data types illustrates a progressive 
enhancement in HE diagnosis methodologies while under-
scoring the necessity for more extensive datasets to bolster 
algorithmic reliability and application-specific efficacy.

Notably, DL algorithms were not explicitly imple-
mented in the studies reviewed, indicating that these 
advanced techniques are still not fully leveraged in HE 
research. We can only consider the four studies that 
employed MLPs as focusing on DL [19, 43, 51, 55], 
because ANNs qualify as DL algorithms when they con-
tain more than two hidden layers [69]. This is due to their 
ability to learn hierarchical representations from raw 
data, handle high-dimensional inputs, and perform well 
in image-based tasks [70]. However, the full potential of 
these algorithms is still largely unexploited, presenting 
a valuable opportunity for future studies to utilize their 
strengths for enhanced diagnostic precision.

The field of HE researches often struggles with limited 
sample sizes, which can significantly hinder the generaliz-
ability of findings and the robustness of predictive mod-
els. Small sample sizes not only restrict the diversity of 
patient populations represented in studies but also lead 
to increased variability in results, making it challenging to 

draw broad, reliable conclusions applicable to the wider 
clinical context [71]. This limitation is critical, as findings 
derived from narrow cohorts may not be representative of 
the larger population, thereby compromising the practical 
utility of predictive models in everyday clinical settings.

Moreover, inherent biases in the datasets used for 
training AI models could distort algorithmic predictions 
[72]. These biases may arise from factors such as demo-
graphic skewness, variations across medical centers, or 
inconsistent data quality. Such distortions could compro-
mise the accuracy and reliability of the predictive capa-
bilities of the proposed models, potentially leading to 
suboptimal clinical decisions based on these tools. There-
fore, while some studies demonstrate promising results, 
these limitations highlight the urgent need for larger, 
more diverse datasets and a proactive approach to bias 
mitigation strategies in future research endeavors.

Another notable limitation identified from the synthe-
sized studies is the pervasive lack of external validation. 
While the findings and algorithms developed within indi-
vidual studies showcase potential utility and efficacy in 
managing HE, the absence of robust external validation 
is a significant barrier to their generalizability and real-
world applicability. Without validation against indepen-
dent datasets, the reliability and performance of these AI 
and ML applications remain vulnerable to overfitting or 
biases inherent in the training data [73]. This risks their 
seamless translation into clinical practice, where vali-
dated tools are essential for ensuring accurate predictions 
and interventions. Addressing this critical gap in experi-
mental design and methodology will be imperative for 
fostering trust among practitioners and enhancing the 
clinical utility of AI and ML tools developed for HE.

Within the spectrum of AI and ML applications for 
HE, the predominant reliance on retrospective cohorts 
in the studies reviewed introduces another significant 
limitation: selection bias [16, 19, 29–32, 43–50, 54–56]. 
The retrospective nature of the data sources can lead to 
an overrepresentation of certain patient cohorts, treat-
ment approaches, or outcomes. This skewing not only 
compromises the robustness and validity of the findings 
but also limits their applicability in real-world clinical 
scenarios [74]. It underscores the necessity for future 
research endeavors to encompass prospective cohort 
designs or randomized controlled trials, which can miti-
gate selection bias and enhance the reliability of results. 
This methodological evolution is instrumental in fortify-
ing the credibility and impact of AI-driven solutions and 
ensuring their effective integration into clinical manage-
ment strategies for this complex neurological condition.

Limitations
This scoping review has several limitations. First, the 
search was limited to studies published in English, 
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which may have excluded relevant research in other lan-
guages. Second, the review did not assess the quality or 
risk of bias of included studies, as is standard in scoping 
reviews, which limits interpretation of the robustness 
of the evidence. Third, the field of machine learning in 
hepatic encephalopathy is still emerging, and many stud-
ies were exploratory or heterogeneous in methodology, 
making it difficult to draw consistent conclusions. Finally, 
due to rapid advances in machine learning, some recent 
developments may not have been captured if published 
after our final search date.

Future directions
Some studies either did not report or inadequately 
reported performance indicators of algorithms. It is 
imperative for future studies to comprehensively report 
their findings on AI algorithm performance in a robust 
manner, encompassing accuracy, F1 score, area under 
the receiver operating characteristic, and area under the 
precision-recall curve. Each of these metrics gauges dis-
tinct aspects of performance and may serve as better pre-
dictors than others in specific circumstances [75]. Future 
research should set clear guidelines for performance 
reporting, potentially adopting a standardized reporting 
framework to facilitate easier comparison and validation 
of results across studies.

A pivotal direction for future research involves address-
ing the intricate challenge of seamlessly integrating AI 
solutions into clinical practice. Future studies should 
dedicate efforts to investigating the standardization of 
datasets, with specific strategies such as collaborative 
data-sharing initiatives among institutions. Establish-
ing a consortium of researchers and clinical centers may 
enhance data diversity and volume, thereby improving 
the generalizability of findings. Additionally, developing 
standardized data collection protocols could help miti-
gate biases and inconsistencies in datasets. Furthermore, 
refining regulatory processes and devising strategies for 
the harmonious assimilation of AI tools into real-world 
clinical workflows will be essential. Establishing robust 
frameworks for data interoperability, compliance with 
regulatory standards, and creating user-friendly integra-
tion interfaces will support the successful adoption and 
efficacy of AI-driven interventions in the domain of HE 
management.

Moreover, future research should incorporate Explain-
able AI (XAI) methodologies to enhance the interpret-
ability and trustworthiness of AI-driven models [76]. 
Employing techniques such as feature importance analy-
sis and local explanations will allow researchers to clarify 
the rationale behind algorithmic predictions, thereby 
identifying critical predictors of patient outcomes, such 
as lab values like ammonia levels. By integrating XAI, 

researchers can also tackle potential biases within datas-
ets and bolster the external validation of models. Empha-
sizing XAI will not only mitigate selection bias inherent 
in retrospective cohorts but will also foster greater confi-
dence among healthcare providers regarding the AI tools 
they employ. Ultimately, these initiatives will promote the 
reliable adoption of AI technologies in clinical practice 
for effective management of HE.

It is also crucial to transcend the exclusive focus on 
accuracy and sensitivity metrics and pivot towards 
enhancing the computational speed and responsiveness 
of AI algorithms. Future research should aim to develop 
benchmarks for computational efficiency alongside tra-
ditional performance metrics. By prioritizing efficiency 
in tandem with performance, researchers can foster the 
development of streamlined and agile computational 
models that can swiftly analyze complex datasets and 
deliver rapid insights. This focus on computational speed 
will optimize clinical decision-making processes and 
ensure that AI tools are not only accurate but also timely 
in their application.

Conclusion
This scoping review highlights the growing application 
of AI, particularly ML, in the diagnosis and prognosis 
of HE. Studies demonstrated the feasibility of develop-
ing accurate classification and prediction models using 
diverse data sources, including medical imaging, clini-
cal variables, and laboratory findings. These models have 
shown encouraging performance in detecting disease 
and estimating survival outcomes. However, limitations 
such as small sample sizes and lack of external valida-
tion constrain generalizability. Future research should 
prioritize robust validation and real-world implementa-
tion to assess the clinical utility of AI-driven tools in HE 
management.
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