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Abstract

Introduction Hepatic encephalopathy (HE) is defined as a specific type of cerebral dysfunction that encompasses

a wide range of cognitive, psychomotor, and psychiatric disturbances. The burgeoning field of Artificial Intelligence
(A), particularly Machine Learning (ML), offers promising avenues for early detection and enhanced control of HE. This
scoping review aims to provide a consolidated overview of Al's role in the diagnosis and management of HE, thereby
informing and guiding future research endeavors in this domain.

Methods We followed Arksey and O'Malley’s methodological framework to perform this scoping review, using
PubMed, Web of Science, Scopus, ScienceDirect, and IEEE databases to find relevant articles. We also utilized the
PRISMA standard to report our review in a standardized manner. Studies that focused on the applications of Al or ML
techniques in relation to the prediction or diagnosis of HE disease were included.

Results Out of the 231 articles identified, 20 were ultimately included in this scoping review. The integration

of artificial neural networks and expert systems represented an early and pioneering approach in applying Al to

HE. Among supervised learning algorithms, Support Vector Machine emerged as the most frequently employed
technique in HE research, based on our review of the selected studies. Notably, the primary application of Al in HE
studies has been predictive modeling (n=14), followed by five studies focused on classifying HE stages and one study
analyzing patient survival using Al methodologies.

Conclusions This scoping review highlights the growing use of Al and ML diagnostic models and predictive tools
utilizing various data types. These advancements have the potential to positively impact patient outcomes. Future

research should focus on validating and implementing these Al models in clinical settings to assess their real-world
effectiveness in improving patient care.
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Introduction

Hepatic encephalopathy (HE) is a brain disorder caused
by liver failure and/or portal-systemic shunting. It pres-
ents as a distinct form of cerebral dysfunction, encom-
passing a wide range of cognitive, psychomotor, and
psychiatric disturbances—ranging from subtle changes
in mental status to coma. Figure 1 illustrates the relation-
ship between liver cirrhosis and HE, as well as the asso-
ciated types of symptoms [1-3]. This condition arises as
a complication of both chronic and acute liver diseases
[4, 5]. HE is classified into three major types based on
its underlying causes: Type A, resulting from acute liver
failure; Type B, associated with transjugular intrahepatic
portosystemic shunt (TIPS); and Type C, linked to cir-
rhosis. In addition to these classifications, there exists
Minimal HE (MHE), recognized as the earliest and mild-
est form of HE. MHE is prevalent in 80% of cirrhotic
patients and significantly diminishes their quality of life
[3, 6, 7]. Despite lacking clinical evidence for diagnosis,
individuals with MHE exhibit gradual changes in psy-
chomotor or neuropsychological functions [8]. Notably,
MHE carries a poor prognosis, with predicted one and
three-year survival rates of 42% and 23%, respectively, in
the absence of liver transplantation [7]. The intensity of
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this condition underscores the need for comprehensive
understanding and effective management strategies.

HE presents a significant diagnostic challenge due
to its clinical overlap with various medical, neurologi-
cal, and psychiatric conditions, complicating differential
diagnosis and increasing vulnerability to additional brain
injuries [9]. In response to this complexity, the Interna-
tional Society of Hepatic Encephalopathy and Nitrogen
Metabolism introduced a revised classification system in
2011, dividing HE into two main categories: covert and
overt [10]. MHE, as we discussed earlier, belongs to the
covert category [11]. Covert HE is characterized by subtle
neurocognitive impairments that often go undetected in
routine clinical assessments, leading to underdiagnosis
and inadequate treatment. Early identification of covert
HE is critical for timely intervention, preventing disease
progression and recurrence, improving patient quality
of life, and potentially reducing mortality [12—14]. Given
the high prevalence of MHE and the limitations of cur-
rent screening methods, there is a growing need for the
development and implementation of more sensitive and
accessible diagnostic tools [15-17].

In contrast, overt HE is a more advanced and clini-
cally evident manifestation of the condition, presenting
marked neurological and psychiatric symptoms that are

From Liver Cirrhosis to Hepatic Encephalopathy:
Causes and Symptoms
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Fig. 1 Relationship between liver cirrhosis and HE, illustrating the associated symptom types
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typically identifiable through standard clinical evalu-
ation. It is a common and severe complication among
individuals with cirrhosis, affecting approximately
30-50% of patients, with an estimated annual risk of
20% [18]. Recent advancements in artificial intelligence
(AI) offer promising opportunities to enhance the diag-
nostic landscape of HE. Al-based methods can uncover
latent patterns in laboratory results, clinical records, and
electroencephalogram (EEG) data, surpassing traditional
diagnostic approaches in both speed and accuracy [19,
20]. By overcoming current limitations in early detection,
AT has the potential to significantly improve the progno-
sis and management of both covert and overt forms of
HE, ultimately leading to better clinical outcomes.

Al constitutes a broad category encompassing diverse
algorithms capable of discerning patterns within exten-
sive datasets, providing valuable inferences and insights.
Within this domain, machine learning (ML), a special-
ized scientific discipline and subset of Al is focused on
enabling computers to learn from data [21]. ML holds a
significant role in the field of medical imaging, facilitating
operations such as detection, segmentation, registration,
integration, guided treatment, annotation, and recovery
on images [22]. Originating in the 1950s and 1960s, the
historical evolution of ML in medicine saw the develop-
ment of algorithms for modeling and analyzing extensive
datasets, with prominent contributions from Hunt et al.
in symbolic learning [22], Nilsson in statistical meth-
ods [23], and Rosenblatt in neural networks [24]. One of
the most transformative branches of ML is deep learn-
ing (DL), which employs multi-layered artificial neural
networks (ANN) to model complex patterns and repre-
sentations in data. By processing data through multiple
layers of neurons, DL algorithms can automatically learn
to extract features and make predictions with minimal
human intervention, making them particularly effective
for tasks such as image and speech recognition [25]. The
ongoing trajectory of ML in medicine, with its promise to
enhance accuracy and efficiency of diagnoses resulting in
improved patient safety [26—29], has recently manifested
in the application of Al, particularly ML, to HE research.
Employing both clinical and laboratory data, as well as
medical images, these approaches contribute to the in-
time diagnosis, and enhanced control of HE.

There are a considerable number of studies using
Al and ML in the field of HE. In one study, researchers
employed demographic and clinical data as input for a
prediction model, utilizing the ANN method, to predict
HE [30]. Conversely, another investigation employed
weighted support vector machine (SVM), weighted ran-
dom forest (RF), and logistic regression algorithms for
a similar purpose [19]. Notably, the majority of stud-
ies focusing on HE have extensively incorporated image
processing methods, indicative of the widespread
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application of Al in this domain. For instance, research-
ers utilized diffusion White Matter Imaging and a ML
technique based on Bayesian principles to classify and
differentiate images of cirrhosis patients into two groups:
those with and without MHE. This study identified two
distinct areas in White Matter that effectively distin-
guished between these patient groups [31]. Additionally,
the integration of EEG images with clinical data served
as input for an ANN model and an expert system, aid-
ing in the identification of EEG changes associated with
HE patients [19]. Another study employed ML methods
to predict 28-day mortality in patients [32]. These diverse
approaches underscore the versatility of Al in leveraging
various data sources for the diagnosis and prognostica-
tion of HE.

Although one previous review explored the use of Al
for diagnosing MHE using handwriting and speech data
[33], a comprehensive synthesis of Al and ML applica-
tions across the broader spectrum of HE is still lacking.
Our scoping review aims to address that gap by mapping
current research, summarizing methodologies, and iden-
tifying key limitations and opportunities. In doing so, it
provides a foundation for future studies and supports the
advancement of Al-driven approaches for improving HE
diagnosis and management.

Methods

The method we have used is based on Arksey and
O’Malley’s methodological framework. In this frame-
work, a five-step guideline including the following steps
is provided [34]:

Identification of the research question
Identification of relevant studies
Selection of included studies

Charting of the key elements
Summarizing and reporting the results

SN e

We also used the PRISMAScR, a PRISMA extension
intended to apply for reporting scoping reviews, which
is included in Supplementary File 1. This standard, pub-
lished in 2018, contains 20 essential and two optional
items and helps to improve the reporting of scoping
reviews [35].

Identifying the research question

What are the different applications of Al, especially ML
and DL, in the field of HE? And what ML algorithms have
been employed in the existing literature?

Identifying the relevant studies

Search strategy

A comprehensive search strategy was developed by com-
bining relevant keywords to retrieve all studies on HE
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Table 1 Search keywords used to create the search strategy

Concepts for Al/ML methods Concepts for HE
“Machine Learning’, "Artificial Intelligence’, “Neural Network’,"Deep Learning’,"Computer-assisted’,“Computer Vision’,"Deep Net- “Hepatic En-
work’,"Computer-aided’, “Convolutional Network’, “Recurrent Network’, “Graph Network’, Backprops, “Support vector’, Ensemblesx,  cephalopath®,

“Random forests”", “Nearest neighbors’, “K-nearest neighbors’, “Gradient boosts", XGBoost:, Segmentation, “instance learning’, “Portal-Systemic
“multi-instance learning’, “Active Learning’; Transfer Learning’,"Reinforcement Learning’, “Predictive Modeling’,“Feature Engineering’, Encephalopath®’,
"Hyperparameter Tuning’,“Data Augmentation’, “Expert system*’,"Computational Intelligence’,"Machine Intelligence’,"“Computer "Hepatic Coma’,

Reasoning’, "Knowledge Representation’, “Knowledge acquisition’’ Computing Methodologies’, “Long Short-Term Memor Net- "Hepatocer-

work*” “Gated Recurrent Units’, “Generative Adversarial Network*’, “Deep Belief Networks’, “Radial Basis Function Network*” ebral En-
cephalopathies’,
“Hepatic Stupor”,
“Fulminant

Hepatic Failure’,
"Portosystemic
Encephalopathy”

Table 2 PubMed database search strategy

PubMed search strategy

("hepatic encephalopath*“[Title/Abstract] OR “portal systemic encephalopath*'[Title/Abstract] OR “Hepatic Coma”[Title/Abstract] OR "He-

patic Stupor“[Title/Abstract] OR “Fulminant Hepatic Failure”[Title/Abstract] OR “Portosystemic Encephalopathy“[Title/Abstract] OR “Hepatic
Encephalopathy“[MeSH Terms] OR “liver failure, acute’[MeSH Terms]) AND (“Machine Learning“[Title/Abstract] OR “Artificial Intelligence”[Title/Abstract]
OR"Neural Network[Title/Abstract] OR "Deep Learning"[Title/Abstract] OR"Computer-assisted”[Title/Abstract] OR “Computer Vision"[Title/Abstract]
OR"Deep Network”[Title/Abstract] OR “Computer-aided‘[Title/Abstract] OR “Convolutional Network’[Title/Abstract] OR “Recurrent Network[Title/
Abstract] OR “Graph Network[Title/Abstract] OR “backprop*“[Title/Abstract] OR “Support vector”[Title/Abstract] OR “ensemble*“[Title/Abstract] OR
“random forest*’[Title/Abstract] OR “nearest neighbor*[Title/Abstract] OR "k nearest neighbor*“[Title/Abstract] OR “gradient boost**[Title/Abstract] OR
"xgboost*'[Title/Abstract] OR “Segmentation”[Title/Abstract] OR “instance learning“[Title/Abstract] OR "multi-instance learning”[Title/Abstract] OR
“Active Learning“[Title/Abstract] OR “Transfer Learning”[Title/Abstract] OR “Reinforcement Learning“[Title/Abstract] OR “Predictive Modeling”[Title/
Abstract] OR “Feature Engineering”[Title/Abstract] OR "Hyperparameter Tuning“[Title/Abstract] OR “Data Augmentation”[Title/Abstract] OR “expert
system*“[Title/Abstract] OR “Computational Intelligence”[Title/Abstract] OR “Machine Intelligence’[Title/Abstract] OR “Computer Reasoning”[Title/Ab-
stract] OR"Knowledge Representation“[Title/Abstract] OR “Knowledge acquisition“[Title/Abstract] OR “Computing Methodologies‘[Title/Abstract] OR
“Gated Recurrent Units”[Title/Abstract] OR “generative adversarial network*'[Title/Abstract] OR “Deep Belief Networks’[Title/Abstract] OR “radial basis
function network*“[Title/Abstract] OR “Machine Learning“[MeSH Terms] OR “Artificial Intelligence”[MeSH Terms] OR “neural networks, computer’[MeSH

Terms] OR“Deep Learning“[MeSH Terms] OR “diagnosis, computer assisted‘[MeSH Terms])

involving Al or ML approaches. To ensure broad cov-
erage in PubMed, a set of Medical Subject Headings
(MeSH) terms was also incorporated. Table 1 presents
the keywords used across all databases, while the com-
plete search strategy for PubMed is provided in Table 2.
Search strategies for the remaining databases are detailed
in Supplementary File 2.

Information sources

We searched PubMed, Web of Science (WOS), Sco-
pus, ScienceDirect, and IEEE Xplore to identify relevant
articles published up to May 14, 2025. No geographic
or temporal restrictions were applied, but searches were
limited to studies published in English.

All search results were imported into the Zotero refer-
ence management software (version 6.0.30), and dupli-
cate records were removed. The initial search yielded 231
citations across the five databases. After removing dupli-
cates, 149 unique articles remained for screening. Title
and abstract screening excluded 112 studies that did not
meet the inclusion criteria. An additional 17 studies were
excluded during the full-text review based on predefined
exclusion criteria. Ultimately, 20 studies were included
for data extraction (Fig. 2).

Study selection and eligibility criteria

Original studies published in peer-reviewed journals and
written in English were considered for inclusion. Studies
were eligible if they met both of the following criteria:

1. Applied at least one Al method, including ML or DL
algorithms, in the context of HE.

2. Focused on the application of Al or ML techniques
for the prediction or diagnosis of HE.

Studies were excluded if they met at least one of the fol-
lowing criteria:

1. Investigated Al applications in liver diseases other
than HE.

2. Did not involve ML or DL methods specifically
related to HE.

3. Were review articles or non-peer-reviewed
publications, including editorials, conference
abstracts, book chapters, or study protocols.

Screening process
The screening process was conducted by the first author,
who reviewed the titles and abstracts of all retrieved
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Identification of studies via databases ]
[ 231 Records identified from
databases
c
:g 71 PubMed
g 9 Science direct 82 Duplicate records
5‘5 —  » removed before
5 59 Scopus screening
= 80 Web of science
12 |IEEE
149 Records screened by 112 Studies did not
Title/Abstract ) .
meet the inclusion
g' criteria.
c
o
g 17 Reports excluded:
(75} 35 Records assessed for 5 Protocol or
Sligibility review study
) 6 Not related to
Al
2 Not related to
T HE
<
3 20 Studies included in review > 3 Conference
3]
c 1 Not English

Fig. 2 Flowchart of study selection. Note: Some excluded studies may have met multiple exclusion criteria, but only the primary reason for exclusion is
reported
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articles based on the predefined inclusion and exclusion
criteria. Irrelevant studies were excluded at this stage.
For any articles where eligibility was uncertain, the first
author consulted with the co-authors, and a consensus
was reached through group discussion. Full-text arti-
cles of potentially relevant studies were then assessed
by the first author to determine final eligibility for data
extraction.

Charting the data
To guide the data extraction process, preliminary meet-
ings were held to determine key variables, and a struc-
tured checklist was developed. The initial checklist was
designed by the first author based on two comparable
studies in the field [36, 37]. The checklist was reviewed
and refined through group discussion with co-authors
to ensure alignment with the study objectives and the
specific context of HE. Given the limited number of
Al-related studies in this field, HE-related articles were
categorized into four groups based on the type of HE
investigated: post-TIPS HE, overt HE, covert HE (includ-
ing MHE), and studies encompassing all stages of HE.
Data extraction was conducted independently by the
first author, who aggregated the results. A thorough
review and verification of the extracted data were also
performed by the same author to ensure accuracy and
consistency. In terms of AI applications, studies were
categorized into three major groups: classification, pre-
diction, and survival analysis. The classification and pre-
diction categories were further subdivided based on the
primary type of input data used. For instance, when a
study utilized multiple data sources, categorization was
based on the data type that played the most critical role
in the applied method. As a result, five types of input data
were identified across the included studies:

1. Electroencephalography (EEG) data: EEG data
are generated by recording the brain’s electrical
activity using electrodes placed on the scalp.

These electrodes are connected to a device that
amplifies and captures the brain’s electrical signals
as waveforms, allowing for analysis of neurological
function [38, 39].

2. Magnetic Resonance Imaging (MRI) data: MRI
data are obtained through a non-invasive imaging
technique that uses powerful magnetic fields and
radio waves to produce detailed anatomical and
functional images of soft tissues, including the brain
[40].

3. Clinical and Laboratory data: Clinical data
encompasses a broad range of information pertaining
to a patient’s medical history, symptoms, physical
examination findings, diagnostic results, treatments,
and outcomes. Laboratory data, on the other hand,
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specifically refers to information obtained through
the analysis of patient samples in a laboratory setting.
This includes results from blood tests, urine tests,
genetic tests, microbiology cultures, and other types
of analyses performed on patient specimens.

4. Computed tomography (CT) images: Images that are
created through a medical imaging procedure that
utilizes X-rays to produce detailed cross-sectional
images of the body [41].

5. Video-oculography: Video-oculography is a
technique for capturing eye movement using
digital video cameras. This represents a notable
advancement from electronystagmography, which
relies on the corneo-retinal potential, similar to a
battery effect in the eye. As the eyes shift side to side
and up and down, the positive and negative signals of
the corneo-retinal potential are recorded [42].

Data items

For each eligible article, data items containing informa-
tion regarding the characteristics of the studies and their
data relevant to the purpose of our review were extracted
and are shown in Table 3. Each study could have used
more than one technique.

Collating, summarizing, and reporting results
We used different charts and tables to summarize and
report the results.

Result

Of the 20 eligible articles, more than half of them (n=11)
were conducted in China [29-31, 43-50]. The first study
was published in 2005 [19], and five studies were pub-
lished by 2017 [19, 30, 43, 45, 51]. However, the num-
ber of studies increased, with 15 more published during
2020-2025 [16, 29, 31, 32, 44, 46-50, 52-56].

Al/ML techniques in research of HE
The combination of artificial neural network and expert
system was the first technique used in Al studies related
to HE [19, 51]. Studies from 2015 to 2017 focused on
SVM and Bayesian algorithms [30, 43, 45]. However,
the focus on various Al algorithms has increased since
2020, and other algorithms including RE, extreme gradi-
ent boosting (XGBoost), LR, K-nearest neighbors (KNN),
Catboost, etc [16, 29, 32, 46, 49, 50, 52-56]. have also
been used in recent years, but in these studies, the most
widely used algorithm is the SVM, as one of the algo-
rithms used in 6 studies was SVM [16, 50, 52, 54-56],
and in 4 studies only the SVM algorithm was used [31,
44, 47, 48].

All these algorithms are listed by frequency and num-
ber of input data in Fig. 3. Figure 4 is a network diagram
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Prediction of HE

MRI images In this subgroup of MRI images, five stud-
ies, conducted exclusively in China, utilized MRI tech-
niques to generate input images for ML algorithms [30,
31, 43—-45]. The objective across all studies was to distin-
guish patients with MHE from those without HE. Three
studies solely employed the SVM algorithm [31, 44, 45],
while one study utilized an ML algorithm based on Bayes-
ian techniques known as Graphical model-based multi-
variate analysis (GAMMA) [30]. Another study employed
several algorithms, including SVM, GAMMA, multilayer
perceptron (MLP), and C4.5 [43]. Notably, in the study by
Gaoyan Zhang et al., the SVM algorithm demonstrated
the highest accuracy, reaching 88.71% [44].

Recently, in 2025, a study in Italy used MRI images
to predict and grade cirrhotic patients with overt HE
(grades 1 and 2), cirrhotic patients without HE, and con-
trols (non-cirrhotic individuals). First, MRI images were
preprocessed with the Principal Component Analysis
(PCA) method and feature selection was performed.
Then, various ML algorithms including decision tree, RF,
KNN, SVM, and MLP were used for prediction. As the
best classification algorithms between different classes,
the MLP predicted patients versus controls with 100%
accuracy, the KNN algorithm predicted patients with or
without HE with 76.5% accuracy, and the MLP algorithm
predicted the grade of HE (HE grade 1, HE grade=2)
with 94.1% accuracy [55].

Clinical and laboratory data In recent years, there has
been a growing emphasis on using Al techniques to pre-
dict HE using clinical and laboratory data, with two stud-
ies conducted in 2021 focusing on this approach [16, 29].
One study aimed to predict overt HE within the first three
months after TIPS, utilizing an ANN algorithm and prog-
nostic nomograms [29]. It achieved a concordance index
(C-index) value of 0.816. The concordance index is a use-
ful metric for assessing the predictive power of a model
and comparing different models in terms of their ability to
rank or order outcomes correctly [57].
Another study focused on predicting HE in cirrhosis
patients [16]. Due to the imbalance in the number of
patients with and without HE, and to enhance perfor-
mance, the study employed weighted ML algorithm
models, including weighted SVM and weighted RF. These
models were compared with non-weighted models, such
as SVM and RF. Although the SVM model demonstrated
the highest accuracy in test data, with a value of 0.93, fur-
ther examination revealed that the weighted RF model
outperformed others, particularly in handling unbal-
anced HE data for external validation.

Additionally, a study employed Al techniques to com-
pare microbial compositions in stool and saliva sam-
ples of cirrhosis patients and their association with the
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presence or absence of HE. Various algorithms were
utilized, and ultimately, the RF algorithm, incorporating
both microbial inputs, achieved the highest AUC value of
0.73 [52].

In 2023, a prospective, multicenter study used thyroid
hormone levels collected and analyzed from patients’
serum and followed during hospitalization to predict
overt HE. The researchers achieved an AUC of 0.75% by
training and finally testing a logistic regression algorithm
[53].

In a retrospective study, researchers analyzed 327
patients who underwent TIPS surgery for liver cirrhosis.
Feature selection was performed with a sequential fea-
ture selection model with five-way cross-validation, and
7 features were ultimately selected to build the models.
Three machine learning models were developed using
SVM, logistic regression, and CatBoost algorithms. The
SVM algorithm performed best with an accuracy of 75%
and an AUC of 83% [56].

A study was conducted on 218 patients with liver cir-
rhosis who were simultaneously diagnosed with acute
variceal bleeding with the aim of developing a ML model
to predict the occurrence of overt HE after TIPS. The
dataset included basic demographic characteristics
(gender, age, etiology) along with clinical, biochemi-
cal, and procedural data. Three algorithms including RE,
XGBoost, and LR were validated through 10-fold cross-
validation. Among the evaluated models, logistic regres-
sion showed the highest performance with an AUC of
82.5% [49].

CT images In a study, the RF algorithm was utilized to
extract radiomics features from CT images and predict
HE after portosystemic bypass or shunting, achieving an
accuracy of 90% [46].

A multicenter retrospective study of 130 patients with
cirrhosis who underwent TIPS surgery over a period
of approximately five years was conducted. Pre-TIPS
contrast-enhanced CT images were collected for VAT
segmentation and radiomic feature extraction. Least
absolute shrinkage and selection operator regression with
ten-fold cross validation were performed for dimension-
ality reduction. Logistic regression with regularization,
SVM, and RF were used to build the model. The mean
AUC in the test sets was 84% [50].

Survival analysis

Regarding survival analysis, only one study conducted in
Massachusetts aimed to predict the 28-day mortality of
HE patients [32]. This study employed four different ML
algorithms—ANN, gradient boosting machine (GBM),
RE, and bagging trees—all utilizing clinical data as input.
Notably, the ANN algorithm demonstrated the highest
predictive performance, achieving an AUC value of 0.837.
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Table 3 summarizes the model performance measures
from the reviewed studies focusing on Al applications in
HE disease. These studies underscore the potential of Al
approaches in enhancing diagnostic accuracy and sur-
vival analysis, which can ultimately result in improved
patient outcomes.

Discussion

HE poses a significant challenge, characterized by a dismal
prognosis and low survival rates, underscoring the criti-
cal need for accurate prediction and identification of indi-
viduals at risk [6]. In recent years, the surge in Al and ML
applications has prompted researchers to explore avenues
for enhancing diagnostic precision and, ultimately, patient
outcomes [58]. This scoping review represents the inau-
gural effort to elucidate the role of AI and ML techniques
in HE care and research. Our analysis encompassed 20
studies spanning from 2005 to 2025, all leveraging AI/ML
methodologies. Notably, the studies were frequently con-
strained by limited data availability, with 17 studies featur-
ing between 35 and 327 entries [19, 29-31, 43-52, 54—56],
while only three studies boasted larger datasets of 601, 602
and 1256 entries [16, 32, 53]. Critically, seven studies exhib-
ited poorly defined training and test sets from 35 to 168
[19, 30, 31, 43-48, 50, 54, 55]. Algorithmic accuracy ranged
between 47% and 96.7%, underlining the pivotal impor-
tance of ample dataset sizes for robust model training. Fur-
thermore, 11 studies implemented validation methods [16,
44-50, 52, 54, 56]. Validation methods are employed to
optimize model hyperparameters and estimate validation
errors [59]. Noteworthy findings from our investigation
revealed that the highest algorithmic accuracy was associ-
ated with the study with a small input volume but used a
5-fold validation method with 1000 iterations, demonstrat-
ing the importance of using validation methods [54]. This
iterative approach facilitated the development of a model
exhibiting superior performance [60].

We found that early studies primarily focused on
employing a combination of ANN and expert systems
to classify EEG images in HE staging [19, 51]. Despite
working with relatively small datasets, these algorithms
demonstrated noteworthy performance. ANN are com-
monly associated with contemporary ML techniques,
while expert systems are considered part of traditional
Al due to their rule-based and knowledge-oriented
approach [61, 62]. The fusion of these methodologies into
ANN and expert systems represents a hybrid approach,
integrating aspects from both traditional and modern
Al The study conducted by P. Amodio et al. revealed
that this combined algorithm provides classifications of
HE stages that generally align with a significant level of
accuracy compared to assessments by Electroencepha-
lography specialists [19, 51]. However, there is a notice-
able gap in information regarding the model’s accuracy in
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the current literature, emphasizing the need for further
investigation in future research endeavors.

Between 2015 and 2020, a notable shift was observed
towards predicting diseases from MRI images, employ-
ing a variety of both traditional and emerging ML algo-
rithms, such as MLP [43], C4.5 [43], notably SVM [31,
43-45] and Bayesian techniques like multivariate analy-
sis based on graphical models [30, 43]. Among these,
SVM emerged as the predominant algorithm in the stud-
ies, demonstrating its efficacy as a supervised learning
technique [31, 44, 45]. Notably, in studies focusing on
liver disease prediction, SVM has exhibited remarkable
performance, as exemplified by Vijayarani et al’s study,
where SVM outperformed Naive Bayes with an accuracy
of 79.66%, which was about 19% more than Naive Bayes
algorithm [63]. Similarly, in another study comparing
six supervised algorithms for liver disease classification,
SVM ranked fourth in accuracy at 64% but displayed the
highest sensitivity at 88% [64]. This consistent efficacy
underscores SVM’s status as a robust tool in disease pre-
diction research, particularly in liver diseases [65], owing
to its ability to handle high-dimensional data and high
discrimination power with limited sample sizes [66]. This
advantage becomes particularly crucial given our review
findings, revealing a high number of input variables rela-
tive to observations in HE diagnosis studies, coupled
with a limited number of HE patient samples.

In 2021 and 2022, a notable shift occurred towards
leveraging Al techniques utilizing clinical and laboratory
data for predicting HE [16, 52]. One study employed vari-
ous weighted ML algorithms to address unbalanced data,
resulting in enhanced prediction models [16]. Addition-
ally, the RF algorithm demonstrated promising results in
such studies [16, 52], with accuracy ranging from 62 to
93% in this group.

Between 2023 and 2025, the landscape of algorithms
and data types utilized in predicting and classifying HE
has evolved significantly. Recent studies have employed
a diverse array of both traditional ML and modern tech-
niques, such as logistic regression, SVM, RF, and more
sophisticated models like XGBoost and CatBoost [47, 49,
50, 53-56]. Notably, a study introduced features extracted
from video-oculography to classify covert HE, achieving
impressive accuracy with the SVM algorithm at 96.7% [54].
This emphasizes the potential of integrating novel data
types to enhance diagnostic precision. Furthermore, the
incorporation of newer algorithms like CatBoost demon-
strates a growing trend toward advanced ML techniques.
CatBoost is particularly noteworthy as it is designed to
handle categorical features efficiently while mitigating
overfitting, making it well-suited for clinical datasets [67].
Zhe Zhange et al’s study used ML algorithms to predict
28-day mortality in HE patients [32]. In this study, four
traditional and advanced Al algorithms were used, and the
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ANN algorithm obtained the highest prediction perfor-
mance. It is worth noting that real-time prediction of mor-
tality risk among HE patients admitted to the ICU could, in
turn, optimize treatment to improve clinical prognosis [68].

Modern Al algorithms, including ML models like RE,
show promise in the classification of medical MRI images,
particularly in predicting HE disease. These models often
achieve high accuracy rates, with studies reporting perfor-
mance ranging from 58.82 to 96.02% for various algorithms
[31, 43-45, 47, 48, 55]. For instance, the SVM model has
been a standout, achieving accuracies of 96.7% in Spain and
96.02% in China for classifying covert HE [47, 54]. Addi-
tionally, logistic regression continues to demonstrate strong
performance, with an accuracy of 87.56% reported for pre-
dicting HE using clinical and laboratory data [16]. In a com-
prehensive study from 2024, multiple algorithms—including
RF and logistic regression—were evaluated for predicting
HE after TIPS. The logistic regression model achieved an
AUC of 83%, showcasing its effectiveness, while RF per-
formed competitively as well [50]. Furthermore, the usage
of ensemble methods, such as bagged trees and subspace
discriminants, has shown effectiveness in increasing classi-
fication accuracy for covert HE [54]. Assessing the perfor-
mance of both traditional and contemporary Al algorithms
is crucial in the context of HE disease. Each approach offers
distinct advantages yet determining the definitive superior-
ity between traditional and contemporary methods remains
challenging. The integration of various techniques, along
with the emerging use of advanced models like CatBoost,
indicates a progressive enhancement in HE diagnostics
[56]. Overall, the growing trend toward integrating modern
algorithms and varied data types illustrates a progressive
enhancement in HE diagnosis methodologies while under-
scoring the necessity for more extensive datasets to bolster
algorithmic reliability and application-specific efficacy.

Notably, DL algorithms were not explicitly imple-
mented in the studies reviewed, indicating that these
advanced techniques are still not fully leveraged in HE
research. We can only consider the four studies that
employed MLPs as focusing on DL [19, 43, 51, 55],
because ANNs qualify as DL algorithms when they con-
tain more than two hidden layers [69]. This is due to their
ability to learn hierarchical representations from raw
data, handle high-dimensional inputs, and perform well
in image-based tasks [70]. However, the full potential of
these algorithms is still largely unexploited, presenting
a valuable opportunity for future studies to utilize their
strengths for enhanced diagnostic precision.

The field of HE researches often struggles with limited
sample sizes, which can significantly hinder the generaliz-
ability of findings and the robustness of predictive mod-
els. Small sample sizes not only restrict the diversity of
patient populations represented in studies but also lead
to increased variability in results, making it challenging to
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draw broad, reliable conclusions applicable to the wider
clinical context [71]. This limitation is critical, as findings
derived from narrow cohorts may not be representative of
the larger population, thereby compromising the practical
utility of predictive models in everyday clinical settings.
Moreover, inherent biases in the datasets used for
training Al models could distort algorithmic predictions
[72]. These biases may arise from factors such as demo-
graphic skewness, variations across medical centers, or
inconsistent data quality. Such distortions could compro-
mise the accuracy and reliability of the predictive capa-
bilities of the proposed models, potentially leading to
suboptimal clinical decisions based on these tools. There-
fore, while some studies demonstrate promising results,
these limitations highlight the urgent need for larger,
more diverse datasets and a proactive approach to bias
mitigation strategies in future research endeavors.
Another notable limitation identified from the synthe-
sized studies is the pervasive lack of external validation.
While the findings and algorithms developed within indi-
vidual studies showcase potential utility and efficacy in
managing HE, the absence of robust external validation
is a significant barrier to their generalizability and real-
world applicability. Without validation against indepen-
dent datasets, the reliability and performance of these Al
and ML applications remain vulnerable to overfitting or
biases inherent in the training data [73]. This risks their
seamless translation into clinical practice, where vali-
dated tools are essential for ensuring accurate predictions
and interventions. Addressing this critical gap in experi-
mental design and methodology will be imperative for
fostering trust among practitioners and enhancing the
clinical utility of AI and ML tools developed for HE.
Within the spectrum of AI and ML applications for
HE, the predominant reliance on retrospective cohorts
in the studies reviewed introduces another significant
limitation: selection bias [16, 19, 29-32, 43-50, 54—56].
The retrospective nature of the data sources can lead to
an overrepresentation of certain patient cohorts, treat-
ment approaches, or outcomes. This skewing not only
compromises the robustness and validity of the findings
but also limits their applicability in real-world clinical
scenarios [74]. It underscores the necessity for future
research endeavors to encompass prospective cohort
designs or randomized controlled trials, which can miti-
gate selection bias and enhance the reliability of results.
This methodological evolution is instrumental in fortify-
ing the credibility and impact of Al-driven solutions and
ensuring their effective integration into clinical manage-
ment strategies for this complex neurological condition.

Limitations
This scoping review has several limitations. First, the
search was limited to studies published in English,
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which may have excluded relevant research in other lan-
guages. Second, the review did not assess the quality or
risk of bias of included studies, as is standard in scoping
reviews, which limits interpretation of the robustness
of the evidence. Third, the field of machine learning in
hepatic encephalopathy is still emerging, and many stud-
ies were exploratory or heterogeneous in methodology,
making it difficult to draw consistent conclusions. Finally,
due to rapid advances in machine learning, some recent
developments may not have been captured if published
after our final search date.

Future directions

Some studies either did not report or inadequately
reported performance indicators of algorithms. It is
imperative for future studies to comprehensively report
their findings on Al algorithm performance in a robust
manner, encompassing accuracy, F1 score, area under
the receiver operating characteristic, and area under the
precision-recall curve. Each of these metrics gauges dis-
tinct aspects of performance and may serve as better pre-
dictors than others in specific circumstances [75]. Future
research should set clear guidelines for performance
reporting, potentially adopting a standardized reporting
framework to facilitate easier comparison and validation
of results across studies.

A pivotal direction for future research involves address-
ing the intricate challenge of seamlessly integrating Al
solutions into clinical practice. Future studies should
dedicate efforts to investigating the standardization of
datasets, with specific strategies such as collaborative
data-sharing initiatives among institutions. Establish-
ing a consortium of researchers and clinical centers may
enhance data diversity and volume, thereby improving
the generalizability of findings. Additionally, developing
standardized data collection protocols could help miti-
gate biases and inconsistencies in datasets. Furthermore,
refining regulatory processes and devising strategies for
the harmonious assimilation of Al tools into real-world
clinical workflows will be essential. Establishing robust
frameworks for data interoperability, compliance with
regulatory standards, and creating user-friendly integra-
tion interfaces will support the successful adoption and
efficacy of Al-driven interventions in the domain of HE
management.

Moreover, future research should incorporate Explain-
able AI (XAI) methodologies to enhance the interpret-
ability and trustworthiness of Al-driven models [76].
Employing techniques such as feature importance analy-
sis and local explanations will allow researchers to clarify
the rationale behind algorithmic predictions, thereby
identifying critical predictors of patient outcomes, such
as lab values like ammonia levels. By integrating XAlI,
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researchers can also tackle potential biases within datas-
ets and bolster the external validation of models. Empha-
sizing XAI will not only mitigate selection bias inherent
in retrospective cohorts but will also foster greater confi-
dence among healthcare providers regarding the Al tools
they employ. Ultimately, these initiatives will promote the
reliable adoption of Al technologies in clinical practice
for effective management of HE.

It is also crucial to transcend the exclusive focus on
accuracy and sensitivity metrics and pivot towards
enhancing the computational speed and responsiveness
of Al algorithms. Future research should aim to develop
benchmarks for computational efficiency alongside tra-
ditional performance metrics. By prioritizing efficiency
in tandem with performance, researchers can foster the
development of streamlined and agile computational
models that can swiftly analyze complex datasets and
deliver rapid insights. This focus on computational speed
will optimize clinical decision-making processes and
ensure that Al tools are not only accurate but also timely
in their application.

Conclusion

This scoping review highlights the growing application
of Al, particularly ML, in the diagnosis and prognosis
of HE. Studies demonstrated the feasibility of develop-
ing accurate classification and prediction models using
diverse data sources, including medical imaging, clini-
cal variables, and laboratory findings. These models have
shown encouraging performance in detecting disease
and estimating survival outcomes. However, limitations
such as small sample sizes and lack of external valida-
tion constrain generalizability. Future research should
prioritize robust validation and real-world implementa-
tion to assess the clinical utility of Al-driven tools in HE
management.

Abbreviations

HE Hepatic encephalopathy

TIPS Transjugular intrahepatic portosystemic shunt
MHE Minimal hepatic encephalopathy

Al Artificial intelligence

ML Machine learning

DL Deep learning

SVM Support vector machine

EEG Electroencephalogram or Electroencephalography
MRI Magnetic resonance imaging

cT Computed tomography

GAMMA Graphical-Model-based Multivariate Analysis
RF Random forest

MeSH  Medical Subject Headings
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