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Abstract

Chronic activation of Wnt/ß-catenin signaling is found in a variety of human malignancies including melanoma, colorectal
and hepatocellular carcinomas. Interestingly, expression of the HCMV-encoded chemokine receptor US28 in intestinal
epithelial cells promotes intestinal neoplasia in transgenic mice, which is associated with increased nuclear accumulation of
ß-catenin. In this study we show that this viral receptor constitutively activates ß-catenin and enhances ß-catenin-
dependent transcription. Our data illustrate that this viral receptor does not activate ß-catenin via the classical Wnt/Frizzled
signaling pathway. Analysis of US28 mediated signaling indicates the involvement of the Rho-Rho kinase (ROCK) pathway in
the activation of ß-catenin. Moreover, cells infected with HCMV show significant increases in ß-catenin stabilization and
signaling, which is mediated to a large extent by expression of US28. The modulation of the ß-catenin signal transduction
pathway by a viral chemokine receptor provides alternative regulation of this pathway, with potential relevance for the
development of colon cancer and virus-associated diseases.
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Introduction

The Wnt/ß-catenin signaling pathway plays critical roles in

embryonic development, stem cell self-renewal and regeneration

[1,2]. Perturbations in this signaling cascade have been implicated

in the pathogenesis of cancer. Notably, chronic activation of Wnt/

ß-catenin signaling is found in a variety of human malignancies

including melanoma, colorectal and hepatocellular carcinomas

[3,4]. Accordingly, components of the Wnt/ß-catenin pathway are

important targets for cancer therapeutics [3]. In the absence of an

extracellular Wnt ligand, cytoplasmic ß-catenin is phosphorylated

through the action of the ‘‘destruction complex’’, a large protein

assembly that contains the Ser/Thr kinases casein kinase 1a
(CK1), glycogen synthase kinase 3 (GSK-3) and the tumor

suppressors Axin and Adenomatous polyposis coli (APC) [1].

Phosphorylation of ß-catenin targets it for ubiquitin-mediated

proteasomal degradation. However, upon stimulation of the seven-

transmembrane receptor Frizzled and the single-pass low-density

lipoprotein receptor-related protein LRP5/6 by a Wnt ligand, the

destruction complex function is compromised through a not fully

understood mechanism. As a result, ß-catenin will not be

phosphorylated and will no longer be subject to degradation,

and will subsequently translocate to the nucleus [5]. Nuclear ß-

catenin functions as a transcriptional co-activator of target genes

such as c-myc and cyclin D1, which are involved in proliferation,

survival and oncogenic transformation [6,7,8].

The importance of GPCR-mediated signaling in onset and

development of various types cancer [9] is underscored by the

observation that ß-catenin activation is triggered by a 7TM

spanning receptor, Frizzled which is activated by its cognate ligand

Wnt [1]. Besides Frizzled receptors, a few other G protein-coupled

receptors (GPCRs) mediate ß-catenin induced transcriptional

activation [10,11]. The lysophosphatidic acid LPA2 receptor

and LPA3 both trigger ß-catenin stabilization and cell proliferation

via protein kinase C activation [12]. Additionally, the pro-

inflammatory metabolite prostaglandin E2 activates ß-catenin

through activation of its cognate receptor [13]. The human

protease-activated receptor-1 (PAR-1) stabilizes ß-catenin through

phosphorylation of GSK-3ß at Ser9. Altogether, these pathways

converge on the Wnt signaling route to induce cytoplasmic ß-

catenin accumulation, nuclear localization, and enhanced tran-

scriptional activation [14].

In this study we show that the human cytomegalovirus

(HCMV)-encoded GPCR US28 positively modulates ß-catenin

signaling, resulting in enhanced ß-catenin-dependent transcrip-

tion. US28 is one of four GPCRs encoded by the HCMV [15].

Interestingly, this widely spread ß-herpesvirus [16] has been
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associated with vascular diseases [17] and has been suggested to

act as an oncomodulator [18]. All four HCMV-encoded GPCRs

(vGPCRs) show high homology to human chemokine receptors,

which play a fundamental role in the control and regulation of the

immune system and in the progression of cancer and metastasis

[19,20]. US28 is able to signal in a constitutive, ligand-

independent, manner via Gaq and Gßc but also in a ligand-

dependent manner via Ga12 to proliferative and pro-angiogenic

signaling pathways [15,21,22]. US28 has oncogenic properties as

US28-expressing NIH-3T3 cells promote tumorigenesis when

injected into nude mice [27]. Moreover, US28 expression was

detected in human glioblastomas and medulloblastomas, which

was associated with increased STAT3/IL-6 and COX-2 activity

[23,24,25] Moreover, transgenic mice expressing US28 in

intestinal epithelial cells, including LGR5-positive stem cells,

develop adenomas and adenocarcinomas, associated with increas-

es in ß-catenin protein stabilization and nuclear localization [26].

Additionally, transcriptional profiling of US28-expressing fibro-

blasts indicated also an overrepresentation of genes involved in the

Wnt/ß-catenin signaling pathway [27]. These observations suggest

that US28 may facilitate transformation and development of

intestinal neoplasia via activation of ß-catenin [26].

In this study we show that the viral chemokine receptor US28

positively modulates the ß-catenin pathway via a non-conventional

novel pathway, involving Rho kinase.

Experimental Procedures

Cell Culture and Transfections
Human HEK293T, human glioblastoma U373-MG, human

foreskin fibroblasts (HFF) and NIH-3T3 mouse fibroblast cells

were all obtained from ATCC, and cultured in Dulbecco’s

Modified Eagle’s Medium (DMEM) (PAA Laboratories), supple-

mented with penicillin (50 IU/ml), streptomycin (50 mg/ml) (PAA

Laboratories) and 10% fetal bovine serum (FBS) (PAA Laborato-

ries), heat-inactivated FBS and bovine serum (Gibco) respectively.

NIH-3T3-stable cell lines (Mock, US28, HA-US28 and US28-

R129A mutant) were kept under the selective pressure of neomycin

(400 mg/ml) (Sigma) to ensure homogenous receptor expression.

Transient transfections of HEK293T cells were performed with

the polyelthyleneimine (PEI) method [28,29] followed by luciferase

activity measurement the next day. Transient transfections of

NIH-3T3 and U373-MG cells were performed with the

Lipofectamine2000 method (Invitrogen).

Reporter Gene Analysis
106 HEK293T cells were transfected with plasmids encoding a

TOP-flash reporter construct (TOPflash or the negative control

FOPflash, kindly provided by Prof. H. Clevers and Dr. M. vd

Wetering) and 25 ng of US28 receptor DNA (wild type or G-

protein-uncoupled mutant R129A) unless indicated differently and

25 ng of DNA encoding G-proteins (RGS2 and Lsc-RGS G

protein scavengers were kindly provided by Dr. B. Moepps).

Comparable TOPflash reportergene transfection protocols were

used for U373-MG and NIH-3T3 cells, respectively. Total DNA

amounts were kept constant by addition of empty vector.

Inhibitors Y27632 (Rock, Sigma) were incubated overnight and

added directly after transfection. 200 ng/ml human recombinant

Wnt3a (R&D systems, 5036-WN-010) was incubated overnight to

activate the canonical Wnt signaling pathway. Luciferase activity

was measured 24 h post transfection (RLU, relative light units)

with a Victor2 multilabel plate reader from (PerkinElmer Life

Sciences). Statistical analyses, * or ** indicating p,0.05 or

p,0.001, using Anova and Bonferroni post test 95% confidence

interval.

Virus Infection
Human Foreskin Fibroblasts (HFF) infected at a multiplicity of

infection (MOI) of 1 on IBIDI slides with the TB40wt and TB40-

DUS28 strains, respectively. Anti-IEA (Milipore) and anti-non-

phospho-ß-catenin antibodies (Cell Signaling Technology) were

used to visualize IEA and activated ß-catenin. After transfection

(24 h) of the TOPflash reporter gene in U373-MG cells different

HCMV Titan strains (WT or -DUS28) were used to infect U373-

MG at an MOI of 2. Multiple viral stocks (3 for HCMV-WT, 4 for

-DUS28) were assayed in triplicate. The rate of infectivity was

controlled by back titration and IEA staining on parallel clear

plates. 48 h post-infection luciferase activity was measured.

Chemokine Binding and Inositol Phosphate
Accumulation Experiments

Stably transfected NIH-3T3 cells (Mock, HA-US28 and US28)

were analyzed for radiolabelled chemokine binding and inositol

phosphate accumulation as previously described [15].

Western Blot Analysis
Biorad minigel and electroblot systems (Biorad) were used to

perform SDS-PAGE and subsequent protein transfer onto

0.45 mm nitrocellulose or PVDF membranes. After an overnight

serum starvation in medium containing 0.5% bovine serum, NIH-

3T3 stable cell lines (Mock, US28 and US28-R129A) were lysed in

radioimmunoprecipitation assay buffer supplemented with a-

Complete Protease Inhibitor Cocktail (Hoffmann-la Roche),

1 mM PMSF, 1 mM NaVO4 and 1 mM NaF. Samples were

normalized using the BCA total protein determination kit

(Thermo Fisher Scientific, Rockford lL, USA). Antibodies were

used for detection of active ß-catenin (Millipore and Cell Signaling

Technology), total ß-catenin (BD Transduction Laboratories),

mouse monoclonal ß-actin expression (Sigma), Gaq (Santa-Cruz)

and P-LRP6 (Ser1490) (Cell Signaling Technology).

Results

Viral Chemokine Receptor US28 Activates the ß-catenin
Pathway

Transgenic mice expressing US28 in intestinal epithelial cells

develop adenomas and adenocarcinomas that express high levels

of nuclear ß-catenin protein [26]. Additionally, US28-mediated

up-regulation of genes associated with ß-catenin signaling was

described [27]. These findings and the role of ß-catenin in

oncogenesis [1,2], prompted us to investigate the mechanism by

which this viral GPCR activates ß-catenin signaling. Since this

receptor displays constitutive active properties [30] we used the

wild type (WT) as well as a G protein-uncoupled mutant receptor

(US28-R129A) in these studies. US28-WT expressing NIH-3T3

cells displayed [125I]-CCL5 binding and increased inositol

phosphate production compared to mock-transfected cells

(Fig. 1A,B), indicative of proper plasma membrane targeting and

functionality of the receptor. Cells expressing the G protein-

uncoupled mutant US28 (US28-R129A) receptor displayed [125I]-

CCL5 binding but no constitutive signaling (Fig. 1A, B). Using

Western blot analysis, non-phospho (active) ß-catenin levels were

shown to be elevated in US28-expressing NIH-3T3 cells

compared to mock-transfected and US28-R129A expressing cells

(Fig. 1C). Further indication for US28-mediated activation of ß-

catenin signaling was generated using a ß-catenin -specific reporter

US28-Induced b-Catenin Signaling
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Figure 1. US28 induces constitutively activates ß-catenin signaling. US28 is expressed and functional in NIH-3T3 cells. A, Whole cell binding
of [125I]-CCL5 on NIH-3T3 cells expressing wild-type (WT), mutant R129A or HA-tagged US28 is displaced by fractalkine (CX3CL1). B, US28-WT
constitutively stimulates inositol phosphate (IPx) accumulation in NIH-3T3, while the non-G protein-coupling mutant US28-R129A shows no activation.
C, Total cell extracts of NIH-3T3 cells stably expressing US28, the non G-protein-coupling mutant and empty plasmid control (mock) were analysed on
Western blot with antibodies recognizing the non-phospho (active) ß-catenin, total ß-catenin and actin. D, NIH-3T3 cells stably expressing US28 and
the non G-protein coupling US28 mutant R129A were transfected with the Tcf-Lef reportergene construct. Luciferase activity was measured 24 h after

US28-Induced b-Catenin Signaling
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gene construct containing TCF/Lef binding sites (TOPflash) [31].

Analysis of activation of TOPflash in the NIH-3T3 cells stably

expressing US28 confirmed US28-mediated activation of ß-

catenin signaling (Fig. 1D). As expected, stable expression of the

G protein-uncoupled mutant (US28-R129A) did not display ß-

catenin activation. Also in HEK293T cells, increasing expression

of US28 resulted in dose-dependent activation of the ß-catenin

signaling pathway as demonstrated using the TOPflash reporter

transfection. E, US28 dose-dependently induces Tcf-Lef transcriptional activation in HEK293T cells. The non-G protein-coupling mutant US28 R129A
does not display activation of the reportergene at 25 ng DNA transfected (dark grey bar). Treatment of HEK293T cells transfected with 25 ng US28
DNA with inverse agonist VUF 6064 (10 mM) prevents activation of Tcf-Lef reortergene (light grey bar). F, HEK293T cells transfected with the human
chemokine receptor CCR1 and the Tcf-Lef reportergene construct do not show Tcf-Lef activation nor after exposure to 100 nM CCL5 (RANTES). US28
expressing HEK293T cells display constitutive signaling to the Tcf-Lef reportergene, which is significantly enhanced by exposure to 100 nM CCL5
(RANTES).
doi:10.1371/journal.pone.0048935.g001

Figure 2. Classical Wnt/Frizzled/ß-catenin signaling is not involved in US28-mediated Tcf-Lef activation. A, Western blot analysis of
total cell extracts of NIH-3T3 cells, stably expressing US28 or an empty plasmid (mock) which were treated with Wnt3a- (overnight, 200 ng/ml) and
vehicle-treated mock cells. The blot was probed with antibodies recognizing the non-phosphorylated (active ß-catenin, total ß-catenin and actin. A
representative blot is shown and normalized quantifications of (active) ß-catenin of independent experiments are shown below the blot. B, Western
blot analysis of total cell extracts of NIH-3T3 cells stably expressing US28, the non G-protein coupling US28 mutant R129A or an empty plasmid (mock)
and Wnt3a-treated mock cells. The blot was probed with antibodies recognizing Lrp6-phospho-ser1490 and actin. A representative blot is shown and
normalized quantifications of Lrp6-phospho-ser1490 of independent experiments are shown below the blot. C, HEK293T cells co-transfected with the
Tcf-Lef reporter gene construct and either US28-expressing or an empty control plasmid (mock) exposed to Wnt3a (overnight, 200 ng/ml). Luciferase
activity was measured 24 hr after transfection and is displayed here as the percentage of the non-treated mock control that is set at 100%. D,
HEK293T cells co- transfected with the Tcf-Lef reportergene and an US28-expressing construct or empty plasmid control (mock) were exposed to
various concentrations (ON, 10–25 mM) of the COX2 inhibitor celecoxib (Cxb). Tcf-Lef reporter gene activation was measured 24 hr after transfection
and is displayed here as the percentage of the mock control that is set at 100%.
doi:10.1371/journal.pone.0048935.g002

US28-Induced b-Catenin Signaling
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gene (Fig. 1E). A reporter gene containing mutant TCF/Lef-

binding sites (FOPflash), used as a negative control, was not

induced in US28 expressing cells (data not shown). In accordance

with the Western blot data, cells expressing the G protein-

uncoupled mutant US28-R129A did not display TOPflash reporter

gene activity, indicating the importance of G-protein signaling in

US28-induced activation of the ß-catenin signaling pathway

(Fig. 1E). Treatment of US28 transfected cells with the US28

small molecule inverse agonist VUF6064 [32] at a 10 mM

concentration, prevented activation of the Tcf-Lef reporter gene

construct (Fig. 1E).

To investigate whether US28-mediated ß-catenin signaling can

be modulated by chemokine ligands, we stimulated US28-

expressing cells with CCL5, which enhances US28-dependent

signaling through Gaq and Ga12 pathways [33]. Stimulation of

US28 with 100 nM CCL5 yielded a small but significant increase

in TOPflash reporter gene activity (Fig. 1F). Expression of CCR1,

a human chemokine receptor displaying close homology to US28,

did not induce activation of TOPflash, neither in a constitutive

manner, nor upon stimulation with 100 nM of its endogenous

ligand CCL5 (Fig. 1F).

US28 Activates ß-catenin/TOPflash via a Non-classical
Signal Transduction Pathway

We next compared the mechanism by which the classical

activator of the Wnt/Frizzled pathway Wnt3a and US28 activate

ß-catenin signaling. As depicted in Fig. 2A, both Wnt3a [200 ng/

ml] and US28 expression induced stabilization of ß-catenin in

NIH3T3 cells. Activation of ß-catenin through the classical Wnt/

Frizzled pathway involves the CK1c/GSK3ß-mediated phosphor-

ylation of LRP 5/6, which leads to recruitment of Axin and

Dishevelled to the plasma membrane, culminating in the

disruption of the destruction complex [34,35]. Analysis of LRP6

phosphorylation in US28-expressing cells indicated that in

contrast to Wnt3a-stimulated ß-catenin activation of either mock

or US28 transfected cells, LRP6 phosphorylation was absent at

serine residue 1490, suggesting an alternative mechanism of ß-

catenin activation for US28 (Fig. 2B and Fig. S1). In line with

Figure 3. G protein involvement in US28-mediated Tcf-Lef activation. A, HEK293T cells were co-transfected with the Tcf-Lef reporter gene
construct, a US28-expressing construct or empty plasmid control (mock) and various constructs expressing Ga-proteins as indicated, Gaq-11 shRNA
construct or a construct expressing regulator of G protein signaling 2 (RGS2), known to specifically interfere with Gaq signaling. Tcf-Lef reporter gene
activation was measured 24 hr after transfection and is displayed here as the percentage of the mock control that is set at 100%. B, HEK293T cells
were co-transfected with the Tcf-Lef reporter gene construct, US28-expressing construct or empty plasmid control (mock) and an shRNA construct to
decrease protein levels of Gaq. Total cell extracts were analysed on Western blot using antibodies recognizing Gaq or actin (insert). Bars represent
level of Gaq protein level compared to the actin levels, with the ratio in non-treated mock cells set at 100%. C, HEK293T cells were co-transfected with
the Tcf-Lef reporter gene construct, a US28-expressing construct or empty plasmid control (mock) and various constructs expressing Ga13, a
constitutive active (CA) Ga13 or Lsc-RGS, encoding the RGS domain of the Rho GTPase guanine nucleotide exchange factor (Rho-GEF) Lsc, known to
specifically interfere with transmembrane signaling mediated by activated Ga12/13. Tcf-Lef reporter gene activation was measured 24 hr after
transfection and is displayed here as the percentage of the mock control that is set at 100%. D, HEK293T cells co-transfected with the Tcf-Lef reporter
gene construct, a US28-expressing construct or empty plasmid control (mock) were treated (overnight) with various concentrations of the ROCK
inhibitor Y27632 as indicated.
doi:10.1371/journal.pone.0048935.g003

US28-Induced b-Catenin Signaling
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this notion, activation of TOPflash activity through Wnt3a and

US28 were additive (Fig. 2C), suggesting parallel modes of

pathway activation. These data illustrate that US28 does not

activate b-catenin via the classical Wnt/Frizzled signaling

pathway. To investigate this alternative mechanism of US28-

mediated ß-catenin signaling, various inhibitors of potential

effectors of the GSK-3ß/APC destruction complex, such as PLC

(U73122), PKC (203291), Akt (124005), PI3K (Wortmannin and

LY294002), Src (PP-2) and STAT-3 (Stattic) were analysed as

potential modulators of US28-mediated ß-catenin activation.

Neither of these showed any effect on US28-induced TOPflash

reporter gene activation (data not shown).

Earlier studies attributed a role for COX-2 in US28-mediated

cellular responses [23,27]. Since COX-2 activation has been

linked to activation of the ß-catenin pathway [13] we analysed the

effect of celecoxib (COX-2 inhibitor) on US28-mediated ß-

catenin-dependent reporter gene activity. Celecoxib treatment

inhibited the TOPflash reporter gene activity only partially at

relatively high celecoxib concentrations, indicating only a minor

contribution of COX-2 (Fig. 2D).

G protein Involvement in US28 Enhanced TOPflash
Reporter Gene Activation

The complete lack of activity of the G protein-uncoupled

receptor US28-R129A mutant towards ß-catenin signaling sug-

gested that G protein coupling is essential for activation of ß-

catenin by US28. The involvement of G-proteins in US28-

mediated TOPflash reporter gene activation was further examined

by co-expressing different G protein subunits or by co-expressing

constructs known to negatively regulate G protein function. Co-

transfection of the Ga-proteins Gas, Gai2, Gai3, Ga11, Ga13 with

US28 did not influence TOPflash reporter gene activation nor did

overnight treatment with the Gai–specific inhibitor pertussis toxin

(PTX) (data not shown). Co-expression of Gaq enhanced US28-

mediated TOPflash reporter gene activation, while knocking down

Gaq with shGaq resulted in over 50% inhibition of US28-

mediated TOPflash activation (Fig. 3A). Downregulation of Gaq

protein levels was confirmed by Western blot analysis (Fig. 3B).

Expression of the regulator of G protein signaling 2 (RGS2), which

is known to specifically interfere with Gaq-mediated signaling [36]

strongly reduced US28-induced TOPflash activation (Fig 3A).

Interestingly, co-transfection of a constitutively active mutant of

Ga13 (Ga13-CA), but not wild type Ga13, resulted in enhanced

TOPflash activation in mock cells (Fig. 3C). This effect was

enhanced when US28 was co-transfected. Finally, we co-

transfected cells with US28 and the Lsc-RGS scavenger, encoding

the RGS domain of the Rho GTPase guanine nucleotide

exchange factor (Rho-GEF) Lsc. Lsc-RGS is known to specifically

interfere with transmembrane signaling mediated by activated

Ga12/13 signaling [36,37]. Expression of Lsc-RGS in US28-

expressing cells resulted in a strong inhibition of US28-mediated

TOPflash reporter gene activation (Fig. 3C), indicating an

important role for Ga12/13 proteins.

As Gaq and Ga12/13 proteins mediate activation of Rho via the

Rho-GEFs p63 and p115 [37,38], respectively and Rho in turn is

known to activate ROCK kinase we investigated the role of the

Rho-ROCK pathway in US28-mediated signaling to ß-catenin.

Exposure of US28-expressing cells to increasing concentrations of

the ROCK inhibitor Y27632 resulted in a dose-dependent

attenuation of the US28 mediated TOPflash activation

(Fig. 3D), indicating involvement of Rho-ROCK signaling in

the US28-induced ß-catenin activation pathway.

Role for US28 in HCMV Induced Activation of ß-catenin
Signaling

The HCMV Titan 2B strain (referred to as WT) [27] and a

strain deficient for the US28 gene (HCMV-DUS28) were used to

examine the ability of HCMV, and the possible contribution of

US28, in activating ß-catenin signaling after infection. Infection of

human foreskin fibroblasts (HFFs) with HCMV-WT resulted in

increased presence of active ß-catenin in cytoplasm and nuclei of

infected cells, as evidenced by the expression of the immediate

early antigen (IEA) (Fig. 4A). Cells infected with the deletion

mutant HCMV-DUS28 showed only marginal active ß-catenin in

these cells and no active ß-catenin was apparent in non-infected

cells (Fig. 4A). Since HFFs show low transfection efficiencies we

Figure 4. HCMV-infected cells stimulate activation of ß-catenin in a US28 dependent manner. A. HFF cells were infected with HCMV-WT
or HCMV-DUS28 with a M.O.I of 1 on IBIDI slides. Cells were fixed 24 hours post-infection (hpi) and stained with antibodies recognizing the HCMV
immediate early antigen (IEA) and activated ß-catenin respectively. B. U373-MG cells transfected with Tcf-Lef reporter gene were either infected with
HCMV-WT or HCMV-DUS28 with a M.O.I. of 2, or left uninfected (mock). Luciferase activity was measured 48 h post-infection.
doi:10.1371/journal.pone.0048935.g004

US28-Induced b-Catenin Signaling
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used U373-MG glioma cells to transfect the TOPflash reporter

gene construct to monitor ß-catenin-dependent transcriptional

activation after HCMV infection. U373-MG glioma cells were

transfected with the TOPflash reporter gene construct, followed by

infection with either HCMV-WT or HCMV-DUS28. Cells

infected with HCMV-WT showed strong ß-catenin-dependent

transcriptional activation (Fig. 4B), while cells infected with the

deletion mutant HCMV-DUS28 displayed a significantly lower

level of TOPflash reporter gene activity (Fig. 4B). The levels of

infection between HCMV-WT and HCMV-DUS28 were similar,

as determined by back titration (Fig. S2). These data clearly

indicate a role for US28 in regulation of ß-catenin signaling during

HMCV-infection.

Discussion

We have demonstrated that HCMV partly through expression

of the constitutively active chemokine receptor US28 induces ß-

catenin signaling upon infection. Indeed, mounting evidence links

viral infection to ß-catenin hyperactivation. For instance, the

Epstein-Barr virus (EBV) activates ß-catenin in latently infected B

lymphocytes [39]. The human papillomavirus (HPV) E6 and E7

oncogenes appear to contribute to activation of ß-catenin

signalling in HPV16-positive oropharyngeal squamous carcinoma

cells [40] and the hepatitis C virus (HCV) encoded core protein

potentiates Wnt/ß-catenin signalling in hepatocellular carcinoma

cells [41]. For the human immunodeficiency virus (HIV), however,

active Wnt/ß-catenin signaling plays a significant role in

repression of HIV-1 replication in multiple cell targets [42,43].

Interestingly, expression of the HCMV-encoded chemokine

receptor US28 in intestinal epithelial cells promotes intestinal

neoplasia in transgenic mice [26], which is associated with

increased accumulation of ß-catenin in the nucleus. In this study

we show that this viral receptor leads to activation of ß-catenin and

enhanced ß-catenin-dependent transcription in a manner distinct

from conventional Wnt-mediated signalling when expressed in

NIH3T3 cells or HEK293T cells. Classical Wnt-mediated ß-

catenin signaling entails the phosphorylation of LRP 5/6,

ultimately leading to the nuclear accumulation of ß-catenin

[1,44]. The absence of LRP6 phosphorylation in US28-expressing

cells supports the notion that US28 activates the ß-catenin

pathway through alternative routes. Unlike some of the lysopho-

sphatidic acid, prostaglandin and protease activated receptors

shown to stabilize ß-catenin at the level of the destruction complex

Figure 5. Schematic representation of the classic Wnt signaling pathway and model of US28-mediated activation of ß-catenin
signaling pathway. The left side of the model indicates components of the classic Wnt/Frizzled mediated activation of ß-catenin. In this pathway
the disruption complex (Axin, APC) that enables GSK3ß- and Caseine kinase 1 (CK1)-mediated phosphorylation of ß-catenin leading to its
degradation, is disrupted in a Dishevelled-mediated way upon Wnt binding to Frizzled/LRP. US28 activates ß-catenin signaling in a ligand-dependent
and independent manner, involving respectively Ga12/13 and Gaq proteins and respective RhoGEFs, converging at RhoA/ROCK, resulting in increased
Tcf-Lef transcriptional activation.
doi:10.1371/journal.pone.0048935.g005

US28-Induced b-Catenin Signaling
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[12], US28-induced TOPflash activation is not PI3K- nor PKC-

dependent. COX-2, via concomitant production of prostaglandins

and activation of their cognate receptors in US28 expressing cells

(Maussang, Langemeijer et al. 2009) is partially involved and does

not account for the large increase in ß-catenin activity observed in

US28 expressing cells.

In this study it is shown for the fist time that a GPCR, the viral

chemokine receptor US28, activates ß-catenin signaling through

the Rho-ROCK pathway. Our data show that coupling of US28

to both Gaq and Ga12/13 proteins is essential for the observed

activation of ß-catenin signaling. Overexpression, scavenging and/

or downmodulation of either G protein greatly affect US28

mediated ß-catenin signaling. The reported ligand-independent,

constitutive, activity displayed by US28 is primarily exerted

through activation of Gaq proteins [30,45]. Earlier, US28 was

shown to also constitutively activate the serum response factor via

Gaq proteins and RhoA, the small G protein that is activated by

Gaq proteins through RhoGEF [36,38]. The ligand-dependent

activity of US28 directs smooth muscle migration via Ga12/13 and

RhoA [46]. Interestingly, several regulators of the Wnt/ß-catenin

signaling pathway were found to be associated with pro-migratory

signaling of US28 via activation of the Pyk2 kinase [47]. In view of

the importance of Gaq and Ga12/13 in US28 mediated ß-catenin

signaling and reported coupling of US28 to RhoA we postulated a

role for its downstream target Rho kinase (ROCK) in US28

mediated activation of ß-catenin. Inhibition of ROCK, with the

specific inhibitor Y27632, substantiates a role for the Rho-ROCK

axis in the US28 induced activation of the ß-catenin pathway.

Exposure of US28 expressing cells to the chemokine CCL5 result

in further increases in ß-catenin signaling, infering involvement of

Ga12/13 proteins which is in line with previous studies indicating

the involvement of these G proteins in US28-mediated responses

[48]. Altogether, our studies demonstrate that US28 activates ß-

catenin signaling in a ligand dependent and independent manner,

involving Ga12/13 and Gaq proteins converging at RhoA/ROCK

(Fig. 5). Additional experiments are currently ongoing to elucidate

the molecular mechanism by which ROCK stabilizes ß-catenin

and induces TOPflash activation.

Of importance is that significant increases of ß-catenin

stabilization and signaling are observed in HCMV-infected HFFs

and glioblastoma cells. This increase in ß-catenin signaling upon

HCMV infection is mediated to a large extent by expression of

US28, as shown using the deletion mutant HCMV-?US28. Besides

US28, other CMV encoded proteins, including another viral

GPCR UL33, also contribute to the observed increase in b-catenin

signalling upon HCMV infection (Fig. S3). Increases in ß-catenin

nuclear localization were also reported upon infection of murine

CMV [49], reinforcing a role of HCMV-encoded proteins, like

US28, in regulating ß-catenin signaling. Sustained activation of

the Wnt/ß-catenin pathway induced by gain-of-function muta-

tions of activators of the Wnt pathway, for e.g. mutations in the ß-

catenin gene that enhance its stability, or mutations in genes that

control ß-catenin stability like APC, the Axins, or E-cadherin, is

found in various cancers [3,4]. Hence, the ability of US28 to

constitutively activate ß-catenin signaling, as well as other

oncogenic signaling pathways [22,23,24,27,50] illustrates that this

viral receptor may contribute to a malignant phenotype in HCMV

positive cells. The fact that expression of US28 promotes

development of intestinal dysplasia and cancer in transgenic mice

[26] suggests that CMV infection may facilitate development of

intestinal neoplasia in humans. Moreover, ß-catenin and compo-

nents of the Wnt canonical pathway are commonly overexpressed

in glioblastoma multiforme [51]. The high incidence of HCMV

infection and detection of expression of US28 in human

glioblastomas [23,24] further underscores the relevance of this

receptor in cancer development.

Taken together, in this study we have shown an alternative

regulation of the ß-catenin pathway. The viral chemokine receptor

US28, induces activation of ß-catenin, via the Rho-ROCK

pathway. By expression of viral receptor proteins viruses might

be able to rewire ß-catenin signaling, contributing to malignant

phenotypes.

Supporting Information

Figure S1 Wnt3a induces LRP6 phosphorylation at
serine 1490 in US28-transfected NIH3T3 cells. Mock cells

and US28 expressing cells were treated with 500 ng/ml

recombinant Wnt3a. Subsequently, LRP6 Ser1490 phosphorylation

was analysed by Western blot analysis.

(EPS)

Figure S2 Back titration of wild-type HCMV and HCMV
DUS28. The levels of infection were assessed by staining for

Immediate Early (IEA). The amount of IEA+ cells is not

significantly different between the different viral strains. This

backtitration was performed on the samples that were used for the

analysis shown in Figure 4B.

(EPS)

Figure S3 Activation of Tcf/Lef by UL33. UL33 and

TOPflash were co-transfected, and luciferase activity was analysed

24 hours post-transfection. UL33 induces Tcf/Lef activation

strongly.

(EPS)
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