
ARTICLE

Decoding individual differences in STEM learning
from functional MRI data
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Traditional tests of concept knowledge generate scores to assess how well a learner

understands a concept. Here, we investigated whether patterns of brain activity collected

during a concept knowledge task could be used to compute a neural ‘score’ to complement

traditional scores of an individual’s conceptual understanding. Using a novel data-driven

multivariate neuroimaging approach—informational network analysis—we successfully

derived a neural score from patterns of activity across the brain that predicted individual

differences in multiple concept knowledge tasks in the physics and engineering domain.

These tasks include an fMRI paradigm, as well as two other previously validated concept

inventories. The informational network score outperformed alternative neural scores com-

puted using data-driven neuroimaging methods, including multivariate representational

similarity analysis. This technique could be applied to quantify concept knowledge in a wide

range of domains, including classroom-based education research, machine learning, and

other areas of cognitive science.
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A principal goal of cognitive science is to be able to char-
acterize how well an individual or intelligent system
understands a concept as a result of learning. Tradition-

ally, an individual’s degree of concept knowledge is evaluated
using domain-specific knowledge tests: tasks such as pencil-and-
paper exams that produce a performance score used as an indi-
cator for conceptual understanding. But acquiring new knowl-
edge also impacts how individuals engage in the world beyond the
classroom. Science and engineering students, for example, learn
to categorize items in the world in new ways, often along con-
ceptual dimensions that novices cannot perceive. When an
individual acquires such knowledge, these new category-based
item relationships should theoretically be represented somewhere
in the brain. The presence of that representation, if it can be
assessed, would in turn constitute a logical neural proxy for
conceptual understanding. In the present study, we ask whether it
is possible to use an individual’s concept-related brain activity to
derive a “neural score” that predicts concept knowledge in a way
that converges with performance on a traditional knowledge test.
The ability to evaluate concept knowledge using neural data may
present new and unique insights into individual differences in
learning.

There are many existing ways of assessing an individual’s level
of concept knowledge (multiple-choice tests, written exams, oral
exams, essay tests, etc.). Typically, the result of these metrics is a
single summary statistic (e.g., test score) averaging over a series of
concept-related items (e.g., test questions) to indicate an indivi-
dual’s overall level of understanding of the tested concepts. A
more-sensitive alternative to this single test score approach is
provided by graph theory: rather than average across concept-
related items to produce a scalar indicator, items within a parti-
cular conceptual domain can be modeled using a high-
dimensional matrix. The values in such a matrix reflect the
conceptual distance between each item, such that the matrix as a
whole becomes a high-dimensional representation of the concept
space. Representational similarity analysis (RSA)1 uses these
high-dimensional models, known as dissimilarity matrices
(DMs), to measure informational content independent of data
format. An advantage of RSA is the ability to evaluate the pre-
sence or absence of concept-related information within a given
system (e.g., nonhuman animals, computer databases, brain
activity) using an information processing approach.

In neuroscience research, RSA as well as other multivariate
pattern analysis (MVPA) methodologies (e.g., pattern classifica-
tion) have enabled us to observe that concept-related information
is represented in patterns of brain activity2–17. These MVPA
approaches have often been used to evaluate group differences in
representations of previously learned category knowledge, such as
categories of objects5,7,9,14,17, animals1,3,4, numerical
magnitude6,10, and familiar faces and places2,7,8,12,15,16. However,
to our knowledge, only one study has used MVPA to evaluate
group differences in newly acquired concept representations11,
and none have used RSA and MVPA approaches to predict
individual differences in newly learned concept representations.

The few studies that have explored the relationship between
brain activity and individual differences in concept knowledge
employed univariate measures and hypothesis-driven approaches.
Specifically, these studies tested for correlations between concept-
related test performance and brain activity in particular regions of
interest, which were often selected a priori18–21. Furthermore,
these studies relied on metrics derived at the group level or from
literature-driven hypotheses about unique brain regions. These
approaches are useful for testing hypotheses motivated by the
existing literature, and when the relevant information in brain
activity can be tested as a change in mean activity level or var-
iance of a given brain region. However, what is lacking in the

current literature on the neural predictors of concept knowledge
is a bottom–up multivariate approach, useful for when experi-
menters wish to query the neural data for specific content
knowledge on the level of the individual participant. Such an
approach would be applicable even in cases where prior knowl-
edge about relevant brain regions is unknown or inconclusive,
because it would treat an individual’s brain as a “black box” (i.e.,
agnostic as to anatomical localization) in the process of evaluating
neural activity for representational structure related to concept
knowledge.

In the present study, we develop a novel analysis incorporating
univariate and multivariate methodologies to derive an
individual-level neural score to predict individual differences in
concept knowledge. Our aim in developing this method, which
we refer to here as an informational network analysis, is to
generate a data-driven neural score assessing concept knowledge
for an individual, derived by treating the individual’s brain as a
black box. This analytical approach is designed to apply generally
to any paradigm in which conceptual knowledge can be assessed
via a meaningful dimension of similarity among items (e.g.,
knowledge of mechanical structure categories) independently
from other dimensions of similarity (e.g., general visual appear-
ance). We validate our neural score method by comparing indi-
viduals’ neural score results to their performance on several
convergent tests of concept knowledge. Importantly, in order to
meet our criteria this score must be derived using no group-level
analyses and without relying upon any prior hypotheses about
neural localization. We achieve these aims by using multivariate
analytical methods which leverage the richness of the informa-
tional content available in brain activity patterns. In addition, as it
is unknown whether current methods, such as whole-brain
searchlight-based RSA1 are sufficient to accomplish this goal on
an individual subject level, we compute two alternative neural
score variants: a searchlight RSA neural score, and a univariate
contrast neural score as a secondary comparison. The informa-
tional network analysis successfully outperforms both alternative
neural scores and significantly predicts individual differences in
STEM concept knowledge, as measured by a functional magnetic
resonance imaging (fMRI) task and performance on standardized
concept inventories. This method has a wide variety of potential
uses for evaluating concept knowledge within informational
systems in the domains of cognitive science, education, and
machine learning.

Results
Free body diagram task performance. First we evaluated per-
formance on the free body diagram (FBD) task, the novel concept
knowledge test used in this experiment. In this task, participants
were presented with photographs of real-world structures and
asked to consider the Newtonian forces that must be acting on the
indicated section of the structure in each image (see Methods
section for full task description). Participants responded via
button press to indicate whether they judged a subsequently
presented diagram of these forces (Fig. 1, inset; Supplementary
Fig. 1) to be labeled correctly or incorrectly. We calculated the
average accuracy for the two alternative forced-choice response
(chance= 50% accuracy). A two-sample t test revealed that on
average, engineering students outperformed novices on the FBD
task (MEng.= 76.4%, MNov.= 66.7%, t(24.48)= 2.11, p= 0.045).
But this overall group difference was entirely driven by the group
difference in FBD task performance at the first fMRI run (Run 1:
MEng.= 75.0%, MNov.= 53.6%, t(23.53)= 3.92, p= 0.0007). As
the fMRI runs progressed, novices improved on the FBD task
despite never receiving feedback on their performance (see Sup-
plementary Fig. 2). As a result, the group differences in FBD task
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performance disappeared in the subsequent fMRI runs (Run 2:
MEng.= 72.9%, MNov.= 63.4%, t(23.24)= 1.82, p= 0.08; Run 3:
MEng.= 76.5%, MNov.= 73.5%, t(23.06)= 0.51, p= 0.6; Run 4:
MEng.= 81.3%, MNov.= 76.5%, t(21.08)= 0.99, p= 0.3).

The strong group difference effect observed in the first fMRI
run of the FBD task makes it the optimal timepoint from which to
compute a neural score. A successful neural score collected from
the first fMRI run can safely be interpreted to reflect prior
mechanical engineering knowledge, independent of experiment-
specific mastery of the FBD task. Furthermore, the ceiling effect
observed in the later fMRI runs of the FBD task as participants
improved on the task during the experiment would complicate
the interpretation of any neural scores computed from those later
runs, because of the confound between task-specific learning
effects and baseline differences in concept knowledge. Therefore,
as we proceed with our neural score analysis, we will consider
only the first fMRI run.

Standardized concept knowledge tests. In addition to the FBD
task, participants completed two standardized, multiple-choice
concept knowledge tests designed to measure mechanical engi-
neering and physics knowledge: the Statics Concept Inventory
(SCI)22 and the Force Concept Inventory (FCI). These measures
were collected in a separate experimental session prior to the
fMRI scan session. As expected, these measures differentiated the
groups significantly (SCI:MEng.= 50.2%,MNov.= 16.9%, t(14.86)
= 5.0, p= 0.0002; FCI: MEng.= 79.3%, MNov.= 35.9%, t(16.83)=
6.5, p= 5.8 × 10–6). These two concept knowledge tests, in con-
junction with our FBD task results from the first fMRI run
(Fig. 1), constitute a multivariate outcome measure, which we can
use to validate our neural score in a linear mixed-effects model.
Combining these three concept knowledge tasks into a single
multivariate measure is further justified by the strong cross-
correlations between each of the task types (FBD vs. SCI: r= 0.54;
FBD vs. FCI: r= 0.55; SCI vs. FCI: r= 0.80).

Neural score results. In this section, we will review the results
from our primary neural score measure, derived using our novel
informational network analysis, as well as the two comparison

neural scores, derived using RSA and a univariate contrast
(images > baseline), respectively (Figs. 2, 3). Functional data used
in all neural score computations included beta parameter esti-
mates for each individual stimulus item, estimating changes in
neural activity associated with the stimulus evaluation period of
the FBD task (prior to the response period; see Methods section
for details).

An overview of the neural score methods discussed here is
provided in Table 1. (To review additional neural score variants
we computed, see Supplementary Table 1.) To validate our neural
score measures, we computed linear mixed-effects models for
each neural score predicting concept knowledge (as assessed by
FBD, SCI, and FCI accuracy scores). Recall that based on our
FBD task ceiling effect, we only considered neural score results
from the first fMRI run. The regression output for each neural
score model is reported in Table 2.

Informational network neural score computation overview. A
full description of the informational network analysis can be
found in the Methods section. In short, the informational net-
work analysis proceeded as follows: a univariate contrast (sti-
mulus images > fixation baseline) to determine a threshold for
voxel inclusion; a whole-brain neural searchlight to identify high-
dimensional neural representations of the stimulus set; a boot-
strapped hierarchical clustering analysis to reduce the dimen-
sionality of the data; and a support vector machine (SVM)
category classifier to identify the degree to which each network
represents expert-level category information among the stimuli.
The final value used as the informational network score is the
SVM categorization accuracy percentage for the most expert
informational network (i.e., the network with the highest SVM
accuracy).

Importantly, this method does not require as input a
predetermined, arbitrary number of networks during the
hierarchical clustering step. Instead, a bootstrapping procedure
is employed to determine the number of distinct, statistically
reliable informational networks present for each individual23.
Thus, the informational network analysis treats the brain as a
black box, drawing all inputs from the internal structure of the
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Fig. 1 Outcome measures: accuracy scores by group. Group performance on each outcome measure: FBD task performance at the first fMRI run, SCI
accuracy score, and FCI accuracy score (between-group t test significance values: *= p < 0.05, **= p < 0.01, ***= p < 0.001). Inset: example stimulus from
the FBD task. (For a larger version of this example stimulus, see Supplementary Fig. 1)
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neural data. Only at the final step is an external measure of any
kind introduced, when a model of conceptual category informa-
tion is used by a categorical SVM classifier to evaluate each
informational network and determine which one contains the
most expert-like representational structure.

In order to evaluate the efficacy of the informational network
analysis relative to simpler univariate and multivariate methods,
we computed two alternative neural scores: a univariate score
derived entirely from the whole-brain images > baseline contrast,
and a searchlight RSA score derived from a standard whole-brain
RSA targeting the full 24-dimensional expert model of mechan-
ical similarity. The RSA neural score was designed as a
competitive alternative method to our informational network
analysis. The univariate neural score was designed to directly test
the contribution of the voxel selection step to the predictive value
of the informational network neural score. Derivation steps for
each of these alternative neural scores is described in detail in the
Methods section. Table 1 shows the qualitative differences
between each neural score variant, whereas Table 2 shows the
predictive strength of each score for concept knowledge evaluated
using linear regression models. Table 3 directly tests each of the
neural score models against each other using stepwise model
comparisons. Additional alternative neural score models were
tested, and we selected the best-performing univariate and RSA
methods for comparison. (Results from the alternative neural
score configurations not discussed here are reported in Supple-
mentary Table 1.)

Searchlight RSA neural score computation overview. The first
alternative neural score method we compared with the

informational network score was a multivariate score derived
from a whole-brain searchlight RSA1. As in the second step of the
informational network score, a whole-brain searchlight analysis
was run to identify neural representations for the 24 stimulus
items. The resultant DMs were each correlated (Spearman’s rho)
with a full 24-dimensional expert model of mechanical similarity.
After a Fisher r-to-z-transformation, a threshold of z≥ 2 was
applied for voxel selection. The RSA score was finally derived by
averaging the z values for all the surviving voxels. (A full
description of the RSA neural score method can be found in the
Methods section.)

To examine whether the voxel threshold applied in this RSA
neural score was constraining the predictive value of the RSA
neural score, we computed an alternative RSA score, which
involved a hierarchical clustering step identical to that used in the
informational network analysis. Results from that and other
alternative neural score methods not used in these analyses are
reported in Supplementary Table 1. These alternative models
performed worse than the models included here, therefore we
only retained the best-performing RSA and univariate models for
comparison to the informational network model.

Whole-brain univariate neural score computation overview.
The second alternative neural score method we compared with
the informational network score was a univariate score derived
from a whole-brain general linear model (GLM). This is the same
univariate GLM used as a voxel mask in the first step of the
informational network analysis. The purpose of this univariate
score was to directly test the contribution of the voxel selection
step to the predictive value of the informational network neural
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Fig. 2 Informational network neural score results. a Informational network neural score from the first fMRI run significantly differentiated the participants
by group. b Informational network neural score significantly predicted concept knowledge in a linear mixed-effects model. The overall regression line is
plotted as the thick black line over the observed accuracy data for each outcome measure type (FBD, SCI, and FCI accuracy). Random intercepts for each
outcome measure are plotted as the colored lines. Effect size (standardized beta parameter) for the regression model are printed in the lower right corner
of the plot. c Schematic outlining the computational method for the informational network analysis, used to compute the informational network neural
score for each participant. (For between-group t test significance value at left and mixed-effects regression coefficient significance value at right: *= p <
0.05, **= p < 0.01, ***= p < 0.001)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10053-y

4 NATURE COMMUNICATIONS |         (2019) 10:2027 | https://doi.org/10.1038/s41467-019-10053-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


score. Thus, the univariate neural score was derived by simply
averaging the z values from the most active 2% of voxels for the
contrast. (A full description of the univariate neural score method
can be found in the Methods section.)

Predicting concept knowledge from neural scores. Each neural
score was modeled separately as a predictor of concept knowledge
using linear mixed-effects regression models, with the

multivariate dependent measure of FBD task, SCI, and FCI
accuracy scores, and random intercepts for participant ID and
dependent measure score type (see Methods section for complete
details). The neural score generated using our novel Informa-
tional network analysis for the first fMRI run significantly pre-
dicted concept knowledge using this regression modeling
approach (βstd.= 0.38, p= 0.007; Fig. 2; Table 2). This was the
only neural score model we derived that significantly predicted
concept knowledge. The neural score derived from a standard
RSA approach was not significantly predictive of concept
knowledge (βstd.= 0.18, p= 0.2; Fig. 3; Table 2), nor was the
neural score derived from the univariate contrast of images >
fixation baseline (βstd.=−0.01, p= 0.9; Fig. 3; Table 2).

Furthermore, the informational network neural score differed
significantly by group (MEng.= 0.774, MNov.= 0.702, t(24.41)=
2.37, p= 0.03), which is a required feature of any neural score
purporting to measure concept knowledge. In other words, any
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Fig. 3 RSA and univariate neural score results. Neither the RSA neural score a–b nor the univariate neural score c–d from the first fMRI run significantly
differentiated the participants by group, and neither was significantly predictive of concept knowledge. Regression outputs in b and d follow the same
format as Fig. 2b, with effect size (standardized beta parameter) printed at bottom of each plot. Schematics on the right e outline the computational
method for the RSA and univariate neural scores, following the format used in Fig. 2c

Table. 1 Qualitative differences between neural score
methods

Neural score Neural score description

Informational network - Univariate voxel threshold
- Multivariate score computation
- Categorical a priori
representational model

Searchlight RSA - Multivariate voxel threshold
- Multivariate score computation
- High-dimensional a priori
representational model

Whole-brain univariate - Univariate voxel threshold
- Univariate score computation
- No a priori representational model

Each neural score derivation involved voxel selection and score computation steps. The
informational network score involved a combination of univariate voxel thresholding with
multivariate score computation, whereas the other two scores were derived using either entirely
univariate or entirely multivariate methods. In addition, the informational network and RSA
neural scores incorporated a priori models, whereas the univariate neural score did not. The
informational network score incorporated a dimensionality-reduced version of the expert
mechanical similarity model by using a category-based SVM classifier, whereas the RSA neural
score incorporated the full 24-dimensional expert mechanical similarity model. No neural score
method involved any factors with a direct relationship to the concept knowledge measures they
were designed to predict

Table. 2 Regression results for neural scores predicting
concept knowledge

Neural score β parameter
estimate

Effect size
(βstd.)

p

Informational
network

1.135 0.38 0.007

Searchlight RSA 0.169 0.18 0.2
Whole-brain
univariate

−0.001 −0.01 0.9

Regression parameters, effect sizes (standardized betas) and p values for each linear mixed-
effect model predicting concept knowledge from neural score. Each model includes random
intercepts for each participant and each type of concept knowledge test (i.e., FBD task, SCI,
and FCI)
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neural score that successfully measures concept knowledge
must differentiate engineering students from novices during the
same timepoints that the concept knowledge task scores also
differentiate these groups; i.e., at the beginning of the fMRI
experiment. This group difference in neural score is not observed
for the RSA neural score (MEng.= 2.67, MNov.= 2.49%, t
(22.12)= 1.73, p= 0.1) or for the univariate neural score
(MEng.= 11.36, MNov.= 11.42, t(24.4)=−0.07, p= 0.9).

Neural score model comparisons. In order to directly compare
each type of neural score, compared each pairwise combination of
neural score variants with the base models containing only one
neural score predictor. We used likelihood ratio tests to deter-
mine the degree of improvement in prediction strength rendered
by combining one neural score model with another. The results of
these model comparisons are shown in Table 3. In summary,
models containing the informational network score as a factor
were significantly predictive of the concept knowledge measure,
and the model using only the informational network method was
not significantly improved by linear combination with any other
method.

Neural score localization. Our aim was to develop a data-driven,
individual-level score that predicts performance on a concept
knowledge task. Accordingly, we conducted these analyses
agnostic to the specific localization in the brain of the data con-
tributing to a given neural score. However, a useful application of
the informational network analysis is the ability to project results
back onto the brain surface to review the regions where the neural
score data are represented at the group level. Accordingly, we
report in Fig. 4 the group-specific localizations for the regions
contributing to the informational network, RSA, and univariate
neural scores data. For the informational network score in par-
ticular, these regions correspond to, for each group, the set of
cortical areas in which patterns of activity contain information
distinguishing the mechanical categories within the stimulus set,
thereby reflecting engineering knowledge. In short, we found that
the better performance of engineering students on the concept
knowledge tasks corresponded to a broader localization of
informational network scores compared with novices. The rele-
vant regions for engineering students included both a dorsal
stream frontoparietal network, which has been previously
implicated in spatial cognition11,18,25, and a ventral stream
occipito-temporal network previously implicated in visual object
identification and categorization3,4. For a more-detailed
exploration of these data with respect to the localization of dif-
ferent representational geometries corresponding to learned
concept knowledge, see Cetron et al. (preprint)24.

Figure 4 shows the distinct and overlapping regions contribut-
ing to each type of neural score by group. Informational network
neural scores showed the most distinct group differences in
localization (Fig. 4a), with increasingly overlapping regions
contributing to the RSA and univariate neural scores respectively

(Fig. 4b, c). (For histograms of the total number of participants
with neural scores observed at each region, see Supplementary
Fig. 3).

Discussion
In the present study, we have shown that concept knowledge can
be assessed using a neural score derived entirely from an indi-
vidual’s brain activity patterns using our informational network
analysis. The informational network analysis produced neural
scores that significantly predicted individual differences in per-
formance on a STEM-domain concept knowledge task (Table 2,
Fig. 2). Furthermore, the informational network score method
significantly outperformed two alternative data-driven neural
scores for predicting concept knowledge (Table 3), which were
based on standard neuroimaging methods: whole-brain uni-
variate GLM and whole-brain searchlight RSA (Fig. 3). Finally, we
demonstrated that these neural scores can be averaged to produce
meaningful group-level maps that reflect localization of con-
ceptual knowledge across subjects (Fig. 4).

It is worth noting that the neural score and the behavioral data
it predicts are fully independent from each other. The informa-
tional network score is a measure of the presence of expert
category-level information in patterns of neural activity. The
categories themselves are never mentioned in the course of the
experiment, and knowledge of the categories is neither necessary
nor sufficient to complete the behavioral task. Furthermore, while
the engineering students may be aware that such categories exist,
the novices do not have any explicit category-level knowledge
about these stimuli. Importantly, the informational network score
is equally predictive of performance on the concept knowledge
task for both groups.

This finding is additionally remarkable because it is not
necessarily the case that any brain region need represent the
stimulus set in a way that reflects the expert categories at all,
particularly because participants (especially novices) do not
consciously know that those categories even exist. Moreover, the
behavioral task requires participants to consider only one sti-
mulus at a time, and never asks them to consciously employ a
categorical strategy. And yet, not only do we find that there are
networks of brain regions networks whose item-level repre-
sentational structure can be grouped into meaningful informa-
tional categories, but we also find that the degree to which that
happens in an individual’s brain is predictive of that individual’s
demonstrated competence on a related concept knowledge task.

Previous attempts to assess concept knowledge using brain
activity have aimed to characterize the neural instantiation of
concept knowledge in a way that is common across
individuals3,4,6–8,10,14,17. The few studies that looked at individual
differences in learned concept knowledge relied on previous lit-
erature and/or group-level analyses to identify relevant brain
regions of interest18–21. Our goal in the present study was
importantly different: we sought an individualized, data-driven
score for predicting learned concept knowledge from brain activity
patterns. The existing methods available to analyze concept-

Table. 3 Direct model comparisons between neural scores

Base model Composite model Improvement of composite model over base model (χ2) p

Informational network Informational network+ RSA 1.28 0.26
Informational network Informational network+ univariate 0.003 0.96
Searchlight RSA Informational network+ RSA 7.29 0.0069
Whole-brain univariate Informational network+ univariate 7.59 0.0059

Each alternative neural score was directly compared with the informational network neural using stepwise linear mixed model comparisons (likelihood ratio test). The predictive strength of the
informational network neural score model was not improved by the addition of either the RSA or the univariate neural score as a second predictor. By contrast, both the RSA and univariate base models
were significantly improved by the addition of the informational network model as a second predictor
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related neural data, such as univariate activity contrasts and RSA,
were not designed to optimally predict individual differences in
concept knowledge, as evidenced by the poor performance of the
neural scores derived using these methods. As a result, we sought
to create a new analytical tool to achieve that goal. This new
informational network analysis accounts for individual variance in

univariate brain activity levels, and then employs MVPA to
identify concept-related structure represented in brain activity
patterns. This multi-stage, data-driven approach allowed for a
successful mapping between neural data and a behavioral test of
concept knowledge at the individual subject level. Moreover, when
these individual scores were averaged together, they produced
meaningful group-level results. Those results are consistent with
prior work, demonstrating that conceptual knowledge about
objects (including visual categorization) includes regions in both
ventral occipito-temporal cortex3,4 and dorsal regions involved in
action representations11,18,25. For a more detailed exploration of
the neural instantiation of concept knowledge as a function of
prior knowledge and experience, see 24.

One important feature of the informational network analysis
appears to be the dimensionality of the model of concept
knowledge it incorporates. An exclusively univariate approach to
neural scoring appears to be too simplistic to account for the
multidimensional informational content present in patterns of
neural activity, as demonstrated by the comparison between the
informational network score and the univariate score reported in
Table 2. On the other extreme, a standard RSA approach to
neural scoring that uses a high-dimensional concept knowledge
model works reasonably well, but risks overfitting neural
activity to an expert-level a priori model of the concept space that
is too specific for the task at hand, which relies predominantly on
information that is more closely aligned to the specificity
present in category classifications. This discrepancy between the
high dimensionality of the RSA model and the reduced dimen-
sionality required to complete the concept knowledge task may
help explain why the RSA score did not significantly
improve upon the univariate score in predicting task perfor-
mance. In order to better match the dimensionality of the concept
knowledge task at hand, the informational network score incor-
porated two stages of dimensionality-reduction within the MVPA
portion of the computation: hierarchical clustering to reduce
redundancy in the neural signal, and SVM classification to
identify category-related structure. This category-level model
appears to be robust enough to identify relevant patterns of
neural activity for assessing concept knowledge, while excluding
the item-level idiosyncrasies of our particular expert model of
concept knowledge.

A notable limitation of the present study is that the traditional
assessment of concept knowledge used here to corroborate our
neural score was limited to a single measure: the FBD task
completed during the fMRI scan. In future studies, neural scoring
can be used to predict more varied measures of concept knowl-
edge, such as classroom-based test scores or long-term concept
recall. Additional fine tuning of the methodological approach
may also be beneficial and could potentially assess changes in
learning over time, even during the scan session. Indeed, other
MVPA approaches have successfully incorporated timecourse
information26,27, and could be utilized in conjunction with the
approach we describe here.

Future research may also consider using the neural scoring
approach as a predictor of concept knowledge in other
conceptual domains beyond physics and engineering, as well as in
other areas of research including human developmental
learning and even nonhuman animal research. Indeed, the pre-
sent approach is applicable to any content area in which stimuli
can be categorized in a meaningful way that is evident to an
expert, and that is not immediately obvious to a novice upon
visual presentation of the stimuli. Finally, our informational
network analysis can be applied as an information-processing
technique to assess concept knowledge within intelligent com-
putational systems in addition to human learners. In this way, we
believe this analytical approach can contribute to future work in
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Fig. 4 Neural score localizations by group. Regions contributing to neural
scores in engineering students are shown in red. Regions contributing to
neural scores in novices are shown in light blue. Regions contributing to
neural scores in both engineering students and novices are shown in purple.
a, b, and c show the informational network, RSA, and univariate neural
score maps, respectively
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machine learning domains and in broader areas of cognitive
science.

Methods
Participants. Thirty-three Dartmouth College students participated in this study.
Five participants were dropped from analyses: three had incomplete participation
data; two had no above-threshold results from the RSA (described in detail below).
The final participant sample consisted of N= 28 (Nfemale= 16; Mage= 20.71
years, SD= 1.76). Half of the participants (n= 14) had no college-level engineering
or physics experience (referred to here as “novices”). Half (n= 14) were students in
the undergraduate engineering major, who, at the time of their participation, had
completed or were nearly finished with an intermediate-level solid mechanics
engineering course intended for majors which including a laboratory section
(referred to here as “engineering students”). All engineering students had pre-
viously taken at least one laboratory-based course in advanced physics as a pre-
requisite for their major. Five of the engineering students had taken additional
advanced structural engineering courses as well. Participants were recruited pri-
marily via email listservs and were compensated in either cash or academic extra
credit. All protocols were approved by the Dartmouth Committee for the Pro-
tection of Human Subjects, and all participants provided informed consent prior to
participation in this study.

Stimulus images. Stimuli for this study consisted of 24 photographs of real-world
structures, including bridges, lampposts, buildings, and other similar structures.
Through consultation with experts in mechanical engineering (authors SGD and
VVM), a subsection of each structure was selected as the component of interest,
and was outlined in red on the stimulus image. A full list of stimuli used is available
on request24. Importantly, although the task only requires participants to consider
individual items, we selected the items to intentionally cluster into meaningful
categories. Based on input from the experts, the 24 stimulus items comprised three
meaningful categories of structures (cantilevers, trusses, and vertical loads).
Moreover, each individual item looked similar to (i.e., shared visual similarity with)
at least one item from a different category. This ensured that there are two
separable dimensions of similarity between the items: a dimension of visual
similarity, reflecting surface-level appearance, and a separate dimension of
mechanical or structural similarity, reflecting deeper conceptual knowledge about
how structures support loads and maintain equilibrium. Finally, these dimensions
are orthogonal to the task responses, and the categories are never mentioned to the
participants.

Expert model of mechanical similarity. To generate an expert representational
model of mechanical similarity for the 24 structures from the stimulus set, we had
an expert in mechanical engineering (author SGD) complete pairwise similarity
ratings for all 276 pairs of stimulus images. The expert rater was explicitly asked to
compare the components of interest in each pair of structures according to their
mechanical and structural similarity to one another, specifically with respect to the
Newtonian forces that must act on each object in order for the structure to
maintain static equilibrium (i.e., so that the object remains stable and unmoving).

High-dimensional expert model. The result of this set of expert mechanical
similarity ratings was a 24-by-24 DM, which could be utilized in a standard RSA.
This expert DM became our high-dimensional expert model, and was used in the
computation of the searchlight RSA neural score (see below).

Dimensionality-reduced expert model. We used multidimensional scaling
(MDS) to reduce the dimensionality of the expert mechanical similarity model
from 24 dimensions to 2 dimensions. This MDS projection revealed that the
24 stimulus structures clustered into three distinct categories based on their
mechanical similarity features, which mapped onto existing categories of structures
used by engineers: cantilevers, trusses, and vertical loads. By assigning category
labels to each stimulus structure, we generated a category-level expert model that
was agnostic to the discrete pairwise dissimilarity values from the original expert
ratings. This category-level model enabled us to use a categorical SVM classifier to
determine the degree of mechanical category information present in any DM. We
used this dimensionality-reduced model to evaluate the presence of expert-level
information in the informational network analysis (described below).

FBD task. During a functional MRI scan session, participants completed a task
asking them to evaluate the equilibrium state of the component of interest in each
of the 24 stimulus structures. This task is referred to here as the FBD task, as it
employs diagrams of Newtonian force vectors based on the FBDs used by physicists
and engineers to model the forces acting on a structure. The scan session was
comprised of a familiarization period with the 24 stimulus images and their
components of interest, a set of practice trials involving separate stimuli and task
performance feedback, and four runs of the FBD task, each containing 24 trials
(one for each of the individual stimuli). During the FBD task itself, participants did
not receive any feedback on their performance.

In each FBD task trial, participants were shown a stimulus image for 2 seconds
without any additional markings, and then for 4 seconds with the segment of
interest outlined in red. During these first 6 seconds, participants had previously
been instructed to consider the Newtonian forces that must be acting on the
component of interest in order for the structure to remain in equilibrium (i.e.,
stable and unmoving within the system. All functional imaging data used in further
neuroimaging analyses were collected from this first 6 seconds of each trial. There
was then a jittered fixation period, after which the component-highlighted image
reappeared for 4 seconds, this time labeled either correctly or incorrectly with
arrows indicating Newtonian forces (see Fig. 1 for an example labeled image).
While viewing this labeled version of the image, participants evaluated whether the
labeling was correct or incorrect based on the model they had imagined during the
fixation period, and indicated their judgment via button press during the 4-second
window. After the response period concluded, participants saw one more jittered
fixation period, timed such that each trial’s total duration was exactly 15.5 seconds.
Each trial was then separated by 15.5 seconds of fixation to establish a baseline for
the fMRI analysis.

Each of the four fMRI task runs required participants to evaluate all 24 stimuli,
where 12 images (50%) were correctly labeled on a given run. By the end of the
experiment, participants had seen the correct and incorrect versions of each labeled
stimulus diagram twice. Stimulus presentation order was pseudo-randomized from
run to run such that each participant could not have predicted which version of a
stimulus they would see at a given point in the experiment.

Procedure. Participants completed two sessions for this experiment: a behavioral
session and an fMRI scan session, each lasting ~ 1.5 h. Both sessions began with
participants providing informed consent to participate, and the fMRI session
additionally involved the completion of an fMRI safety screening form. After
completing both sessions, participants were compensated for their time either in
cash or with curricular extra credit points.

Behavioral session. During the behavioral session, participants completed several
physics and engineering concept knowledge evaluations, including two standar-
dized, multiple-choice concept inventories: the SCI22 for evaluating knowledge of
the mechanical properties of nonmoving systems, and the FCI28 for evaluating
knowledge of Newtonian force properties. Not all participants completed the SCI
and FCI materials (19 subjects completed the SCI and 20 subjects completed the
FCI). Consequently, the models involving these tests incorporated random inter-
cepts for concept knowledge test type to account for attrition. Additional tasks
included a pairwise similarity ratings task where participants compared each
unique pair of the 24 stimulus images and evaluated them for general similarity
(i.e., without any specific guidelines for judging similarity).

fMRI session. Within 1 week of the behavioral session, participants completed the
fMRI scan session, which primarily involved the completion of the fMRI task
described above. After completing the fMRI task, participants completed an
additional set of pairwise similarity ratings for the 24 stimulus items, where this
time they were instructed to evaluate similarity based on the mechanical properties
of the structures in each image. Results from the similarity ratings tasks are not
discussed in the present study24.

fMRI image collection. A 3 T Philips Achieva Intera scanner, with a 32-channel
head coil, was used to acquire brain images via gradient-echo echo-planar imaging.
For functional images, an 80 × 80 reconstruction matrix was used with a 240 mm2

field of view to provide whole-brain coverage over 42 transverse slices (Flip angle
= 90°; TE= 35 ms; TR= 2500 ms; 3 mm3 voxels; no gap). Slices were interleaved
during acquisition. Each of the four runs of functional data collection consisted of
298 volumes. A single high-resolution T1-weighted anatomical scan was also
collected for each participant (TE= 3.72 ms; TR= 8.176 ms; voxel resolution=
0.938 × 0.938 × 1.0 mm).

Preprocessing of functional neuroimaging data. fMRI data were preprocessed
using the FSL FEAT software package29,30. Each individual participant was pre-
processed separately. First, the participant’s high-resolution T1-weighted anato-
mical image was skull-stripped using the FSL brain-extraction tool31. Then, the
functional images from each of the four runs were subjected to skull-stripping,
motion correction, slice timing correction, prewhitening, and highpass temporal
filtering (cutoff at 100 s). Finally, the functional images were registered to the
participant’s anatomical volume using the FSL linear registration tool32–34.

Next, beta-value estimates were calculated for each of the 24 stimulus images
using an item-level univariate regression model, where an explanatory variable was
set up to model the brain activity associated with each individual stimulus item. A
separate regression model was computed for each functional run using the GLM.
Activity was sampled from the first 6 seconds of each trial of the fMRI task, the
portion of the task which participants viewed the stimulus structure and were
tasked with imagining the Newtonian forces acting upon the component of
interest. The jittered fixation period following this 6-second consideration period
allowed for an un-confounded estimate of the BOLD signal associated with the
consideration of each stimulus. The beta estimates associated with the individual
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stimuli were used in univariate and multivariate analyses (described below) to
compute neural scores for each participant. Separate explanatory variables were
also set up to model brain activity associated with the button response period (4
seconds per trial), as well as the inter-trial fixation period, combined across all
trials. Brain activity associated with the button response period was excluded from
further analysis. Brain activity associated with inter-trial fixation was used as a
baseline for the univariate activity contrasts employed in further analyses
(described below).

In the final preprocessing step, we performed cortical surface reconstruction for
each participant’s T1-weighted anatomical image using the Freesurfer recon-all
suite;35 http://surfer.nmr.mgh.harvard.edu), and transformed the resultant cortical
surfaces to Surface Mapping (SUMA) format;36 http://afni.nimh.nih.gov/afni/
suma/). Formatted cortical surface maps were fitted to standard mesh grids based
on an icosahedron with 32 linear divisions, yielding 20,484 nodes for each
participant’s whole-brain cortical surface.

Neural score methods. Three different varieties of neural scores were computed and
used to predict performance on the FBD task. The primary score of interest in this
paper was the informational network score, derived from a novel representational
analyses referred to here as an informational network analysis. This score was vali-
dated by comparison to two additional scores: a univariate score and a multivariate
RSA score. Below is a full description of the steps involved in the computation of each
score, beginning with the simplest method (the univariate score) and proceeding in
order of complexity (concluding with the informational network score).

Univariate neural score. To calculate the univariate neural score for each indi-
vidual participant (Fig. 3), we proceeded according to the following steps:

1. For each of the four fMRI runs, a whole-brain univariate contrast was
computed for the contrast of stimulus images > between-trial fixation baseline,
comparing the beta-value estimates for each contrast condition from the
univariate GLM described above.

2. A “robust range” threshold was applied to the contrast results for each run
using the fslstats function from the FSL toolbox to identify the top 2% of
voxels with the greatest positive z value for the contrast.

3. The z values for all voxels in the robust range for each run were averaged,
resulting in a run-level univariate neural score for each of the four runs.

4. Each participant’s univariate neural score from the first fMRI run was used in
further analyses.

Searchlight RSA neural score. To calculate searchlight RSA neural score for each
individual participant (Fig. 3), we proceeded according to the following steps:

1. For each of the four fMRI runs, a whole-brain searchlight analysis was
performed with searchlight sphere (radius= 100 voxels) implemented in
Python using the PyMVPA toolbox37,38. At each searchlight location, a DM
was computed for the 24 stimulus items by calculating the 276 pairwise
correlation distances between the beta values associated with each
stimulus item.

2. A RSA compared the DMs at each searchlight location with the mechanical
similarity expert model using a Spearman correlation, resulting in a whole-
brain RSA correlation map for each fMRI run.

3. The whole-brain RSA correlation map from each run was passed through a
Fisher z-transformation and a threshold of z ≥ 2 was applied.

4. The z values for all searchlight locations in the z≥ 2 mask were averaged for
each run, resulting in a run-level RSA neural score for each of the four runs.
Participants with no searchlight locations above the z ≥ 2 threshold were
dropped from all analyses; two participants (one from each group) were
dropped for this reason.

5. Each participant’s RSA neural score from the first fMRI run was used in
further analyses.

Informational network neural score. To calculate informational network neural
score for each individual participant (Fig. 2), we performed a novel multivariate
representational analysis that we have termed an informational network analysis.
The analysis proceeded according to the following steps:

1. We began with the univariate robust range results for the images > fixation
contrast for each fMRI run, as derived in steps 1–2 of the univariate neural
score calculation. Binary masks were created for each run containing only the
voxels in the robust range.

2. Using the whole-brain searchlight DMs for each run (described in step 1 of
the RSA neural score calculation), we selected only those DMs from
searchlight locations with centers inside the univariate robust range mask for
that run.

3. The surviving DMs were subjected to a bootstrapped hierarchical clustering
algorithm using the R package pvclust23, which assigned each DM to an
informational network based on inherent representational structure. This
bootstrapped method determines the number of informational networks

uniquely for each set of DMs based on bottom–up statistical reliability.
Informational network assignment was performed separately and indepen-
dently for each run, and did not involve any a priori model of representational
similarity.

4. An average DM was calculated for each informational network from each run.
5. Each average DM was projected into two dimensions using MDS,

implemented in R using the MASS package39. MDS was employed as a
noise-reduction step to account for assumed redundancies in the high-
dimensional feature space. In previous analyses with this data set, we found
that two feature dimensions were sufficient to show meaningful differences in
category-level information between informational networks24.

6. The MDS projection of each DM was then evaluated for its expert-level
representational structure using a radial SVM (SVM) classifier40,41, which
predicted mechanical category labels for each item in a given DM. The SVM
classification accuracy value for the most accurate network DM from each
fMRI run was designated as the run-level neural score.

7. Each participant’s informational network neural score from the first fMRI run
was used in further analyses.

The univariate mask utilized in the univariate neural score and informational
network neural score was used as an agnostic, computationally simple method of
reducing data to include only task-related signal, unbiased as to stimulus category
membership. To confirm that this approach did not miss any informative neural
activity patterns, we compared the results from this selection procedure with those
produced using a whole-brain RSA analysis. The univariate mask proved the most
effective (comparisons are reported in Supplementary Table 1). In addition, the
searchlight radius of 100 voxels used in both the RSA and informational network neural
scores is a common size, and other studies have found patterns to be robust across
variable searchlight sizes (including those of similar volume to ours)42. Finally, the MDS
and clustering components of the informational network score computation are
intended to reduce the dimensionality of the data by collapsing across less informative
dimensions. We followed a clustering method used previously in our lab4,43.

Linear regression models for neural scores predicting concept knowledge. We
estimated each neural score’s ability to predict concept knowledge using linear
mixed-effect modeling in R. Separate models were built for each neural score,
where neural score was included as a fixed effect with concept knowledge test score
accuracy as the dependent variable. Random intercepts were included for each
participant and for each type of concept knowledge test (i.e., FBD task, SCI, and
FCI). This composite-dependent variable was made possible by the fact that all
three concept knowledge measures shared the same scale (an accuracy score
between 0 and 1). As discussed, all neural scores and all FBD task accuracy scores
were drawn from the first fMRI run only.

Neural score localization. For each neural score, results for all participants were
projected onto a common cortical surface (a surface map of the MNI brain) in
order to identify which brain regions contributed to participants’ neural scores.
Each surface node contributing to any participant’s neural score was then color-
coded to reflect the group of the participant or participants from which it was
generated. If a location was observed only in engineering students, its surface node
was colored red. If a location was observed only in novices, its location was colored
light blue. Locations observed in participants from both groups were colored
purple.

Data availability
The data sets and code generated during the current study are available from the
corresponding author on reasonable request.
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