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Abstract

The Polycystic Kidney Disease (PKD) is characterized by progressive renal cyst develop-
ment and other extrarenal manifestation including Polycystic Liver Disease (PLD). Pheno-
typical characterization of animal models mimicking human diseases are commonly used, in
order to, study new molecular mechanisms and identify new therapeutic approaches. The
main biomarker of disease progression is total volume of kidney and liver in both human and
mouse, which correlates with organ function. For this reason, the estimation of the number
and area of the tissue occupied by cysts, is critical for the understanding of physiological
mechanisms underlying the disease. In this regard, cystic index is a robust parameter com-
monly used to quantify the severity of the disease. To date, the vast majority of biomedical
researchers use ImagedJ as a software tool to estimate the cystic index by quantifying the
cystic areas of histological images after thresholding. This tool has imitations of being inac-
curate, largely due to incorrectly identifying non-cystic regions. We have developed a new
software, named CystAnalyser (register by Universidade de Santiago de Compostela—
USC, and Fundacién Investigacion Sanitaria de Santiago—FIDIS), that combines automatic
image processing with a graphical user friendly interface that allows investigators to oversee
and easily correct the image processing before quantification. CystAnalyser was able to
generate a cystic profile including cystic index, number of cysts and cyst size. In order to
test the CystAnalyser software, 795 cystic kidney, and liver histological images were ana-
lyzed. Using CystAnalyser there were no differences calculating cystic index automatically
versus user input, except in specific circumstances where it was necessary for the user to
distinguish between mildly cystic from non-cystic regions. The sensitivity and specificity of
the number of cysts detected by the automatic quantification depends on the type of organ
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and cystic severity, with values 76.84—78.59% and 76.96—89.66% for the kidney and
87.29-93.80% and 63.42—-86.07% for the liver. CystAnalyser, in addition, provides a new
tool for estimating the number of cysts and a more specific measure of the cystic index
than Imaged. This study proposes CystAnalyser is a new robust and freely downloadable
software tool for analyzing the severity of disease by quantifying histological images of
cystic organs for routine biomedical research. CystAnalyser can be downloaded from
https://citius.usc.es/transferencia/software/cystanalyser (for Windows and Linux) for
research purposes.

Author summary

This work suggests CystAnalyser is the most reliable software tool currently available for
the assessment of cystic pathologies including Polycystic Kidney Disease (PKD) and Poly-
cystic Liver Disease (PLD). CystAnalyser combines automatic cyst recognition with a
friendly graphical user interface, allowing user input prior to histological image quantifi-
cation. CystAnalyser responds to the need to obtain reliable measurements of the univer-
sal biomarker for PKD and PLD disease progression, the Cystic index (area of cysts within
the total area of tissue). This software tool is also able to calculate the number and size of
cysts from the histological images. In summary, our results show that CystAnalyser over-
comes the precision issues detected using the most commonly used software to date (Ima-
ge]) for Cystic index quantification, offering users a reliable tool to easily characterize the
phenotype and the pathophysiology of PKD and PLD in pre-clinical studies using animal
models.

This is a PLOS Computational Biology Software paper.

Introduction

Autosomal Dominant and Autosomal Recessive Polycystic Kidney Disease (ADPKD and
ARPKD, respectively) are the most common forms of inherited cystic disorders. Mutations in
PKDI and PKD?2 genes are the main cause of ADPKD, while mutations in PKHDI gene are
responsible for ARPKD [1]. Polycystic Liver Disease (PLD) is the most frequent extra-renal
manifestation of ADPKD, but it can be also found as an isolated autosomal dominant form of
Polycystic Liver Disease (ADPLD) [2]. PKD and PLD are characterized by the progressive
replacement of the renal and hepatic parenchyma with cysts of varying size, associated with a
gradual increase in renal and liver volume [3,4]. Both diseases have a broad spectrum of sever-
ity, but in general PKD is associated with a much more severe phenotype than PLD [5,6]. Cyst
initiation or cystogenesis mostly occurs at embryonic stage, with increasing number of cysts
and cystic volume expansion with the age [7,8], ultimately leading to renal and/or liver trans-
plantation [9,10]. It has been established that the principal biomarker to provide a metric pro-
gression of the disease and monitor treatment efficacy is the measurement of total kidney and
liver volume by imaging technologies [11,12]. We and other researchers have developed sev-
eral Pkdl, Pkd2 or Pkhdl animal models to study the pathological mechanisms undergoing
cyst formation and progression including identifying genetic interactions and testing new
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therapeutic approaches [13-16]. Although magnetic resonance imaging (MRI) or sonographic
images have been the standard methods for measuring the progression of PKD or PLD in
humans, digital and histological microscopy images have been the most commonly used in
translational research. For these studies, it is well established that the analysis of the cumulative
area of cysts within the total area of the kidney, liver or other organs (Cystic Index or CI) as a
measurable biomarker to quantify cystogenesis, cyst expansion and to track the severity and
progression of the disease.

The most commonly used tool to calculate the cystic index from histological samples is
Image], a multiplatform free software developed in the Java programming language [17,18,27-
29,19-26]. This software develops an image thresholding which creates a binary image, where
the cystic index is computed with the white regions defined as cysts and the black regions as
tissue (background). However, it is known to researchers that this value is imprecise because
many of the white regions in the image (lumen of arteries, veins, or non-cystic regions) are
mistakenly considered to be cysts. In addition, Image] does not allow reviewing of the segmen-
tation before the calculation process or the quantification of the cysts based on their profile.
Therefore, a more precise tool is needed to quantify the cystic index in a reliable and accurate
manner. Recently, our group has developed the software Govocitos to estimate the fecundity
of fish from histological images of its gonads by combining automatic processing of the image
with a friendly Graphical User Interface (GUI) to review the process before quantification
[30,31]. Based on scientific needs in the PKD and PLD fields, we have generated CystAnalyser
as a software tool for the quantitative analysis of histological images from cystic kidney and
liver samples, in order to reliably and accurately quantify their cystic index, cyst number and
cyst size. We have developed sophisticated image analysis and machine learning algorithms to
automatically recognize and quantify image data, and then compared our software with Ima-
ge]. In addition, to being easier to use by individuals new to the field of research, CystAnalyser
has proven to be significantly more sensitive and reliable, and less subjective, in quantifying
the cystic area, cyst number and size, than the most commonly used software in cystic disease
research.

Results
Description and functionality of CystAnalyser

CystAnalyser is written in the C++ programming language using the GTK+ (“GIMP Tool
Kit”) library (https://www.gtk.org) to develop the GUI, and the C++ interface of the OpenCV
library (https://opencv.org) to process and recognize cysts in the image. Fig 1 shows the main
window of CystAnalyser with the lateral panel and a flowchart describing the main functional-
ity for the user. CystAnalyser can work with default or preset configurations, allowing to set
image preferences like image/ file paths, calibration, working colors, shapes drawn on the
image and the type of tissue to be analyzed (liver or kidney) and saved for future analysis. The
side panel contains all these settings as well as Automatic cyst recognition, Supervised post-pro-
cessing and Visualization of Results tools. By clicking the Run button at the Automatic cyst rec-
ognition tool, cysts are recognized and drawn on the image. The user can review or modify the
automatic cyst detection by using the following setup from the Supervised post-processing tool:
1) Remove inner cyst button: click on the button Run after the label Remove inner cyst to
remove the automatically detected cysts, which fall into some cysts manually drawn by the
user; 2) Add smaller cysts button: click on the Run button to automatically add smaller cysts,
this functionality is oriented only to use with very small cysts that are not recognized by the
Automatic cyst recognition tool. Undo/Redo can be used to include or exclude this analysis; 3)
Selected cyst button: several cysts incorrectly recognized by the Automatic cyst recognition tool
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Fig 1. CystAnalyser overview. (a) Main window of CystAnalyser with a histological image of cystic liver (as example). On
the right, we can see the full lateral panel showing the available Automatic cyst recognition, Supervised post-processing and
Visualization of Results tools. (b) A flowchart containing the main tasks and functions of CystAnalyser. For more details and
information see “Description and Functionality of CystAnalyser” sub-section (in “Results” section).

https://doi.org/10.1371/journal.pcbi.1008337.g001

as only one cyst can be split consecutively by using the Split button. On the contrary, when one
cyst is incorrectly recognized by Automatic cyst recognition as several cysts, they can be fused
with the Merge tool. The zoom tool allows users to get very precise detail by magnifying a
selected part of the image and manually draw a cyst or delete a selected cyst on the image.
The Visualization of results tool automatically shows the cystic index and number of cysts,
allowing the user to explore the size of each drawn cyst in real time or to display a table with
specific information for all cysts by clicking the SHOW TABLE tool (the cysts can be
highlighted in the image by selecting them in the table). In addition, CystAnalyser allows the
user to download and upload results in XML (eXtensible Markup Language) and CSV
(Comma-Separated Values) format files. The CVS file contains statistical information pro-
vided by quantitative analysis of the images: 1) spatial resolution, i.e. the relation between
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micrometers and pixels, at which the images were digitized, also known as calibration, which
must be pre-specified by the user; 2) image size in pixels; 3) cystic index; 4) number of cysts;
and 5) a profile of the cystic sizes, i.e. the number of cysts for each range of diameters or areas.
A user guide has been provided for detailed description (SI Text).

Development of algorithms for automatic cyst recognition

The algorithms proposed to recognize the cysts on the image are a combination of known
techniques in the computer vision field [32], implemented using the OpenCV modules core
and imgproc. Firstly, the image has been segmented to transform it into a binary image, where
white and black colors represent a cyst and the background, respectively. Secondly, this binary
image was analysed in order to extract the contours of the cysts. The main algorithmic steps
are: 1) extract green channel (IG) from the original RGB image; 2) compute the average grey
level (uG) from IG; 3) threshold the image IG using the level pG, resulting in a binary image
IB; 4) apply the kmeans clustering algorithm [33], implemented by the OpenCV kmeans, to IG
using as initialization the image IB and two clusters, resulting in a binary image Ik, which nor-
mally has spurious noise; 5) post-process the image Ik with mathematical morphology in
order to remove the smaller regions with noise resulting in another binary image Io; and 6)
extract the contour of the cysts from Io using the algorithm proposed by Suzuki and Be [34],
which was implemented by the OpenCV function findContours. To provide the minimum and
maximum cystic diameters (dmin and dmax), the user must manually specify the diameter or
draw a diameter line on the image using the CystAnalyser graphical user interface. Finally, a
size filter was applied to remove the regions with diameters outside the interested interval
[dmin, dmax]. All the algorithmic steps were equal for both kidney and liver images, except in
post-processing (step 5), where the mask size of the open morphological filter was constant
and equal to three pixels for all liver images so as to remove noise in the binary image, Ii. This
filter was parametrized by d;, for kidney images, in order to remove the objects smaller than
the desired cyst.

Using a preliminary version of CystAnalyser, the automatic algorithm showed difficulties
distinguishing renal tubules from very small renal cysts. We updated CystAnalyser to include a
supervised classifier in order to discriminate between true cysts and false positives by activat-
ing Add smaller cysts setup (click on the Run button to automatically add smaller cysts), this
functionality was oriented only to use with very small cysts initially not recognized by the
Automatic cyst recognition tool (see lateral panel in Fig 1A). We used the Support Vector
Machine (SVM) classifier [35], with radial basis function (RBF) kernel implemented by the
LibSVM library [36]and accessed through its C binding. The SVM used the true data gener-
ated with the first version of the program. We used a total of 7535 small cysts (true cysts were
annotated by an expert, and the false cysts were provided by CystAnalyzer during the cyst rec-
ognition process), 50% of them devoted to training, 25% to validation and 25% to test. The
experimental setting used 4-fold cross validation. The selection of values for the SVM tuning
hyper-parameters (the regularization parameter C and the inverse y of the RBF kernel spread)
used the well-known grid search method, trying values {2} from i = -5 to 15, step 2 for C and
{2} from i = -13 to with step 2 to . The combination of values that achieved the highest aver-
age performance (measured by the Cohen kappa statistic) on the 4 validation sets were C =2
and y = 27°. The average kappa and accuracy values over the test sets were 68.7% and 86.7%,
respectively, although the performance of CystAnalyzer working in a real laboratory environ-
ment was not evaluated. We developed experiments with different feature vectors in order to
select the best trade-off of computational time and performance. Finally, the Local Binary Pat-
terns (LBP) [37]of its grey-level version, were used as inputs of the classifier. This feature
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vector was calculated for each cyst using the pixels inside its area, similarly to previous software
generated by us [31,38]. Specifically, we used the LBP uniform patterns in order to develop a
feature vector of suitable dimension to be used by the classifier. The histogram of the patterns’
labels accumulated over the cyst region was employed as texture descriptor. The feature vector
was constructed concatenating the histograms of the LBP uniform patterns considering the
following values for the radius R and neighbors P pixels (R,P) = {(1,8), (2, 16), (3, 24)}, devel-
oping a vector with 54 features [36,37].

Cystic index, cyst number and size profile calculation

The Automatic cyst recognition and Supervised post-processing tools of CystAnalyser were
tested in 464 liver and 331 kidney histological images. No differences were found between
supervised and non-supervised Cystic Index (CIA versus CIS) and the number of cysts (NA
and NS) in the kidney samples (Fig 2A). On the other hand, statistical significances were
found in liver CI and liver N, indicating the necessity of supervision for the Automatic cyst rec-
ognition (Fig 2B).

In order to identify possible inaccuracies due to the variable phenotype across samples, we
established varied degrees of liver and kidney disease phenotypes (mild-cystic, cystic and
severely-cystic) according to the CI (see the Materials and methods section). Fig 3 shows a rep-
resentative example of the Automatic cyst recognition interface for the different degrees of dis-
ease severity in cystic kidney and liver histological samples. The Automatic cyst recognition
interface tool was robust calculating kidney cystic Index and the number of cysts (Fig 4A),
with a sensitivity (Se) and specificity (Sp) range of 76.9-78.6 and 77-89.7, respectively for all
degrees of disease phenotype (Table 1A). Only in those scenarios where several big cysts
become fused (severely-cystic phenotype) it was necessary to employ the Supervised post-pro-
cessing tools by an expert user (Table 1A, Severely Cystic NA vs. NS p>0.01).

On the other hand, we observed that CI and N of mild-cystic and cystic livers needed to be
calculated supervising the Automatic cyst recognition, using Supervised post-processing tools,
due to non-specific recognition of extrahepatic bile ducts and vasculature structures (Fig 4B
and Table 1). The sensitive range was 87.29-93.80 and the specificity range was 63.42-86.07,
the lowest values corresponding to the mild-cystic phenotype (Table 1B). Fig 4C shows an
example of Automatic cyst recognition of a mild-cystic liver phenotype before (left panel) and
after (right panel) user input by deletion of the extrahepatic bile ducts, hepatic veins and arter-
ies in order to calculate the exact liver CI and N. Although it was an inconvenience, this result
offered value to the plasticity of CystAnalyser providing both the supervised and non-super-
vised tools according to the phenotype, organ and user needs.

As we can see in Table 1A, the Number of cysts after Supervision (NS) was higher for kid-
ney images (except for mild-cystic images) than the Number of cysts Automated (NA). How-
ever, this did not occur for liver images because NS is lower than NA (Table 1B), owing to the
necessity to delete hepatic vasculature and extrahepatic bile ducts (see Fig 4B and 4C). In rela-
tion to this, the percentage of cysts recognized automatically by CystAnalyser and deleted by
the user was lower in kidney than in liver (in Table 1, column PCD). Nevertheless, the percent-
age of cysts added by the user was higher in kidney than liver (in Table 1, column PCA). This
fact was also reported by sensitivity and specificity (in Table 1, columns Se and Sp respec-
tively). The sensitivity was higher than 87.29% and 76.84% for all groups of liver and kidney
respectively, and specificity range of 76.96-89.66% for kidney and 63.42-86.07% for liver
images. These results of Sensitivity and Positive Predictive Value were very promising, taking
into account the laborious way to count the recognition errors in this study (see subsection
Statistical analysis, Materials and Methods), because when the expert used the Supervised
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Fig 2. Cystic Index and Number of cysts analysis with supervised and non-supervised Automatic Cyst
Recognition. Box plots show the comparison between Cystic Index Automated (CIA) versus Cystic Index Supervised
(CIS) and between Number of cysts Automated (NA) versus Number of cysts Supervised (NS), respectively, for all
kidney (a) and all liver (b) images. No significant differences were found between supervised and non-supervised
Automatic Cyst Recognition in kidney images (a). However, supervise the Automatic Cyst Recognition significantly
(*** p < 0,001) diminished the cystic index and number of cyst in liver samples (b). The lower and upper ends of the
box define the 25% and 75% quantiles, respectively, the middle line in the box is the median of the values and the
whiskers are the 0% and 100% quantiles. Mann-Whitney test was used for statistical analysis; ns: no significance; ***
p < 0,001.

https://doi.org/10.1371/journal.pchi.1008337.9002

post-processing tools, one action of the user on the GUI implied counting several errors
(always more than two).

In order to analyze the behavior of CystAnalyser with the cyst profile, the size or diameter
of each individual cyst was preset. Fig 5 shows the Number of cysts Supervised (NS) and Cysts
Automatically detected by CystAnalyser (NA) for all kidney (Fig 5A-5C) and liver (Fig 5D-5F)
images featuring all the variable cystic phenotypes. In general, the cyst size profiles were quite
similar. The main difference was the mild cystic images for the smaller cysts (diameter lower
than 300 pixels) in the kidney (Fig 5A); specifically, for the cysts with diameters between 0 and
100 pixels the difference between NA vs NS is 12.01 points, and for the cysts with diameters
between 100 and 200 pixels the difference was -10.56 points. The reason being the program had
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are respective histological images of kidney and liver. Upper panels show representative images of a mild-cystic phenotype, central panels are for cystic phenotype and
bottom panels are for severely cystic phenotype.

https://doi.org/10.1371/journal.pchi.1008337.g003

difficulty in recognizing the smallest renal cysts, with narrow lumens, which required marking
or completing it manually. However, in the liver (lower panel) the main difference was for the
bigger cysts (diameter higher than 500) in mildly cystic and cystic phenotypes, with a difference
of 1.75 points for both between NA vs NS. As mentioned and shown in Fig 4C, the extrahepatic
bile ducts must be deleted from the recognized cysts and this generated a difference in the cystic
index and cyst size profile, as it occupied an important part of the image.

Comparison with Image]J

Next, we compared the cystic index calculated by CystAnalyser (automated or CIA, and super-
vised or CIS) with Image], which has been the software most used for this analysis. For the
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Fig 4. Comparison of supervised and non-supervised Automatic Cyst Recognition of CystAnalyser, according of cystic disease severity. (a-b) Box plots show the
comparison between Cystic Index Automated (CIA) versus Cystic Index Supervised (CIS) and between Number of cysts Automated (NA) versus Number of cysts
Supervised (NS), respectively, for kidney (a) and liver (b) images classified in mild-cystic, cystic and severely-Cystic. No significant differences were found between
supervised and non-supervised Automatic Cyst Recognition in kidney images (a) with the exception of the number of cysts in the renal severely-cystic phenotype (**

p < 0,01). Nevertheless, in hepatic mild-mystic and mystic images we observed significant differences (*** p < 0,001) in Cystic Index and the Number of cysts (b). The
lower and upper ends of the box define the 25% and 75% quantiles, respectively, the middle line in the box is the median of the values and the whiskers are the 0% and
100% quantiles. Mann-Whitney test was used for statistical analysis; ns: no significance; ** p < 0,01; *** p < 0,001. (c) Representative example of mild-cystic liver with
Automatic Cyst Recognition by CystAnalyser (left panel) and after Supervised Automatic Cyst Recognition (right panel). The yellow arrows show cysts erroneously
recognized by the program or false positive, mostly bile ducts, hepatic vein and arteries. The green arrow shows a false negative or true cyst not detected by CystAnalyser.
Bile ducts and hepatic vasculature represent an important part of hepatic cystic region recognized by CystAnalyser; which, when eliminated (with Supervised post-
processing), implies a significant quantitative change in the cystic Index and number of cysts.

https://doi.org/10.1371/journal.pchi.1008337.g004
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Table 1. Results of CystAnalyser Automatic Cyst Recognition. Summary of results of the Automatic Cyst Recognition of kidney (a, upper panel) and liver images (b,
down panel). The table reports the average value of the following parameters. The four first columns show comparison between Cystic Index Automated (CIA) versus Cys-
tic Index Supervised (CIS); columns 5 to 8 show the results of compare Number of cysts Automated (NA) a Number of cysts Supervised (NS); finally, columns 9 to 12 rep-
resent the value for: Percentage of Cysts Deleted (PCD) and Percentage of Cysts Added (PCA) by the user in the supervision, the Sensitivity (Se) and Specificity (Sp)

calculated by Eq 1 (see Materials and methods section). Mann-Whitney test was used for statistical analysis; we considered a value p < 0.01 (**) or p < 0.001 (***) as signif-
icant and a value p>0.05 as non-significant (ns).
Group CIA CIS p-value Sig. NA NS p-value Sig. PCD(%) PCA(%) Se(%) Sp(%)
A Kidney
Mild Cystic 22.25 21.76 >0.05 ns 82.97 96.46 >0.05 ns 23.04 21.92 77.94 76.96
Cystic 45.66 43.98 >0.05 ns 131.0 120.6 >0.05 ns 12.38 23.17 76.84 87.62
Severely cystic 63.26 61.85 >0.05 ns 142.32 126.63 <0.01 o 10.34 21.40 78.59 89.66
B Liver
Mild Cystic 2.89 4.74 <0.001 e 22.79 32.30 <0.001 e 36.58 9.17 90.25 63.42
Cystic 8.90 10.98 <0.001 e 57.5 61.0 <0.001 e 20.63 12.38 87.29 79.38
Severely cystic 22.78 23.84 >0.05 ns 66.6 71.52 >0.05 ns 10.93 6.20 93.8 86.07

https://doi.org/10.1371/journal.pcbi.1008337.t001

comparison study, we analyzed 128 images of kidney; 29 mild-cystic, 52 cystic and 47 severely-
cystic and 287 images of liver; 111 mild-cystic, 115 cystic and 61 severely-cystic. Examples of
the visual results of cystic kidney and liver images provided by CystAnalyser (before and after
user supervision) and by ImageJ are shown in Fig 6A. We can see that Image]J recognizes white
parts as cysts, predominantly between cysts or zones in the renal medulla (near to renal
papilla) in the case of kidney images, and hepatic parenchyma in the case of liver images.
Besides, given that Image] did not allow supervision after the automatic recognition of the
cysts which increased likelihood of false positives (for example tubes and dilated tubes for kid-
ney, extrahepatic bile ducts in the liver etc.) in the final result.

In order to perform a statistical comparison, Fig 6B and 6C show the cystic index calculated
for all images, grouped by cystic phenotype for kidney (Fig 6B) and liver (Fig 6C), using:
CystAnalyser without any user supervision (CIA), CystAnalyser after user supervision (CIS)
and Image]. The difference between the cystic index calculated by CystAnalyser and Image]
was significant for all cystic degrees except for the severely-cystic phenotype. Image] provided
an overestimated result for both tissues, especially in kidney images since the difference
between CIS (which is the most accurate value) and the cystic index of Image] was 38.07 points
(mild-cystic), 22.45 points (cystic) and 7.28 points (severely-cystic). Consequently, CystAnaly-
ser overcame Image] in precision. On the other hand, to do the quantitative analysis in Image]
the segmentation threshold setting was required, a parameter which was implicit because it’s
meaning was not clear for the user, and its optimal value must be selected by trial and error,
being different for each image. So, the cystic index calculated by Image] was subjective because
it depended on the threshold selected by the expert, which may vary among experts. On the
contrary, CystAnalyser only needed to set the range of cyst diameters to be recognized. This
parameter was explicit (clearly understandable by the expert) and descriptive (it can be set in
micrometers or pixels), and it was the same for all images, so the results of CystAnalyser were
less subjective (or not subjective at all) with respect to the user who did the analysis.

In addition, CystAnalyser achieved a score of 80.75 in the System Usability Scale (SUS)
questionnaire, used to measure the subjective perception of the system, which means that this
software is considered good to excellent. CystAnalyser is fast enough to work online on a gen-
eral-purpose personal computer in any biomedical laboratory, capable of developing auto-
matic cyst recognition of an image almost instantaneously (approximately 3 seconds) and
faster than ImageJ and requiring an average of approximately three minutes for manual expert
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Fig 5. CystAnalyser allows studying the cystic profile, based on the size of the cysts. Logarithmic graph showing a profile of the cyst diameters automatically recognized
by CystAnalyser (Number of cysts Automated, NA) versus the cysts reviewed (Number of cysts Supervised, NS) for kidney (a-c, upper row) and liver (d-f, lower row). In
general, the cystic profiles were very similar except for the hepatic mild-cystic images (d); which after supervision of Automatic Cyst Recognition the biggest cysts
disappeared due to deletion of bile ducts and hepatic vasculature (see Fig 4B and 4C). Kidney and liver images were classified in the different group according severity of
cystic disease. The cyst size is shown in pixels.

https://doi.org/10.1371/journal.pcbi.1008337.9005

supervision (Image] does not allow it), which could be avoided in program applications where
automatic recognition is already accurate.

Discussion

This work proposes CystAnalyser as a new reliable and easy to use software tool to evaluate
cystic pathologies, such as polycystic kidney disease (PKD) and polycystic liver disease (PLD).
CystAnalyser combines the automatic recognition of the cysts in histological images with a
friendly GUI which allows to supervise the recognition before quantification. CystAnalyser
provides the cystic index (area of cysts within the total area of a tissue), the number of cysts
and the cystic profile (based on individualized cystic size) of a histological image.
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Fig 6. CystAnalyser provides a more reliable Cystic Index value than Image]J. (a) Cyst recognition in a cystic kidney (upper panel) and liver (lower panel) images using
CystAnalyser without supervision (left image), after user supervision (middle image) and using Image]J. Cysts contours were overlapped to image for CystAnalyser (color
blue); whereas for Image] the white regions were counted as cystic area. (b-c) Bar plots showing the cystic index of CystAnalyser (automated or supervised) versus Cystic
Index provided by Image] for kidney (b) and liver (c). In general, we observed that CystAnalyser provided a more reliable and accurate Cystic Index than ImageJ; and in
the same way, CystAnalyser discriminated better the different images according to severity of cystic disease. We found significant differences (*** p < 0,001) in Mild-
Cystic and Cystic images (b-c). However, in severely-cystic images the cystic index provided by CystAnalyser and Image] were similar. CIA: Cystic Index Automated
(provided by CystAnalyser). CIS: Cystic Index Supervised (provided by CystAnalyser). Bars represent mean + Standard Error (SE). Kruskal-Wallis test, with Dunn
multiple pair-wise comparison post-test, was used for statistical analysis; ns: no significance; *** p < 0,001.

https://doi.org/10.1371/journal.pcbi.1008337.9006

In order to test CystAnalyser, we compared the cystic index and the number of cysts pro-
vided by CystAnalyser with the automatic cyst recognition tool with or without user input. A
collection of 795 images was quantified by CystAnalyser (Table 2, see Materials and methods
section), obtaining significant differences in the images of the liver but not the kidney (Fig 2).
In order to make a more precise characterization to identify the cause of these differences and
evaluate the reliability of the program, we classified the images into three groups according to
the severity of the cystic phenotype (mild-cystic, cystic, and severely cystic; see Fig 3 and the
Materials and methods section). The main differences were identified in the processing of
mild cystic and cystic hepatic images, where it was difficult to distinguish small cysts from the
extrahepatic bile ducts and hepatic vasculature for a novice in the field (Fig 4). Therefore, in

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008337  October 22, 2020 12/18


https://doi.org/10.1371/journal.pcbi.1008337.g006
https://doi.org/10.1371/journal.pcbi.1008337

PLOS COMPUTATIONAL BIOLOGY CystAnalyser: A new software tool for detection and quantification of cysts

Table 2. Number images used in the work. Number of kidney and liver images used in this work for each animal model and cystic phenotype, according the classification

used. p: postnatal day of sacrifice.

Animal model

Pkd1°"¥<°"; Tam-Cre p30
p45
Total

Pkd1°°"¥«°"; Tam-Cre p30

p45

thdldcl3-4/del3-4 p250
Total

https://doi.org/10.1371/journal.pchi.1008337.t002

Group
Mild Cystic (n) Cystic (n) Severely Cystic (n) Total (n)
Kidney
67 126 33 226
0 15 90 105
67 141 123 331
Liver
187 56 2 245
26 65 11 102
4 56 57 117
217 177 70 464

this scenario, the input of an expert was recommended since the software error in determining
the cystic index in mild cystic and cystic liver images was 39.03% and 18.94%, respectively. On
the other hand, in kidney images, in general, there were no differences between the recognition
of automatic supervised and unsupervised cysts, except for the number of cysts within severe
cystic phenotype (Fig 4A, Table 1). There were no significant differences between the cystic
profiles according to the size of the cyst obtained with and without supervision for both tissues
(Fig 5). Regarding the sensitivity and specificity of the software, the value ranges were 76.84-
90.25% for the kidney and 63.4-89.66% for the liver, respectively (Table 1). These values weare
intentionally underestimated, because the software used a strict methodology to over count
errors (dividing a cyst into two different counts as several errors and not as one). For this rea-
son, CystAnalyser allowed users to monitor or supervise the default quantification process to
obtain results with greater precision and robustness.

With the aim of assessing the potential of this new software, we also compared CystAnaly-
ser versus, the software most commonly used in scientific research, Image]. CystAnalyser was
shown to outperform Image] in precision and reliability, being less subjective even without
user supervision. In addition, CystAnalyser provided additional functionalities to calculate the
number of cysts, the cystic profile based on their diameter and the possibility of monitoring
and modifying the cysts identified by the software before quantification. The number of cysts
and the cystic profile are necessary for the characterization of the phenotype and, therefore,
the pathophysiology of the polycystic disease, complementing the cystic index, which is the
most used biomarker in polycystic research (Manuscript under review).

Future work on this software will focused on the development of new functionalities in auto-
mated microscopes in order to perform an automatic quantitative analysis of serial images. Super-
vised machine learning techniques will also be used to avoid post-processing of recognized cysts by
decreasing the number of false positives, increasing the specificity of automatically detected results,
and reducing the time and effort of expert supervision. Similarly, we would like to extend this auto-
matic detection application to other techniques such as immunofluorescence (in order to specifi-
cally mark and quantify cysts from different parts of the nephron) and to other fields of nephrology
such as glomerulopathies (automated quantification of the number and type of glomeruli).

Materials and methods
Animal models

C57/BL6 Pkd1°"*"™; Tam-Cre and C57/BL6 Pkhd1%®~*4*3~* \yere used in the present study
[14-16]. In the Pkd1?"¥<°": Tam-Cre model we induced Cre recombinase activity, in order to
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inactivate the Pkdl gene, in mice postnatal 10 and 11 days of age by intraperitoneally injecting
nursing mothers with tamoxifen (10 mg/40 g) in corn oil (Sigma-Aldrich) [16]. Mice were sac-
rificed at postnatal day 30 (56 mice) or 45 (15 mice). The Pkhd Ael3-#/del3~4 i ce were sacrificed
with more than 8 months of age (14 mice). We used a total number of 85 mice in this study,
performed using protocols approved by the Universidade de Santiago de Compostela Animal
Care and Bioethical Committee (#15010/2020/002) and the mice were house in pathogen-free
facility (SPF).

Immunohistochemistry and image acquisition

After mouse euthanasia, the kidneys and livers were washed in PBS 1X and fixed with 4% para-
formaldehyde (pH 7.4) for at least 10 hours. Tissues were washed again with distilled water for
2 hours and rehydrated with 50% ethanol for 2h and finally kept in 70% ethanol at 4°C. The
organs, once processed, were embedded in paraffin and sectioned at 4.5um thickness. Sagittal
kidney sections and liver cross-sections were stained for Hematoxylin-Eosin using a standard
protocol, which were then visualized under an Olympus BX51 microscope connected to an
Olympus Camera DP70 using a magnification of 10X. The number of images acquired from
each tissue range from three to ten images, and their size is 4080 x 3072 pixels.

Dataset description

The histological images of kidney and liver were grouped depending on their Cystic Index,
according to value of CystAnalyser Cystic Index Supervised or CIS, in: “Mild-Cystic”, “Cystic”
and “Severely-Cystic”. In kidney, we considered a “Mild-Cystic” when its cystic index was
between 0 to 35%, “Cystic” between 35% to 55% and “Severely-Cystic” greater than 55%. For
liver, we considered a “Mild-Cystic” liver when its cystic index was lower than 5%, “Cystic”
between 5% to 15% and “Severely-Cystic” greater than 15%. Table 2 summarizes the number
of images (795 in total) analyzed by CystAnalyser for each type of animal, Cystic Index and

type of organ (kidney or liver).

Statistical analysis

For the statistical evaluation of the automatic recognition algorithms, we considered that a cyst
was correctly recognized, a true positive (TP) hit, if the user did not modify the outline pro-
vided by the recognition algorithm. A cyst was considered false positive (FP) whenever the
user manually deleted the cyst or it was modified by some “tools for supervision”. A cyst was
considered false negative (FN) whenever the user manually added one cyst or it was added by
some “tools for supervision”. For example, when the user split a cyst, we counted it as one false
positive (like deleted) and two false negatives (like added). If the user performed the operation
Remove inner cyst, all the cysts inside a manually added cyst were considered as FP. If the user
uses the Complete tool, we counted one FP and one FN. If the user performed a Merge opera-
tion, we counted it as FP the number of cysts merged and one FN. When the user clicks the
button Run after the label Add smaller cyst, all the cysts added were considered as FP. Once we
counted the TP, FP and FN for an image, we defined the sensitivity (Se) and specificity (Sp),
both in %, as:

100TP FP
Se=——Sp={1——] %100
FN + TP NA

Thus, the number of cysts in the image (after supervision) was NS = TP + FN and the num-
ber of cysts automatically recognized by the computer was NA = TP + FP.
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The normality of the data was assessed using D’Agostino-Pearson, Kolmogorov-Smirnov
and Shapiro-Wilk tests for all groups of data. Non-parametric methods were always required
so, we calculated the statistical significance by Mann-Whitney non-parametric or Kruskal-
Wallis non-parametric one-way ANOVA test with Dunn multiple pair-wise comparison post-
test. We considered a value p < 0.05 as significant. The statistical analysis was performed using
Prism version 7.0 for Windows (GraphPad software).

Experts perception

The System Usability Scale (SUS) is a free questionnaire to measure the learn ability and sub-
jectively perceived usability of computer systems [39,40]. This questionnaire has 10 items with
five-point scale ranging from 1 (strongly disagree) to 5 (strongly agree). The final system score
was provided in a scale from 0 to 100. The score was calculated as following: for items 1, 3, 5, 7
and 9 (the positively worded items) subtract one from the user responses and for items 2, 4, 6,
8 and 10 (the negatively worded items) subtract the user responses from five. This scales all val-
ues from 0 to 4 (being 4 the most positive response). The converted responses were added for
each user and multiplied the total by 2.5 to convert the scale from 0 to 100 instead of from 0 to
40. The SUS score is translated to people’s rating of systems and products in terms of adjectives
in order to give a meaning to the SUS scores [41]. The criteria used was: SUS score below to 25
was a system worst imaginable; from 25 to 39 was from worst imaginable to poor; from 39 to
52 was from poor to ok; from 52 to 73 was ok to good; from 73 to 85 was good to excellent and
from 85 to 100 was excellent to best imaginable. Thus, a small sample (8-12 users) was enough
to give a good assessment of how people see your system or product. CystAnalyser was evalu-
ated using SUS questionnaire by 10 researchers of Nephrology Lab with different expertise
using it. The mean score achieved was 80.75, which means that CystAnalyser is from good to
excellent. It is important to emphasize that half of the researchers scored CystAnalyser with
more than 85 points, so they think that the software is from excellent to best imaginable.

Supporting information

S1 Text. CystAnalyser user guide. A detailed user guide about CystAnalyser is provided in
order to facilitate the use of the program and its several functions.
(PDF)
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