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Abstract: We recently showed that yellow lupine is highly sensitive to soil water deficits since this
stressor disrupts nodule structure and functioning, and at the same time triggers flower separation
through abscission zone (AZ) activation in the upper part of the plant. Both processes require specific
transformations including cell wall remodeling. However, knowledge about the involvement of
particular cell wall elements in nodulation and abscission in agronomically important, nitrogen-fixing
crops, especially under stressful conditions, is still scarce. Here, we used immuno-fluorescence
techniques to visualize dynamic changes in cell wall compounds taking place in the root nodules and
flower AZ of Lupinus luteus following drought. The reaction of nodules and the flower AZ to drought
includes the upregulation of extensins, galactans, arabinans, xylogalacturonan, and xyloglucans.
Additionally, modifications in the localization of high- and low-methylated homogalacturonans and
arabinogalactan proteins were detected in nodules. Collectively, we determined for the first time the
drought-associated modification of cell wall components responsible for their remodeling in root
nodules and the flower AZ of L. luteus. The involvement of these particular molecules and their
possible interaction in response to stress is also deeply discussed herein.

Keywords: abscission zone; arabinan; cell wall; drought; extensins; galactans; root nodules; xyloglu-
cans; yellow lupine; yielding

1. Introduction

Two particular processes are of paramount importance for the yielding of leguminous
plants, including yellow lupine (Lupinus luteus L.). On the one hand, proper function-
ing of root nodules, which is guaranteed by the occurrence of a symbiotic plant–bacteria
relationship and enables atmospheric nitrogen (N2) fixation. On the other hand, the
development and maintenance of flowers in the maternal plant and as a consequence
the formation of protein-enriched pods. Flavonoids, synthesized in the roots of lupine
and excreted to the rhizosphere, induce bacteria to biosynthesize Nod factors of the lipo-
chitooligosaccharide (LCO) type which trigger nodulation [1]. In developed root nodules,
N2 fixation is catalyzed by nitrogenase, the activity of which strongly depends on the action
of leghemoglobin, responsible for maintaining the appropriate partial pressure of O2 [2].
These endogenous factors determining the nodule functioning are strongly influenced
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by environmental cues, including the most dangerous abiotic factor for plants—drought.
As we have previously shown, a soil water deficit reduces the number of formed nod-
ules, leading to histological changes that indicate progressive symbiosome degradation;
downregulates the expression of LEGHEMOGLOBIN (LlLbI); and decreases consequently
the level of fixed N2 in L. luteus [3,4]. This is accompanied by a substantial accumulation
of stress hormones—abscisic acid (ABA) and ethylene (ET)—in nodules [5]. At the same
time, water deficit in soil induces a strong response in the aboveground parts of L. luteus,
e.g., disrupting nutrient composition and enhancing flower abscission [5]. Flower sepa-
ration processes in lupine involve the dissolution of middle lamellae formed between a
specific group of cells, named the abscission zone (AZ) [6,7]. Similarly, as in the nodules,
changes accompanying the flower abscission of L. luteus in response to drought are related
to the modulation of biosynthesis pathways of stress hormones (ABA, ET), their accumula-
tion, and distribution in AZ cells, as well as the induction of secondary stress mechanisms,
which are reflected by a disruption of redox homeostasis [5,8]. Based on histological and
immunofluorescent observations it can be hypothesized that drought modifies the cell wall
structure in flower AZ [5,8]. These changes include the degree of homogalacturonans’ (HG)
methyl esterification, upregulation of pectin methylesterase (PME), and polygalacturonase
(PG), which catalyze subsequent reactions for pectin remodeling and disassembly in the
middle lamella connecting adjacent cells [8].

The cell wall is a dynamic structure composed of a polysaccharide-based skeleton,
proteins, and polymers organized in a complicated, dynamic network [9]. It represents
the first cellular barrier and at the same time a defense line against stresses. The ability
to modify the cell wall composition is one of the crucial factors which enables plants to
adapt to and live under unfavorable conditions, such as drought. In L. luteus, cell wall
changes taking place in the AZ determine the time of the organ detachment, while those
that appeared in nodules enable the penetration of infection threads into the roots [10].
Given this important role of the cell wall in the regulation of both processes, here, we aimed
to describe the modifications taking place simultaneously in nodules and the flower AZ
of L. luteus growing under soil water deficit conditions. Understanding how the plant
counteracts the negative effects of drought might be helpful for the improvement of the
crop′s resistance to stress in the future.

Maintaining the cell wall integrity and proper architecture is crucial especially under
the influence of different stress factors which may disturb the stability of plant cells, tissues,
and whole organs. The primary cell wall is composed of cellulose microfibrils which are
interconnected by polysaccharides—pectins and hemicelluloses [11]. Cellulose microfib-
rils provide the tensile strength of the cell wall and consist of long, unbranched chains
of β-1,4-linked glucose units [9]. Pectins are branched molecules containing many nega-
tively charged galacturonic acid units and form homogalacturonan (HG), xylogalacturonan
(XGA), rhamnogalacturonan-I (RG-I), and RG-II [12]. Among pectins, HG contributes up to
about ~65% of the total pool and can be modified by esterification processes, which ensures
mechanical properties of the cell wall structure [13]. XGA is composed of HG substituted
with a β-linked xylose [12]. Reports suggest that XGA may improve the resistance of HG
to degradation by polygalacturonase (PG) acting under stressful conditions [14]. Other
cell wall components, like RG-I, contain a motif of α-(1,4)-galacturonic acid and α-(1,2)-
rhamnose and make up ~20–35% of pectin, whereas RGII consists of α-(1,4)-galacturonic
acid only and represents ~10% of pectin [12]. RGI backbones could be linked to oligosac-
charides, e.g., α-(l,5)-arabinans and β-(1,4)-galactans [15]. The middle lamellae connecting
the cell walls of neighboring cells are mainly composed of pectins, which are therefore
molecules fundamental to cell wall flexibility and cell-to-cell adhesion. Pectins can interact
with arabinogalactan proteins (AGPs), in which protein moiety and carbohydrate polymers,
e.g., D-galactose and L-arabinose, are present, and these compounds may stabilize the cell
wall structure [16]. Among hemicellulosic components of the primary plant cell wall, the
most common are xyloglucans (XyGs), which consist of a β-1,4-linked glucan backbone that
is further linked to xylosylside chains. These chains can be in turn connected with galactose
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and fucose [17]. Interestingly, XyGs can be acetylated, and then their ability to link with
other cell wall compounds is disrupted [18]. XyGs usually fill the spaces between microfib-
rils; however, in specific circumstances, the appearance of XyGs favors the formation of
cellulose-xyloglucan-cellulose sandwiches, also named ‘biomechanical hotspots,′ which are
exposed to the action of expansins–enzymes promoting the relaxation or extension of cell
walls in a pH-dependent manner [17]. To summarize, given the ability of pectins and XyGs
to bind to microfibrils, they can mediate both the generation of microfibrils cross-links, as
well as their separation processes.

Proteins found in the cell wall make up about 5% of the wall’s dry mass; however, their
role is invaluable, since most of them are enzymes playing roles in cell wall turnover and
loosening [19]. These proteins are particularly important in the abscission processes because
they modulate cell adhesion and ensure cell rupture, which is necessary for the separation
to occur. In the scientific literature, there are reports regarding the identification of genes
encoding enzymes responsible for the synthesis and modification of cell wall components
during abscission in several plant species [20–23]. Considering these proteins, special
attention should be given to extensins (EXTs), which belong to the family of plant cell wall
hydroxyproline-rich glycoproteins (HRGPs). EXTs are also responsible for the mechanical
properties of the wall, e.g., increasing strength [24]. Some studies have described EXTs as
able to anchor polysaccharides in the cell wall and increase stress tolerance [25–27].

At present, cell wall components and their functions under water deficit conditions
are poorly understood, particularly in crops such as lupines. Thus, in this paper, we focus
on the drought-related localization of specific cell wall components including glycoproteins
(extensins), pectins (HG, RG-I, XGAs), and hemicelluloses (XyG) which were monitored
using monoclonal antibodies. Pectins were additionally measured using dot blot. Our
analyses helped to identify new elements responsible for cell wall rearrangement in the
nodules and flower AZ for the first time in lupine under soil drought. This is a piece of
valuable information for modern agriculture and the selection of drought-resistant crops
characterized by improved yielding. It is a base for the searching of elements that can
modulate cell wall components and enzymes sensitive to drought and improve lupine
tolerance to this stress factor.

2. Results
2.1. Verification of the Stress Conditions

When we consider the influence of drought on the nodules and flower AZ functioning
in L. luteus, the application of 25% WHC was effective, as we recently found. In such
conditions, the number of nodules was reduced [5], and flower abortion was strongly
stimulated [4]. This was correlated with the accumulation of proline—a drought stress
marker—in the flower AZ [8]. In this paper, we show that water deficit in the soil leads to
the accumulation of proline also in different parts of the root, including nodules (Figure 1),
which were extremely affected by drought, as visible on microscopy images, especially in
the fixation zone area (Supplementary Figure S1). The strongest stimulatory effect occurred
in the lower part of roots, in which the level of proline was approx. 560 ug g−1 FW. In
turn, the osmoprotectant content observed in nodules was 10 times higher under drought
conditions when compared to control.

Given that leghemoglobin is crucial for the functioning of L. luteus nodules [3,4], here
we aimed to verify the influence of soil drought on the level and localization of hemoglobin
using the AHB2 antibody. Western blotting analysis revealed that the AHB2 (~17 kDa)
level decreased following drought in root nodules (Figure 2A). The immunocytochemical
analysis confirmed the presence of hemoglobin in control nodules (Figure 2D,E). Green
fluorescence indicating hemoglobin localization was visible in the fixation zone (Figure 2E)
and vascular bundle connecting nodules with the root (Figure 2D). Substantial differences in
the AHB2 localization were observed when comparing the fixation zone and parenchyma
cells (Figure 2E). On the contrary, almost no detectable fluorescence was visible in the
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drought-treated nodule (Figure 2F,G). Some fluorescent spots were detected in the external
tissue surrounding nodules—the periderm (Figure 2F).
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Figure 1. Proline accumulates differently in various parts of Lupinus luteus L. root subjected to soil
drought. Control plants were grown under optimal conditions (70% water holding capacity, WHC),
whereas stressed plants were subjected to water deficit conditions for 2 weeks (25% WHC). Samples
were collected from different parts of roots and nodules on the 48th day of cultivation. Data are
presented as averages ± SE. ** p < 0.01, * p < 0.05 (root part from stressed plant versus non-stressed
ones) (Student’s t-test).
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Figure 2. The level and localization of hemoglobin in nodules of Lupinus luteus L. are strongly affected
by drought. Lupines were cultivated under water deficit conditions (25% water holding capacity,
WHC), while control plants were grown in the soil of optimal moisture (70% WHC). For analysis,
nodules were excised on the 48th day of cultivation. Western blot analysis was performed with AHB2
antibody (A). M–molecular mass marker. A band reactive to this antibody (of ~17 kDa) was scanned,
densitometry analysis was made, and results are presented on (B) (100% was set for the control). Data
are presented as averages ± SE. ** p < 0.01 (n = 3), Coomassie-Blue-stained gel as reference protein
standard (C). The localization pattern of hemoglobin (AHB2 antibody) in stressed (F,G) and control
(D,E) nodules. Images (E,G) are magnifications of regions of the fixation zone and parenchyma
cells (white squares) from control and stressed nodules, respectively. Green fluorescence indicates
AHB2 presence, whereas blue color corresponds to nuclei (DAPI staining). Red arrows denote strong
fluorescent labeling. Abbreviations: F: fixation zone; E: endodermis; PA: nodule parenchyma; PE:
periderm; VB: vascular bundle. Bars = 100 µm (D,F), 50 µm (E,G).
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2.2. Drought Stress Affects Extensin Localization Pattern in Nodules and Floral Abscission Zone of
Yellow Lupine

Extensins (EXTs) are glycoproteins that enable cell-wall assembly and growth by cell
extension and expansion [28], e.g., during drought resistance, like in the case of wheat [29].
Therefore, we investigated the localization of these compounds under drought in nodules
and flower AZ (Figures 3 and 4). The results obtained by using two antibodies against
EXTs indicate that soil drought stress caused the accumulation of these compounds both
in nodules and the flower AZ of L. luteus (Figures 3 and 4). A strong signal after reaction
with JIM11 which identifies the isotype, IgG2c, was emitted by nodule parenchyma cells
(Figure 3C,D), but was not noticed in the fixation zone (Figure 3C). Such strong labeling
was not observed in the control nodule (Figure 3A,B). Some fluorescent spots were present
in the parenchyma (Figure 3A,B), while in the periderm, a signal was emitted only by thin
cell walls (Figure 3B). The fixation zone remained unlabeled both in the drought-treated
nodule (Figure 3A), as well as in the case of control (Figure 3C).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 27 
 

 

analysis, nodules were excised on the 48th day of cultivation. Western blot analysis was performed 

with AHB2 antibody (A). M–molecular mass marker. A band reactive to this antibody (of ~17 kDa) 

was scanned, densitometry analysis was made, and results are presented on (B) (100% was set for 

the control). Data are presented as averages ± SE. ** p < 0.01 (n = 3), Coomassie-Blue-stained gel as 

reference protein standard (C). The localization pattern of hemoglobin (AHB2 antibody) in stressed 

(F,G) and control (D,E) nodules. Images (E) and (G) are magnifications of regions of the fixation 

zone and parenchyma cells (white squares) from control and stressed nodules, respectively. Green 

fluorescence indicates AHB2 presence, whereas blue color corresponds to nuclei (DAPI staining). 

Red arrows denote strong fluorescent labeling. Abbreviations: F: fixation zone; E: endodermis; PA: 

nodule parenchyma; PE: periderm; VB: vascular bundle. Bars = 100 µm (D,F), 50 µm (E,G). 

2.2. Drought Stress Affects Extensin Localization Pattern in Nodules and Floral Abscission Zone 

of Yellow Lupine 

Extensins (EXTs) are glycoproteins that enable cell-wall assembly and growth by cell 

extension and expansion [34], e.g., during drought resistance, like in the case of wheat [35]. 

Therefore, we investigated the localization of these compounds under drought in nodules 

and flower AZ (Figures 3 and 4). The results obtained by using two antibodies against 

EXTs indicate that soil drought stress caused the accumulation of these compounds both 

in nodules and the flower AZ of L. luteus (Figures 3 and 4). A strong signal after reaction 

with JIM11 which identifies the isotype, IgG2c, was emitted by nodule parenchyma cells 

(Figure 3C,D), but was not noticed in the fixation zone (Figure 3C). Such strong labeling 

was not observed in the control nodule (Figure 3A,B). Some fluorescent spots were present 

in the parenchyma (Figure 3A,B), while in the periderm, a signal was emitted only by thin 

cell walls (Figure 3B). The fixation zone remained unlabeled both in the drought-treated 

nodule (Figure 3A), as well as in the case of control (Figure 3C). 

Further study of the involvement of EXT revealed the presence of isotype IgG2c in 

the flower AZ of L. luteus (Figure 3E–H). Labeling intensity after reaction with the JIM11 

antibody was weaker in the cell walls of AZ in the control plant (Figure 3E) than in the 

stressed ones (Figure 3G). Detailed analysis showed that the EXT in the control AZ was 

present in the cytoplasmic area (Figure 3F), while in the drought-treated AZ the signal 

was found mainly in the cell walls (Figure 3G). 

  

Figure 3. Drought stress changes the extensin (EXT) localization in nodules (A–D) and flower
abscission zone (AZ) (E–H) of Lupinus luteus L. Immunolocalization of EXT (using JIM11 antibody)
was performed in the nodules (C,D) and flower AZ (G,H) dissected from drought-treated plants
(25% water holding capacity, WHC) and control lupines (70% WHC). Control nodules and AZ are
presented on (A,B,E,F) respectively. For the analysis, tissue fragments were collected on the 48th day
of plant cultivation. Images (B,D) are magnifications of parenchyma regions from control and stressed
nodules, respectively. Images (F,H) show magnification of AZ region (white dotted lines) presented
on (E,G). Green fluorescence indicates EXT detection, whereas DAPI blue labeling corresponds to
nuclei. Red arrowheads indicate a strong signal. Abbreviations: F: fixation zone; E: endodermis
cells; PA: nodule parenchyma; PE: periderm; AZ: abscission zone; P: proximal region of AZ, D: distal
region of AZ. Bars = 50 µm (A,C), 25 µm (B,D), 40 µm (E,G), 20 µm (F,H).
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Figure 4. Extensin (EXT) distribution in nodules and flower abscission zone (AZ) cells of L. luteus L.
is modified by soil drought stress. Immunolocalization of EXT (using JIM20 antibody) was performed
in the nodules (C,D) and flower AZ (G,H) from drought-treated lupines (25% water holding capacity,
WHC). Control nodules and AZs (70% WHC) are presented on (A,B,E,F) respectively. For each
analysis fragments of nodules and AZs were collected on the 48th day of plant cultivation. Images
(B,D) are magnified regions of the fixation zone from control and drought-treated nodules (squares
on (A,C)). Images F and H show AZ region (white dotted lines) present in (E,G). EXT presence
corresponds to green staining (red arrowheads), while blue fluorescence indicates nuclei (DAPI
staining). Abbreviations: F: fixation zone; E: endodermis cells; PA: nodule parenchyma; PE: periderm;
VB: vascular bundle; A: abscission zone; P: proximal region of AZ; D: distal region of AZ. Bars = 50 µm
(A,C), 15 µm (B,D), 40 µm (E,G), 20 µm (F,H).

Further study of the involvement of EXT revealed the presence of isotype IgG2c in
the flower AZ of L. luteus (Figure 3E–H). Labeling intensity after reaction with the JIM11
antibody was weaker in the cell walls of AZ in the control plant (Figure 3E) than in the
stressed ones (Figure 3G). Detailed analysis showed that the EXT in the control AZ was
present in the cytoplasmic area (Figure 3F), while in the drought-treated AZ the signal was
found mainly in the cell walls (Figure 3G).

Subsequent analyses have shown that the signal characteristic for EXT isotype IgM ob-
tained after reaction with JIM20 was detected both in the nodules and flower AZ (Figure 4).
Strong differences in the fluorescent labeling between drought-treated (Figure 4C) and
control nodules (Figure 4A) have been observed. These EXTs were particularly detected
in the vascular bundle and parenchyma cells of stressed nodules (Figure 4C); however,
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single luminous spots appeared in the area of periderm and parenchyma cells in the control
sections (Figure 4A). The localization of the examined glycoproteins varied clearly in the
fixation zone cells of both variants. Drought causes the accumulation of the EXT epitopes
in the cell walls, particularly in the cellular junctions (Figure 4D), while the control fixation
zone was practically free of labeling (Figure 4B). The fluorescent signal indicating the
presence of this epitope of EXT formed a labeled area in the drought-treated AZ (Figure 4G).
A quite different localization pattern, reflected by some fluorescent points, characterized
the control AZ (Figure 4E). At higher magnifications, JIM20 immunofluorescence in the cell
wall of the AZ was shown (Figure 4F,H); however, the intensity was higher in the case of
stressed tissue in comparison to the control (Figure 4H).

2.3. Pectin Redistribution in Nodules and Flower Abscission Zone of Lupine Depends on Drought

As we have previously shown, soil drought stress caused the accumulation of pectin
in the flower AZ of L. luteus [8]. We have also found that the activation of this structure
upregulates PME and PG and leads to pectin de-esterification as a consequence, reflected
by an increased level of demethylated homogalacturonan [8]. In this paper, we show that
soil water deficit significantly increased the pectin level in the nodules too (Figure 5A) by
almost 70% in comparison to control. We further aimed to verify whether the methylation
level of these compounds changed in response to water stress. First, we performed staining
with ruthenium red (Figure 5B,C). As Figure 5 shows, the cell wall of the parenchyma of
drought-stressed nodules was stained more strongly (Figure 5C) when compared to control
nodules (Figure 5B), which suggests an accumulation of de-esterified pectin.
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Figure 5. Drought affects pectin distribution and esterification degree in nodules of yellow lupine.
Nodules were collected on the 48th day of cultivation from plants growing under soil drought (25%
water holding capacity, WHC), and those grown in the soil of optimal moisture (70% WHC). The total
pool of pectin, based on its absorbance, is presented on (A) (± SE, n = 3). Significant differences in the
stressed plant in comparison to control are ** p < 0.01 (Student′s t-test). De-esterified pectin staining
using ruthenium red in the control nodules (B) and drought-stressed ones (C). Black arrowheads
are used to mark the strong pink staining reflecting the accumulation of de-esterified pectins (B,C).
Abbreviations: F: fixation zone; E: endodermis cells; PA: nodule parenchyma. Bars = 50 µm (B,C).

2.3.1. Homogalacturonan

Bearing in mind the results of ruthenium red staining, in the next step we performed
comprehensive immunocytochemical analyzes to check the presence of pectins character-
ized by different methylation levels in nodules. We used monoclonal antibodies to detect
low- (31–40%) and non-methylated HGs (JIM5 Ab) or high-methylated (15–80%) HGs (JIM7
Ab) [30]. Differential localization of both types of pectin in drought-treated and control
nodules was found (Figure 6). Low-methylated pectin appeared in the control nodules;
specifically in the cell wall of the periderm (Figure 6A, insert), cells that surrounded vascu-
lar bundles, and cells of the fixation zone (Figure 6A). When the drought was applied, a
quite different localization pattern of de-esterified pectins was observed. These compounds
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were highly abundant in the periderm, while parenchyma remained unlabeled (Figure 6B).
The periderm of stressed nodules (Figure 6D) and the endodermis of control (Figure 6C)
were intensely stained after reaction with the JIM7 antibody. In the next step, we used
the same antibodies (JIM5 and JIM7) for quantitative dot blot analysis (Figure 6E,F). The
intense signal for both antibodies was higher in stressed nodules in comparison to control.
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Figure 6. Drought has an impact on pectin methylation in lupine nodules. Low-methylated (JIM5
antibody) and high-methylated (JIM7 antibody) pectin was localized in the nodules of yellow lupine
grown under drought conditions (B,D) and optimal soil moisture (A,C). Nodules were excised from
roots on the 48th day of cultivation. The insert was put in A to highlight the signal emitted by the
periderm area, while the insert in B shows fluorescence in the parenchyma and periderm region.
Green labeling indicates methylated pectin presence (marked by arrowheads), while blue fluorescence
corresponds to nuclei (DAPI staining). Abbreviations: F: fixation zone; E: endodermis cells; PA:
nodule parenchyma; PE: periderm cells; VB: vascular bundle. Bars = 50 µm (A,B), 100 µm (C,D). Dot
blot assay using the same primary antibodies as for the microscopy experiment (E). Analysis was
performed on control and drought-treated nodules. Dots were scanned and normalized; densitometry
values were quantified using ImageJ software (F). A value of 100% was set for the controls. Data
are presented as averages ± SE (n = 3). Significant differences in stressed-nodules versus control are
* p < 0.05 for JIM5 and ** p < 0.01 for JIM7 (n = 3).

2.3.2. Rhamnogalacturonan Type I

The flexibility and degree of stiffening of the cell walls in response to stress depend
on the content and/or mobility of galactans and arabinans, which belong to a group of
RGI [12]. Here, we investigated the tissue localization pattern of both types of pectins
in nodules and flower AZ of plants subjected to water stress (Figures 7 and 8). A signal
indicating the presence of galactans detected by the LM5 antibody was observed in the
fixation zone and endodermis of drought-treated nodules (Figure 7B). In control, single,
luminous points were detected only in the cell wall of the fixation zone, with the remaining
tissues unlabeled (Figure 7A, insert).

Furthermore, galactans were detected also in the drought-activated AZ of flowers
(Figure 7D). The fluorescence spread to the distal and proximal region of this structure.
Such a strong effect was not observed in the control AZ (Figure 7C). At higher magnification,
green labeling was visible in the peripheral regions of the cytosol of control AZ (Figure 7E).
Importantly, much stronger fluorescence in the cytosol and cell walls of drought-stressed
tissue was observed after reaction with the LM5 antibody (Figure 7F).
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Figure 7. Galactans are accumulated in nodules and flower abscission zone (AZ) of yellow lupine
following soil drought stress. Monoclonal antibody (LM5) was used to label (1-4)-β-D-galactans,
RG–I side chain in the nodules (B) and AZ (D,F) of stressed plants (25% water holding capacity
WHC), and also nodules (A) and AZ (C,E) of control lupines cultivated in optimal moisture (75%
WHC). Insert is a magnified region of the fixation zone presented on (A). For immunofluorescence
analyses, tissues were excised on the 48th day of cultivation. Green fluorescence indicates RG-I
localization (red arrowheads), while a blue signal is emitted by nuclei (DAPI staining). AZ area is
marked by white dotted lines on (C,D) and magnified on images (E,F). Abbreviations: F: fixation
zone; E: endodermis; PA: nodule parenchyma; AZ: abscission zone; P: proximal region of AZ, D:
distal region of AZ. Bars = 50 µm (A,B), 60 µm (C,D), 25 µm (E,F).
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Figure 8. Drought affects the localization of arabinan in nodules and flower AZ of lupine. Mono-
clonal antibody LM6 served to detect (1-5)-α-L-arabinans RG-I side chains in the nodules (C,D) and
flower AZs (G,H) of plants cultivated under drought conditions (25% water holding capacity, WHC).
Nodules (A,B) and AZs (E,F) from lupines growing in optimal moisture (75% WHC) were the control.
Material for analysis was collected from 48-day-old lupines. Green fluorescence indicates arabinan
presence (red arrowheads), whereas DAPI blue signal is emitted by nuclei. Images (B,D) are magnifi-
cations of fixation zone areas from (A,C) (white squares). White dotted lines on (E,G) correspond to
the AZ area, which is magnified precisely on (F,H), respectively. Additionally, a small square on E shows
an enlarged region of vascular tissue from the pedicel. Abbreviations: F: fixation zone; E: endodermis;
PA: nodule parenchyma; PE: periderm; VB: vascular bundle; AZ: abscission zone; P: proximal region of
AZ, D: distal region of AZ. Bars = 50 µm (A,C), 15 µm (B,D), 100 µm (E,G), 20 µm (F,H).
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2.3.3. Xylogalacturonan (XGA) Localization Is Regulated by Drought in Nodules and
Flower AZ

We checked the distribution of XGA in the nodules and flower AZs from lupines
subjected to drought. In stressed nodules, the signal for XGA antibody was emitted by the
fixation zone (Figure 9C,D) and periderm cells (Figure 9C). In turn, for control nodules,
fluorescence was noticed in the parenchyma (Figure 9A, insert), while the fixation zone
remained unlabeled (Figure 9B). The presence of the tested polysaccharide in the AZ was
not restricted to AZ cells. It was detected also in the distal and proximal parts of both
examined variants-control and drought (Figure 9E,G). A high green signal was observed in
the cytosolic region and intracellular spaces of stressed AZ (Figure 9H). As Figure 9 shows,
the LM8 labeling was much weaker in AZ cells from control plants (Figure 9F).
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Figure 9. Soil drought stress changes xylogalacturonan (XGA) localization in the nodules and flower
abscission zone (AZ) of yellow lupine. Monoclonal antibody (LM8) was used to label XGA in the
nodules (C,D) and AZ (G,H) of stressed plants (25% water holding capacity, WHC). Reactions were
made also for control nodules (A,B) and AZ (E,F) from plants cultivated under optimal moisture (75%
WHC). Material for analysis was harvested on the 48th day of lupine cultivation. Green fluorescence
corresponds to XGA localization, while blue labeling is visible in the presence of nuclei after DAPI
staining. (B,D) are magnifications of regions of fixation zones. Left insert on (A) shows the parenchyma
region. Enlarged regions of AZ (marked by white dotted lines on (E,G) are presented on (F,H). Red
arrowheads indicate a strong signal emitted from different compartments. Abbreviations: F: fixation
zone; E: endodermis; PA: nodule parenchyma; PE: periderm; VB: vascular bundle; P: proximal region of
AZ, D: distal region of AZ. Bars = 50 µm (A,C), 25 µm (B,D), 80 µm (E,G), 40 µm (F,H).
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2.4. Modification in Hemicellulose Composition in AZ cells under Drought Is Reflected by Changes
in Xyloglucan Localization

Xyloglucan (XyG) is the most abundant hemicellulose in plants [17]. Here, we per-
formed the immunocytochemical analysis with the LM24 antibody detecting the XLLG
motif of XyG in the cell walls (Figure 10). The water deficit in the soil caused the accumu-
lation of XyG in all tissues of the nodules—the fixation zone, endodermis, parenchyma,
and periderm (Figure 10B). A strong signal was emitted especially by the cell wall of the
parenchyma and periderm region (Figure 10B). Much weaker fluorescence was observed
in the sections made from the control nodule (Figure 10A). When we analyzed the flower
AZ, we noticed that the whole region is labeled, both in control (Figure 10C) and stressed
tissues (Figure 10D). At higher magnification, XyG occurs in the cell walls (Figure 10E,F).
Furthermore, clusters emitted fluorescence from the cytoplasm of drought-treated AZ cells
(Figure 10F). Lower xyloglucan content was visible in the flower AZ of plants growing
under optimal moisture conditions (Figure 10E).
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2.5. Polysaccharides are Strongly Accumulated in Nodules and Flower AZ of Yellow Lupine 

under Drought Conditions 

Figure 10. Nodule- and flower-AZ-specific distribution of xyloglucan (XyG) in yellow lupine sub-
jected to drought. LM24 antibody was used to detect XyG in nodules (B) and AZ (D,F) collected
on the 48th day of lupine cultivation under drought stress (25% water holding capacity, WHC).
Control sections were prepared from nodules (A) and AZ (C,E) of plants growing in the soil of
optimal moisture (75% WHC). Green and DAPI-blue fluorescence indicate XyG and nucleic acid
staining, respectively. AZ region is limited by white dotted lines (C,D). Enlarged regions of AZ are on
images (E,F). Red arrowheads indicate the areas characterized by strong fluorescence. Abbreviations:
F: fixation zone; E: endodermis; PA: nodule parenchyma; PE: periderm; VB: vascular bundle; AZ:
abscission zone; P: proximal region of AZ, D: distal region of AZ. Bars = 30 µm (A,B), 100 µm (C,D),
25 µm (E,F).
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2.5. Polysaccharides Are Strongly Accumulated in Nodules and Flower AZ of Yellow Lupine under
Drought Conditions

These immunofluorescent observations prompted us to more precisely analyze the
influence of drought on the polysaccharide content in both types of tissues. We applied the
immuno-dot-blot test using LM5, LM6, LM8, and LM24 antibodies (Figure 11). Despite
substantial variations, the signal for all antibodies in drought samples was much stronger
when compared to non-stressed control, both for nodules (Figure 11A,B) and flower AZs
(Figure 11C,D). Nevertheless, it seems that the presence of a particular polysaccharide
is tissue-specific. For instance, in the case of nodules, the strongest signal was emitted
after reaction with LM8 Ab recognizing XGA, but it did not show such reactivity for AZ.
Considering treatment with drought, the antigens were accumulated more in nodules than
in AZ, apart from LM6, which binds to arabinose-rich pectins.
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Figure 11. Pectin antigens are differentially present in the drought-treated nodules (A) and flower
abscission zone (AZ) (C) of lupine. Immuno-dot-blot by using LM5, LM6, LM8, and LM24 antibodies
was applied to detect galactans, arabinans, xylogalacturonans, and xyloglucans, respectively. The
same primary antibodies as for the microscopy experiment were used. Tissues were collected on the
48th day of lupine cultivation under drought stress (25% water holding capacity, WHC) or plants
growing in the soil of optimal moisture (75% WHC, control). The same amount of proteins (2.5 µg)
was loaded for each dot. Dots were scanned and normalized densitometry values were quantified
using ImageJ software for nodules (B) and AZ (D) tissues. A value of 100% was set for the controls.
Data are presented as averages ± SE (n = 3). Significant differences in stressed tissues versus control
for each antibody are * p < 0.05 and ** p < 0.01 (n = 3).

2.6. Fixation Zone-Specific Arabinogalactan Presence Is Disrupted in Nodules under Drought

Therefore, in the next step, we checked the impact of drought on the localization of arabino-
galactan proteins (AGPs) in the structures responsible for bacteria–lupine interactions—nodules.
We used JIM13 [31] and JIM8 [32] antibodies (Figure 12). It seems that JIM13 binds more ef-
fectively than the other tested antibody since the fluorescent signal is higher (Figure 12A,B).
When we observed tissues after reaction with JIM8, the labeling was characterized for the
vascular bundle of both stressed and control nodules (Figure 12C,D). In turn, the fixation
zone was labeled strongly in drought-treated nodules when we compared it to the control
(Figure 12C,D). A similar relationship was noticed when we used the JIM13 antibody;
however, the labeling was even stronger (Figure 12A,B).
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Figure 12. Water deficit stress affects arabinogalactan protein (AGP) localization in yellow lupine nod-
ules. Immunofluorescence localization of different AGPs epitopes was made using JIM13 (A,B) and
JIM8 (C,D) antibodies. Reactions were made for the control nodules (A,C) and those excised from
plants growing under drought conditions (B,D). Tissues were collected from 48-day-old lupines.
AGP presence corresponds to green fluorescence, while blue labeling indicates nuclei stained with
DAPI. Abbreviations: F: fixation zone; E: endodermis cells; PA: nodule parenchyma; VB: vascular
bundle. Bars = 75 µm.

3. Discussion

Plants have evolved multiple strategies to counteract the negative impact of drought,
such as molecular, biochemical, morphological, and physiological modifications which
enable them to minimize the effects of stress and maintain proper homeostasis [33,34].
Knowledge about this phenomenon should be understood especially in economically
important species, among them Lupinus luteus. The negative correlation between the yield
of lupine and drought is a good reason to study the mechanisms triggered by this stress.
Although nodules are important drought sensors, their response to water deficit is still
poorly understood. At present, we have shown that the treatment of yellow lupine with
a two-week drought in the stage of formation of generative organs, when plants have an
increased demand for nutrients and water, causes dysfunction of the root nodules [5] and
activation of AZ in flowers, leading to their separation [5,8]. As a consequence, the yielding
of lupine is strongly affected. Given the negative impact of water deficit on nodulation
and flower maintaining, it is crucial to examine the changes evoked by this stress both in
nodules and the flower AZ.

Modifications characteristic for drought action were described in our previous analyses per-
formed on yellow lupine nodules [4] (and in the present Supplementary Figure S1), and the flower
AZ [5] and have been confirmed by the increasing level of an osmoprotectant—proline—both
in the nodules (Figure 1) and floral AZ [8]. In the root, the highest level of proline was
noted in the lower part, in which root hairs responsible for water uptake are formed. Such
synthesis and accumulation of proline in the cytoplasm minimizes the damage caused by
water deficiency [35].
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Drought stress disrupts not only the structure of nodules [4] but also leghemoglobin
activity [3]. Our results show a decrease in the level of hemoglobin in lupine nodules
under drought stress, which supports the localization of this protein (Figure 2) after using a
heterologous antibody to non-symbiotic AHB2, with a clear reactivity in lupine. Generally,
in plants, two hemoglobin groups have been identified: symbiotic and non-symbiotic. The
first of them are present in the nodules of Fabaceae plants [36]. These hemoglobins are
involved in N2 fixation; however, they are not required for general growth developmental
processes [37]. In turn, non-symbiotic hemoglobins are present in various tissues of many
plant species, especially crops [38,39]. Non-symbiotic hemoglobins are divided into two
classes: Hb1 and Hb2; Hb1 is characterized by high affinity to O2 and is involved in the
hypoxia response [40], while the Hb2 role has not yet been described. It is only known
that Hb2 participates in the response to cold stress and is associated with the functioning
of young, active tissues with high energy requirements [41,42]. Research conducted on
A. thaliana shows that AHB2 has a comparable affinity for O2 as leghemoglobin; therefore,
its role in facilitating oxygen diffusion cannot be ruled out [43]. As shown here, the presence
of non-symbiotic AHB2 hemoglobin in the plant tissue, as well as in the nodules of lupine
under optimal water conditions, might suggest that this hemoglobin is involved in the
proper functioning of the nodule, which requires a high amount of energy for metabolic
activity. Such hypothesis can be supported by the strong signal emitted by the control
fixation zone (Figure 2) and the decrease in N2 fixation in drought-stressed nodules that
was observed previously [4].

The cell wall capacity of being stretched allows the plant cell to maintain turgor
pressure, which is seriously disrupted under water stress conditions [44]. Thus, the cell
wall strengthens the plant body and plays a key role in the growth processes, cellular
differentiation, and communication. Cell wall components, e.g., extensins, pectins such as
homogalacturonans (low- and high-methylated), rhamnogalacturonan (galactan and arabi-
nan), xylogalacturonan, hemicelluloses (xyloglucan), and arabinogalactans are involved in
these processes [12].

Generally, EXTs play a role in biotic and abiotic stress response, e.g., by pathogen
attack, during which EXTs provide mechanical protection against pathogen invasion [45];
heavy metal ions; or mechanical wounding [46–49]. Furthermore, EXTs as glycoproteins
enriched in arabinose might help to prevent the drying-out of tissues when water po-
tential in cells is reduced [50]. Thus, immunocytochemical analyses of drought-resistant
plants—Myrothamnus flabellifolia, Craterostigma plantagineum, Xerophyta viscosa, Xerophyta
schlecterii, Xerophyta humilis, and Eragrostis nindensis—have revealed that their cell wall is
enriched in pectins and EXTs [51]. Given these facts, we aimed to precisely localize EXTs
under drought stress in nodules of L. luteus and following flower abscission using JIM11
and JIM20 antibodies. Castilleux et al. [46] proposed the epitope structure recognized by
the JIM11 and JIM20 mAbs based on immunocytochemical and immunoblotting analyses
of A. thaliana mutants disabled in EXT arabinosylation and wild-type roots. According to
their observations, the JIM11 epitopes would contain the third arabinose and/or following
arabinose residues in the glycan moiety of EXT, while the JIM20 epitope may include part or
even the entire structure of the three first arabinoses and galactoses from the glycan moiety
of EXT. Here, we found that water deficit induces a strong increase of JIM11 (Figure 3) and
JIM20 (Figure 4) labeling in nodules, with differential detection, in the parenchyma cell wall
and vascular bundles, respectively. Such distribution in stressed lupine is quite different
than in other species under various stress, e.g., biotic, as described in the available literature.
Thus, the defense reaction of Benincasa hispida to Fusarium caused EXT accumulation (de-
tected by JIM11) in the cortex, rhizodermis, endodermis, and phloem, while JIM20 epitopes
were present in the cortex, endodermis, phloem, and vascular parenchyma [52]. EXTs local-
ized in parenchyma cells of L. luteus nodules under drought might play a role as a diffusion
barrier, helping to protect the N2 fixing enzymatic apparatus against inactivation [53,54].
The different localization of both EXTs in the flower AZ of L. luteus (Figures 3 and 4) could
be related to their distinct role in stress response in this tissue. JIM11 recognized the EXT
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isotype present in the cell wall of drought-treated AZ (Figure 3), while the EXTs recognized
by JIM20 localized both in the cell wall and cytosolic regions (Figure 4). Given the obtained
results, we supposed that EXT present in drought-treated AZ is on the one hand responsible
for keeping water in cells under drought, but on the other hand, EXTs could be involved in
the cell wall remodeling processes required for AZ activation and organ abscission, both
stretching and stiffening [55].

One of the adaptive features of plants living in stressful conditions is the ability to
change the degree of pectin methylation in the cell wall [56,57]. The higher the esterification,
the lower interaction of pectins with Ca2+ to form gels. Due to the presence of Ca2+, de-
esterified pectins form a cross-link that stabilizes and mechanically strengthens the cell
wall [58]. Changes in pectin methylation under drought have been observed in the roots
of Pisum sativum, Medicago truncatula, and Beta vulgaris, and the leaves of Zea mays and
Populus L. cambium [59–63].

Intensive pectin reorganization in response to drought has been observed previously
in the flower AZ of L. luteus [8]. Here, we argue that a deficit of water in the soil leads to
the accumulation of pectins in nodules (Figure 5) and that a change in their methylation
degree also occurs (Figure 6). The stressor upregulates the low- and high-methylated
pectins, which are differentially localized in nodule tissues (Figure 6). A similar tendency
has been demonstrated in Craterostigma wilmsii [64]. In lupine, low-esterified pectins are
observed in the parenchyma and periderm of nodules, whereas highly-esterified ones
are detected mainly in the periderm (Figure 6). We may speculate that the degradative
processes triggered by stress may involve cell wall destruction starting at the external part
of nodule tissues—the periderm. In this regard, pectin might be involved in the thickening
and stiffness of cell walls, thus promoting the formation of a protective layer [65,66].
Changing localization patterns of both high- and low-methylated pectin suggests that
drought stress is accompanied by a modification of the methyl-esterification degree in
different parts of the nodules, which could modify both the mechanical properties of their
cell wall, their plasticity, and the possibility of infection by bacteria. We also show here that
in lupine, the response of the cell wall of nodules and flower AZ to drought is reflected by
accumulation (Figure 11) and the changing localization of galactans (Figure 7) and arabinans
(Figure 8). Generally, arabinans are present mostly in young cells, while galactans have
been demonstrated to be abundant in older ones. However, our observations, as well as
those made on P. sativum and M. truncatula, indicate that this relationship could be species-
specific [61]. In yellow lupine, the signals for both epitopes (arabinans and galactans) in
mature control nodules are weak and are restricted to the cell wall of the fixation zone
area (Figures 7 and 8). In P. sativum and M. truncatula galactans labeled with LM5 were
detected in the meristematic cells of nodules, while in the mature structures, the signal
was emitted only by the endodermis and the vascular bundles [61]. Drought in lupine
caused an accumulation of galactans and arabinans in the whole region of the nodule
(Figures 7 and 8). Both molecules are very mobile and flexible under changing hydration
of cells [67]. Indeed, it has been shown that arabinans can be involved in cell rehydration
after drought in potato [68]. Plants that are tolerant to desiccation have been described to
be rich in arabinan [51]. Thus, the remodeling of cell walls involving the appearance of
galactan and arabinan in lupine nodules under drought might be related to rehydration.
Furthermore, a proportion of galactose and arabinose residues are also important for the
structure and functions of EXT [28], which are accumulated in nodules under drought
(Figures 3 and 4). Considering the presence of galactan and arabinan in the AZ of different
species, species-specific changes have been described. Thus, both are accumulated in the
flower AZ of tomato following abscission [69]. The opposite relationship occurs in Euphorbia
pulcherrima (poinsettia), in which the content of galactans and arabinans decreases under
flower abscission, possibly due to the upregulated activity of hydrolytic enzymes such as
galactanases and arabinases [70]. Interestingly, an accumulation of galactans and arabinans
was demonstrated in the AZ of citrus fruit when a precursor of ethylene was applied [71].
We have also proven a strong association of drought-related events with ethylene, directly
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in the flower AZ [5]. Thus, ethylene is likely responsible for the accumulation of arabinans
and galactans in response to drought. In our present study, galactans were specifically
located in the cell walls (Figure 3), while arabinans were present either in the cell wall or
inside the cell (Figure 4). We believe that these interesting observations are related to the
synthesis of the components that build the cell walls formed between cells after divisions,
which are characteristic for flower AZ activation in lupine [5,72]. Arabinans are possibly
involved in the regulation of the distance between the HG chains, and in this way, they
prevent HG interactions with Ca2+ [73]. The changing turgor of the cell, induced by stresses
like drought, results in the high mobility of arabinans and galactans, which can fill free
spaces formed by the rearrangement of other components. Arabinan has been suggested
to ensure the flexibility of the structure of the cell wall during changes of cell volume and
shape in A. thaliana, Zea mays, and Phaseolus vulgaris roots infected by a cyst nematode [74].
In turn, Solanum tuberosum mutants with a reduced content of arabinans and galactans are
characterized by the lower elasticity of cell walls and their stiffness [75]. In this context,
the accumulation of both arabinans and galactans reported here may indicate that the
appearance of these compounds is induced by a water deficit reaction. In line with these
findings is also the statement that synthesized arabinans and galactans can maintain cell
integrity while protecting plant tissues shortly after the organ is abscised. However, it is
not excluded that both kinds of molecules might interact with other cell wall components.
Arabinan chains mediate the binding of cellulose, which provides mechanical force [76].

The changing level of XGA contributes strongly to the reorganization of plant cell
wall structure [14], which could accompany drought-related events. The LM8 antibody
recognizes XGA, which has an HG backbone with xylose residues linked by β-(1–3) bonds
to galacturonic acid [77]. In yellow lupine, drought leads to the accumulation of LM8-
epitope-containing XGA in the external part of nodules (Figure 9). Research conducted on
P. sativum shows that the synthesis of XGA in the outer layers of root cells and nodule cortex
accompanied drought [59]. The XGA appearing in the periderm of nodules could constitute
the first protective barrier and thus may be an element of the mechanism triggered in
response to drought stress.

There are several studies reporting modification of pectin composition following
organ abscission processes taking place in the AZ cells of different species [69,70], and
also in lupine [8]. However, only Bowling et al. [78] paid attention to the specific form
of pectin–XGA contribution in abscission-related processes in oil palm. Here, we used
LM8 antibody to check the localization of XGA in the flower AZ of lupine in response to
drought (Figure 9). In contrast to the results of Roongsattham et al. [79] who noted the
presence of XGA only after AZ cell separation, we observed upregulation of XGA in AZ
cells when AZ is already induced to abscission (Figure 9). Xylose from XGA could prevent
the Ca2+-dependent interactions between HG; however, the precise mechanism of its action
is still unknown [13]. This scenario is possible in drought-treated lupine AZ, given that we
used the LM8 Ab, which binds to an epitope of XGA possibly substituted with a xylose [30].
Further support comes from recent analyses by us, showing that drought modifies the
methyl-esterification of HG controlled by PME in AZ of lupine flowers [8].

The main hemicellulose in dicots is XyG, which interacts with celluloses via hydrogen
bonds [19,20]. Furthermore, XyG is secreted by root cells into the surrounding soil, where
it acts as an efficient molecule in the formation of soil aggregates [80]. Nodulation requires
the hydrolytic activity of nodulation outer proteins (NopAA), which help to indicate safe
nodulation and are responsible for maintaining a low level of XyG, adequate enough for the
initiation of infection. This could explain the low content of this molecule in nodules under
normal, control conditions (Figure 10). The strong signal related to XyG appearance in the
fixation zone of stressed nodules of L. luteus could represent evidence for the disturbed
plant–pathogen interaction. Furthermore, the accumulation of XyG in parenchyma and
periderm cells could be linked to cell wall stiffening. For instance, during heat stress the
large amount of XyG could be hydrolyzed by xyloglucan endotransglucosylase/hydrolase
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(XTH), consequently causing a strengthening of cell walls, which is helpful in the adaptation
to stress [81].

Drought also causes the accumulation of XyG in the cell walls of the whole flower AZ
area (Figure 6). According to the literature, xyloglucans could be localized in the cell wall
matrix [82]. They are strongly accumulated in the induced AZ of tomato and poinsettia
flowers; however, during tomato fruit abscission, no AZ-specific cell wall polysaccharide
deposition was detected [69,70]. Authors have proposed that xyloglucans can be substrates
for cell wall degrading enzymes and/or act as protective substances that appear in response
to AZ activation [69,70]. Transcripts corresponding to XTH, xyloglucan galactosyltrans-
ferase, xylogalacturonan beta-1.3-xylosyltransferase, glucan endo-1,3-beta-glucosidase, and
expansins (EXPs) are accumulated during the abscission of rosa flower petals, Sambucus
nigra leaves, and lupine flowers [83,84]. In the cell wall, cellulose microfibrils are linked
by XyG, and xyloglucan endotransglucosylase (XET) rearranges their structures in a trans-
glycosylation reaction, based on the hydrolytic cleavage of a glycosidic bond within one
XyG molecule, and then transferring and joining its end to another fragment. The expansin
located in the cell walls interrupts the formation of non-covalent bonds between cellulose
microfibrils, which results in loosening the cell wall structure enabling its remodeling and
cell enlargement [85]. There are also data confirming the possibility of HG binding to XyG
via RG-I, including arabinans and galactans [86–88]. To sum up, the observed changes in
XyG localization in the flower AZ of lupine under drought suggest that these compounds,
possibly synthesized de novo, could be built in the polysaccharide cell wall matrix and/or
might be exposed to the action of hydrolytic enzymes, e.g., XET or EXP.

The AGPs are a family of hydroxyproline-rich glycoproteins involved, e.g., in the
response to abiotic and biotic stress factors [89], root growth and differentiation [90–92],
and interactions with microorganisms [93–95]. During symbiotic host/microbe contacts,
AGPs seem to interact with plant membrane via glycosylphosphatidylinositol [96]. The
localization pattern of JIM13 and JIM8 observed here indicates that these epitopes may
appear in different ways in lupine in response to drought (Figure 12). The appearance
of JIM13 in the fixation zone of the L. luteus nodule might indicate its involvement in the
regulation of symbiosis, similarly to the AGPs detected by JIM13 in Alnus, which were
localized following early nodulation stages of nitrogen-fixing actinobacteria and after the
formation of the infection thread [97]. This epitope is seemed not to be sensitive to drought
in lupine, since the localization with JIM13 is unchanged in the fixation zone area after
stress (Figure 12). Contrarily, the different localization patterns of the JIM8 epitope in
drought-stressed and control nodules of lupine (Figure 12) could indicate that these AGPs
take part in the reorganization of the cell wall in response to drought, which helps to
protect roots against stress. Generally, AGPs are localized in different tissues, including
developing vascular bundles and neighboring cells [98,99], which might suggest that they
are involved in the regulation of plant growth, development, and architecture. Thus, the
appearance of AGPs in the vascular system in yellow lupine root nodules could be related
to their function in the formation and morphogenesis of the vascular system in the root area.
The precise mechanism of this function is not yet known, although evidence suggests that
AGPs are involved in cell elongation and growth [100] since they affect the organization of
microtubules [101].

In the presented paper, we determined for the first time in lupine the drought-
associated modifications of cell wall structure including cell wall compounds. Moreover,
we have identified proteins or protein families responsible for such cell wall remodeling in
root nodules and flower AZ of lupine. Cellular analyses presented here help to identify the
precise tissues involved in the modifications, and also suggest a number of potential actors
(genes or pathways) for this remodeling, as a basis for further biochemical and genetic
complementary analyses. Future perspective could include, e.g., the use of gene editing
or mutants characterized by delayed/overexpression of specific genes like those involved
in proline synthesis, leghemoglobin, PME, and expansins, etc., as well as QTL or GWAS
analyses. Comparative transcriptomic and proteomic approaches have also demonstrated
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their use to advance drought stress understanding [102–104]. These “-omic” approaches
could be focused on the tissues identified here as targets for remodeling and surely will
allow the identification of differentially expressed genes involved in the process, which
likely will serve to validate the present observations. These analyses will also serve to
identify whether such differentially expressed genes are specific to drought, or common
with other types of stresses, helping to find both already known or new players acting in
this condition. Identification of factors that appear in both tissues under stress enables
the further searching and testing of the substances that can modulate the activity of these
compounds. Specific immunostainings here mentioned may be also used as assessing tools
to assist in the selection of varieties and cultivars with enhanced tolerance to drought stress
within breeding programs. As a consequence, it could improve the tolerance of crops to
drought—the greatest problem for 21st-century plant breeding.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

The experiments were performed on yellow lupine (Lupinus luteus L.). Seeds of taper
cv. provided by Poznan Plant Breeding (Tulce, Wiatrowo, Poland) were sown and the
plants were cultivated under the controlled conditions described by Frankowski et al. [3].
Lupines were watered for 5 weeks and during this time water holding capacity (70% WHC)
was maintained [105]. After that, some of the plants were subjected to conditions of 25%
WHC, while control plants were kept watered at 70% WHC. All analyses were made on
root nodules and flower AZ fragments (Supplementary Figure S1) collected on the 48th day
of development. We considered anatomical and morphological criteria described in our
previous papers regarding the drought-dependent response of nodules and flower AZ [4,5].
For determination of proline, roots were divided into the upper, lower part, and nodules,
which were excised gently with a razor blade under a binocular microscope. For the
remaining analyses, only nodules were used. In turn, flower AZs were dissected precisely
1 mm above the flower bases (the distal AZ—a fragment of pedicel) and 1 mm below (the
proximal part of the AZ—a fragment of stem). The experimental variants include nodules
and AZ fragments from control (well-watered plants) and drought-stressed lupines (25%
WHC). As we have recently shown, drought is a factor causing specific changes in nodules
that affect their physiological activity–nitrogen fixation [4]. Furthermore, a water deficit in
soil activates flower AZ, which leads to organ separation [5].

4.2. Determination of Proline and Pectin Content

Proline was determined using the modified methodology of Ábrahám et al. [106].
All chemicals were provided by Sigma-Aldrich, St. Louis, MO, USA. Plant tissue (~0.5 g)
was homogenized in 3% sulfuric acid (5 µL/mg fresh weight). The obtained extract was
centrifuged at 18,000× g (5 min.). Subsequently, 100 µL of supernatant was mixed with
0.1 mL of 3% sulfosalicylic acid, 0.2 mL of glacial acetic acid, and 0.2 mL of acidic ninhydrin.
The reaction mixture was further incubated at 96 ◦C for 30 min and then cooled on ice.
After that, samples were mixed with 1 mL of toluene by vortexing. The absorbance of the
organic phase was read at 520 nm. Proline concentration was calculated in reference to
a calibration curve and expressed as µg proline g−1 fresh weight. Pectins were analyzed
following the protocol of Liu et al. [107] which has been recently applied by us in lupine [8].

4.3. Protein Isolation, Dot Blot Assay, and Western-Blotting

Plant material (~0.4 g) was ground with liquid nitrogen and the obtained powder
was mixed with 1 mL of extraction buffer (50 mM Tris-HCl buffer, pH 8.0, 300 mM NaCl,
10% v/v glycerol, and 1 mM EDTA). Subsequently, the samples were centrifuged at 4 ◦C
for 10 min and the supernatant was frozen (−20 ◦C) for the next steps. The total pool of
proteins was assessed by the Bradford method [108] and was adjusted to 0.5 µg/µL with
extraction buffer. Crude protein extract was used for dot blot analysis. In brief, 5 µL of
extract (2.5 µg proteins) were loaded in duplicate directly onto nitrocellulose membranes
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(Protran BA 83, Whatman GmBH), which were further blocked with 1.5 % bovine serum
albumin (BSA) in TBS buffer pH 7.5 (150 mM NaCI, 20 mM Tris). After that, membranes
were washed for 10 min with TBS (3 times). Then primary, monoclonal rat antibodies (JIM5,
JIM7, LM5, LM6, LM8, LM24) provided by PlantProbes (Univeristy of Leeds, Leeds, UK) in
1:100 dilutions in TBS were served at room temperature for 24 h. The membranes were then
washed 3 times (10 min. each) in TBS and subsequently incubated at room temperature
in chicken anti-rat IgG, horseradish peroxidase (HRP) conjugated (AS101224, Agrisera,
Vännäs, Sweden) in 1:10,000 dilutions in TBS. Epitopes were detected with Agrisera ECL
SuperBright (AS16, Agrisera, Vännäs, Sweden) and scanned with a ChemiDoc™ Touch
Imaging System.

For Western blot analysis, 30 µg of denatured proteins were separated on 4–12%
(w/v) polyacrylamide gels (SDS-PAGE) in duplicate. After electrophoresis, one gel was
stained with Coomassie Brilliant Blue while the second was subjected to electroblotting to a
nitrocellulose membrane. To prevent the nonspecific binding of antibodies, the membrane
was blocked with 1% BSA (Sigma-Aldrich, St. Louis, MO, USA) solution in TBS buffer
pH 7.5 for 1 h at room temperature. Hemoglobin was detected using AHB2 antibody
(AS132745, Agrisera, Vännäs, Sweden) diluted 1:1000 in 0.5% BSA in TBS buffer. The bound
antibodies were detected with polyclonal secondary anti-rabbit antibody HRP diluted
1:10,000 in TBS buffer. The obtained protein complexes were detected using the Western
Blot ECL kit (Agrisera, Vännäs, Sweden). Reactions were performed three times (n = 3) and
each membrane was scanned for densitometry analysis.

4.4. Immunohistochemistry

For immunocytochemical reactions, the plant tissue fragments were fixed using a multi-
step procedure. All chemicals were provided by Sigma-Aldrich, St. Louis, MO, USA. Fresh
material was placed immediately in a fixative solution composed of 4% paraformaldehyde,
0.25% glutaraldehyde in 1× PBS buffer (pH 7.2) with the addition of 1% 1-ethyl-3-(3′-
dimethylaminopropyl)carbodiimide and incubated for 12 h at 4 ◦C according to [109]. Next,
tissues were rinsed, dehydrated, supersaturated with BMM resin, and polymerized as
described in [109] and [8]. The material was then sealed in BEEM capsules and polymerized
at low temperature (−20 ◦C) under a UV lamp for 4 days. The tissue was cut into semi-
thin sections (approx. 1.5 µm) using an ultramicrotome (Leica UTC Ultracut Microtome,
Leica, Wetzlar, Germany) and placed on glass slides. After that, the resin was removed
with acetone twice for 10 min then in water and in PBS pH 7.2. For general structural
observations, sections were stained with 0.05% toluidine blue (Sigma-Aldrich, St. Louis,
MO, USA), while un-esterified pectin tissues were stained with 0.02% (w/v) ruthenium
red (Sigma-Aldrich, St. Louis, MO, USA) solution, which we have applied previously in
lupine [110].

4.5. Immunolocalization of Cell Wall Components

Selected plant cell components were visualized by immunocytochemical reactions
on resin-free sections with specific primary antibodies provided by Agrisera (AHB2, Cat.
No. AS132 745) or PlantProbes (Univeristy of Leeds, Leeds, UK), as follows: JIM5 (Cat.
No. JIM5), JIM7 (Cat. No. JIM7), JIM11 (Cat. No. ELD030), JIM20 (Cat. No. ELD033),
JIM8 (Cat. No. ELD024), JIM13 (Cat. No. JIM13-050), LM5 (Cat. No. LM5-050), LM6
(Cat. No. LM6-050), LM8 (Cat. No. LM8), LM24 (Cat. No. LM24). Antibodies were
diluted (1:20) in 1% BSA in 1× PBS buffer (pH 7.2). The sections were incubated overnight
at 4 ◦C. Next, sections were washed 3 times with 1× PBS buffer (pH 7.2) and incubated
with secondary antibodies (goat anti-rat conjugated with FITC, Abcam, Cambridge, UK;
goat anti-rabbit IgG DyLight 488 conjugated against AHB2, AS09 633, Agrisera, Vännäs,
Sweden), 1:500 diluted in 1× PBS buffer. All reaction steps were conducted following our
optimized protocol [109]. DNA was stained with 4,6-diamidino-2-phenylindole (DAPI)
(Sigma-Aldrich, St. Louis, MO, USA) according to the producer′s recommendation. The
results were documented using a fluorescent microscope DM6000B (Leica Microsystems
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GmbH, Wetzlar Germany). Control reactions were performed by omitting the incubation
step with primary antibodies (Supplementary Figure S2).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23031680/s1
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