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Abstract

Background and Aim: Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) family together
with adrenomedullin (AM) and amylin. It has a wide distribution in the central nervous system (CNS) especially in
hypothalamic paraventricular nucleus (PVN). Cardiac sympathetic afferent reflex (CSAR) is enhanced in chronic heart failure
(CHF) rats. The aim of this study is to determine the effect of IMD in the PVN on CSAR and its related mechanisms in CHF
rats.

Methodology/Principal Findings: Rats were subjected to left descending coronary artery ligation to induce CHF or sham-
operation (Sham). Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were recorded.
CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Acute experiments were carried
out 8 weeks after coronary ligation or sham surgery under anesthesia. IMD and angiotensin II (Ang II) levels in the PVN were
up-regulated in CHF rats. Bilateral PVN microinjection of IMD caused greater decreases in CSAR and the baseline RSNA and
MAP in CHF rats than those in Sham rats. The decrease of CSAR caused by IMD was prevented by pretreatment with AM
receptor antagonist AM22-52, but not CGRP receptor antagonist CGRP8-37. Ang II in the PVN significantly enhanced CSAR
and superoxide anions level, which was inhibited by PVN pretreatment with IMD or tempol (a superoxide anions scavenger)
in Sham and CHF rats.

Conclusion: IMD in the PVN inhibits CSAR via AM receptor, and attenuates the effects of Ang II on CSAR and superoxide
anions level in CHF rats. PVN superoxide anions involve in the effect of IMD on attenuating Ang II-induced CSAR response.
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Introduction

Cardiac sympathetic afferent reflex (CSAR), a sympatho-

excitatory reflex, can be induced by stimulation of cardiac

sympathetic afferents with exogenous or endogenous chemicals

from myocardium during myocardial ischemia [1,2]. Chronic

heart failure (CHF) is accompanied by the enhanced sympathetic

nerve activity (SNA) [3–5], and the enhanced CSAR partially

contributes to the sympathetic activation in CHF rats [5–7].

Suppression of sympatho-excitation has been considered as a

strategy in treating patients with CHF [8,9], so the inhibition of

CSAR may be a good target for decreasing sympathetic activation

in CHF.

Intermedin (IMD) is widely distributed in peripheral organs and

central nervous system (CNS) and belongs to calcitonin/calcitonin

gene-related peptide (CGRP) family together with adrenomedullin

(AM) and amylin [10–13]. IMD, CGRP and AM share the

receptor system including calcitonin receptor-like receptor

(CRLR) and receptor activity-modifying proteins (RAMPs). The

CRLR/RAMP1 complex forms the CGRP receptor, whereas

CRLR/RAMP2 or CRLR/RAMP3 complex forms the AM

receptor [10]. In the present, no unique receptor has been

identified for IMD, but it can non-selectively bind to all three

CRLR/RAMP complexes. CRLR and RAMPs have been found

in the paraventricular nucleus (PVN) of hypothalamus, and there

is abundant IMD-like immunoreactivity in the PVN including

both parvocellular and magnocellular cells [11,14–16].

PVN is an integrative site in regulating sympathetic outflow and

cardiovascular activity [17,18], and it is also a component of

central neurocircuitry of the CSAR [19,20]. Previous studies have

shown that PVN is involved in excessive sympathetic activation

and enhanced CSAR in CHF [21–25]. Angiotensin II (Ang II),
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AT1 receptors and reactive oxygen species (ROS) in the PVN play

an important role in the central modulation of CSAR, contribute

to the pathogenesis of enhanced CSAR in CHF [23–25], and AT1

receptor mRNA antisense normalizes the enhanced CSAR in

CHF rats [26]. IMD has different effects on SNA depending on

where it is applied in the brain. Administration of IMD into the

lateral cerebroventricle or NTS increased SNA [27–29], but we

recently found that IMD in the PVN attenuated sympathetic

activity [30] and CSAR (data not published) in hypertensive Rats.

It is interesting to know the roles and mechanisms of IMD in the

PVN in CSAR in CHF rats because of the importance of the PVN

in the pathogenesis of CHF.

Ang II in the PVN promotes the enhanced CSAR in rats with

CHF [25,31,32], and the decrease of endogenous Ang II by

angiotensin converting enzyme inhibitor captopril in the PVN

normalizes the enhanced CSAR in rats with CHF [24]. Ang II in

the PVN increases superoxide anions level which mediates CSAR

and the effect of Ang II in the PVN on CSAR in CHF rats [23].

Ang II exposure induces remarkable increases in the expression of

endogenous IMD and its receptor components in H9c2 cell

cultures [33]. IMD exerts an antihypertrophic effect caused by

Ang II on neonatal cardiomyocytes by reducing the level of

superoxide [34]. In many animal disease models, IMD has a

protective effects on some tissues or cells via the inhibition of

oxidative stress [35–40]. It is not known whether PVN superoxide

anions involve in the effect of IMD on attenuating Ang II-induced

CSAR response. Therefore, the present study was designed to

determine whether IMD in the PVN inhibits SNA and CSAR and

whether IMD in the PVN attenuates Ang II-induced CSAR

response and its related mechanisms in CHF rats.

Methods

Animals
Experiments were carried out on male Sprague-Dawley rats

weighing 300–400 g. The procedures were approved by the

Experimental Animal Care and Use Committee of Nanjing

Medical University and complied with the Guide for the Care and

Use of Laboratory Animals (the 8th edition, 2011). The rats were

maintained on a cycle of 12 h light and 12 h darkness in a

temperature-controlled room and provided free access to labora-

tory chow and water.

CHF model
CHF was induced by coronary artery ligation method as

previously described [5]. Briefly, rats were anesthetized with

sodium pentobarbital (60 mg/kg, i.p.) and subjected to the ligation

of the left anterior descending coronary artery or sham operation

using sterile techniques. Sham-operated rats (Sham) received

similar surgery except their coronary arteries were not ligated. The

criterion for CHF was that left ventricle end-diastolic pressure

(LVEDP) was higher than 12 mmHg. At the end of experiment,

infarct size was expressed as a percentage of the left ventricle (LV)

surface area [26].

General procedures of acute experiment
Acute experiment was carried out 8 weeks after surgery. Each

rat was anaesthetized with intraperitoneal injection of urethane

(800 mg/kg) and a-chloralose (40 mg/kg). A midline incision in

the neck was made to expose trachea and carotid artery. The

trachea was intubated and connected to a rodent ventilator (Model

683, Harvard Apparatus Inc, Holliston, MA, USA) for mechanical

ventilation. A pressure transducer was used via a catheter in the

right carotid artery for the measurement of mean arterial pressure

(MAP). The MAP and renal sympathetic nerve activity (RSNA)

were simultaneously recorded with a PowerLab data acquisition

system (8/35, AD Instruments, Castle Hill, Australia). Supple-

mental doses of anesthetic agents were applied to maintain an

adequate depth of anesthesia during the experiments.

RSNA recording
A retroperitoneal incision was made for isolation of the left renal

sympathetic nerve. The nerve was cut distally to eliminate its

afferent activity and placed on a pair of silver electrodes which

were immersed in warm mineral oil. The RSNA was amplified

with a four channel AC/DC differential amplifier (DP-304,

Warner Instruments, Hamden, CT, USA) with a high pass filter

at 100 Hz and a low pass filter at 3,000 Hz. The RSNA was

integrated at a time constant of 100 ms. The background noise

was determined as previously reported [41].

Evaluation of CSAR
The rats used to evaluate the CSAR were subjected to

vagotomy and baroreceptor denervation [23]. To expose the

heart, a limited left lateral thoracotomy was performed and then

the pericardium was removed. The CSAR was induced by

stimulating cardiac sympathetic afferents with a piece of filter

paper (3 mm63 mm) containing capsaicin (Cap, 1.0 nmol in

2.0 ml) on the non-infarct area of the left ventricle. The filter paper

was removed 1 minute later, and the ventricular surface was rinsed

three times with normal saline at 37uC. The CSAR was evaluated

Figure 1. Microinjection sites in PVN region. Upper panel, a
representative photo of microinjection sites in the PVN evaluated by
50 nl of Evans blue diffusion, and arrows show the microinjection sites.
Lower panel, a schematic representation of microinjection sites. Blue or
red dots represent the sites of termination of the microinjections. Blue
dots are considered to be within the PVN. Red dots are considered to be
at the margin of PVN or outside of the PVN, which were excluded for
data analysis. PVN: paraventricular nucleus of hypothalamus; 3V: the
third ventricle.
doi:10.1371/journal.pone.0094234.g001
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by the RSNA and MAP responses to the epicardial application of

Cap [23].

PVN microinjection
The stereotaxic coordinates for the PVN were 1.8 mm caudal

from bregma, 0.4 mm lateral to the midline and 7.9 mm ventral to

the dorsal surface using a stereotaxic frame (Stoelting, Chicago,

IL, USA). The bilateral PVN microinjections were carried out

with two glass micropipettes (about 50 mm tip diameter) and

completed within 1 min. Microinjection volume was 50 nl for

each microinjection site. At the end of the experiment, same

volume of Evans Blue (2%) was injected into the microinjection

site for histological identification. Only the data from rats whose

microinjection sites were within the boundaries of the PVN were

used for analysis. Rats with microinjection sites outside the PVN or

at the margin of PVN were excluded from data analysis. Total 14

rats in Sham and CHF groups were excluded from data analysis

because the microinjection sites were not within the PVN

(Figure 1). A representative coronal photograph of brain section

which showed bilateral microinjection sites evaluated by 50 nl of

Evans blue diffusion (upper panel) and a schematic representation

of microinjection sites (lower panel) in the PVN of a rat were in

Figure 1.

PVN sample preparation
The rat was anaesthetized with an overdose of pentobarbital

(100 mg/kg, i.p.). The brain of the rat was quickly removed,

frozen in liquid nitrogen and stored at 280 uC until being used.

Brain tissue was cut into 450 mm coronal section within the levels

from 1.5 mm to 2.0 mm caudal from bregma with frozen

microtome (Leica CM1900-1-1, Wetzlar, Hessen, Germany).

Measurement of IMD and Ang II levels
PVN sample tissue was homogenized and the total protein in

the homogenate supernatant was extracted and measured by using

protein assay kit (BCA; Pierce). The IMD and Ang II levels in

PVN tissue homogenate supernatant were measured using an

enzyme-linked immunoassay kit (USCN Life Science Inc., USA).

For both assays, the manufacturer’s instructions were followed.

Measurement of superoxide anions
The superoxide anions level in the PVN was detected using the

lucigenin-derived chemiluminescence method [23]. Dark-adapted

lucigenin (5 mM) reacts with superoxide anions and results in

photon emission which can be measured with a luminometer (20/

20n, Turner, CA, USA) once every minute for 10 min. The values

were expressed as the MLU per minute per milligram of protein.

Chemicals
IMD, AM22-52 and CGRP8-37 were obtained from Bachem

(Hauptstrasse, Bubendorf, Switzerland), capsaicin, Ang II, tempol

and lucigenin were purchased from Sigma Chemical (St. Louis,

MO, USA).

Experimental design
Experiment 1. IMD and Ang II levels in the PVN were

determined with Elisa method in both Sham and CHF rats (n = 6

for each group).

Experiment 2. Effects of PVN microinjection of IMD

(30 pmol) on the baseline RSNA, MAP and HR responses were

investigated in Sham and CHF rats (n = 6 for each group).

Experiment 3. Effects of IMD, CGRP8-37, AM22-52 and

Ang II on the CSAR were respectively investigated in Sham rats

and CHF rats. The PVN microinjection of saline, two doses of

IMD (3 or 30 pmol), CGRP8-37 (0.2 nmol), AM22-52 (1 nmol) or

Ang II (0.3 nmol) were carried out in 6 groups of Sham rats and 6

groups of CHF rats (n = 6 for each group). To exclude the

possibility that the effects of IMD were caused by diffusion to other

brain area, the effects of microinjection of IMD (30 pmol) into the

anterior hypothalamic area which is adjacent to the PVN were

determined in CHF rats (n = 3).

Experiment 4. Effects of PVN pretreatment with saline,

CGRP receptor antagonist CGRP8-37 (0.2 nmol) and adrenome-

dullin (AM) receptor antagonist AM22-52 (1 nmol) on the CSAR

response to the PVN microinjection of IMD (30 pmol) were

investigated in 6 groups of Sham rats and 6 groups of CHF rats

(n = 6 for each group).

Experiment 5. Effects of PVN pretreatment with saline,

IMD (30 pmol) and tempol (20 nmol) on the CSAR response to

the PVN microinjection of Ang II (0.3 nmol) were investigated in

4 groups of Sham rats and 4 groups of CHF rats (n = 6 for each

group). The PVN microinjection of Ang II was carried out 28 or

Table 1. Anatomic and hemodynamic data at the 8th week in Sham and CHF rats.

Sham CHF

Body weight (g) 367610 35968

Heart weight (mg) 1287648 1546654*

HW/BW (mg/g) 3.3760.21 4.3060.29*

MAP (mm Hg) 94.763.4 92.762.8

HR (beats/min) 38867 39666

Infarct size (% LV area) 0 33.462.9*

LVSP (mm Hg) 13166 11265*

LVEDP(mm Hg) 22.0860.28 20.862.0*

LV dp/dtmax (mm Hg/s) 35806146 20626102*

HW: heart weight; BW: body weight; MAP: mean arterial pressure; LV: left ventricle; LVSP: left ventricle peak systolic pressure; LVEDP: left ventricle end-diastolic pressure;
LVdp/dtmax: maximal rise rate of LV pressure. Values are mean6SE. *P,0.05 versus Sham. n = 7 for each group.
doi:10.1371/journal.pone.0094234.t001
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8 min after IMD or tempol pretreatment respectively, and CSAR

was determined 2 min after Ang II microinjection.

Experiment 6. Effects of the PVN microinjection of saline,

IMD (30 pmol) and Ang II (0.3 nmol) on the superoxide anions

level in the PVN were investigated in 3 groups of Sham rats and 3

groups of CHF rats (n = 6 for each group).

Experiment 7. Effects of PVN pretreatment with saline,

IMD (30 pmol) and tempol (20 nmol) on the superoxide anions

level response to the PVN microinjection of Ang II (0.3 nmol)

were investigated in 4 groups of Sham rats and 4 groups of CHF

rats (n = 6 for each group).

Statistics
Comparisons between two groups were made by Student’s t

test. One-way ANOVA followed by the Bonferroni test for post

hoc analysis was used when multiple comparisons were made. The

values were expressed as the mean6SE. P,0.05 was considered

statistically significant.

Figure 2. CSAR induced by epicardial application of capsaicin
was evaluated by the RSNA and MAP responses to epicardial
application of capsaicin (1 nmol). CSAR: cardiac sympathetic
afferent reflex; RSNA: renal sympathetic nerve activity; MAP: mean
arterial pressure; Cap: capsaicin. Values are mean6SE. *P,0.05 vs.
Sham. n = 6 for each group.
doi:10.1371/journal.pone.0094234.g002

Figure 3. Levels of IMD and Ang II in the PVN in Sham rats and
CHF rats. Values are mean6SE. *P,0.05 vs. Sham. n = 6 for each
group.
doi:10.1371/journal.pone.0094234.g003

Figure 4. Effects of PVN microinjection of saline and IMD
(30 pmol) on the baseline RSNA, MAP and HR in Sham rats and
CHF rats. RSNA: renal sympathetic nerve activity; MAP: mean arterial
pressure, HR: heart rate. Values are mean6SE. *P,0.05 vs. Saline; #P,
0.05 vs. Sham. n = 6 for each group.
doi:10.1371/journal.pone.0094234.g004
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Results

Anatomical and hemodynamic data
Mean infarct area was 33.4% of the LV in CHF rats, and there

was no obvious infarct in Sham rats. Compared with Sham rats,

heart weight, heart-to-body weight ratio and LVEDP were

significantly increased in CHF rats, but LV peak systolic pressure

(LVSP) and the maximum of the first differentiation of LV

pressure (dp/dtmax) were markedly decreased in CHF rats

(Table 1).

CSAR
In this study, the CSAR was induced by epicardial application

of Cap and evaluated by the RSNA and MAP responses to Cap.

The CSAR was significantly enhanced in CHF rats compared

with Sham rats (Figure 2).

IMD and Ang II levels in the PVN
IMD and Ang II levels in the PVN were much higher in CHF

rats than Sham rats (Figure 3).

Figure 5. Effect of PVN microinjection of saline, two doses of
IMD (3 or 30 pmol), CGRP receptor antagonist CGRP8-37
(0.2 nmol), AM receptor antagonist AM22-52 (1 nmol) or Ang
II (0.3 nmol) on the CSAR. CSAR: cardiac sympathetic afferent reflex;
RSNA: renal sympathetic nerve activity; MAP: mean arterial pressure; HR:
heart rate; Cap: capsaicin. Values are mean6SE. *P,0.05 vs. Saline; #P,
0.05 vs. Sham. n = 6 for each group.
doi:10.1371/journal.pone.0094234.g005

Figure 6. Tracing showing the effect of PVN microinjection of
Saline in Sham and CHF rats and IMD (30 pmol) in CHF rats on
CSAR. CSAR was induced by epicardial application of capsaicin. The
CSAR in CHF rats (B) was stronger than Sham rats (A). IMD attenuated
the enhanced CSAR in CHF rats (C). RSNA: renal sympathetic nerve
activity; ABP: arterial blood pressure; MAP: mean arterial pressure.
doi:10.1371/journal.pone.0094234.g006
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Effects of IMD on the baseline RSNA and MAP and CSAR
IMD (30 pmol) significantly decreased the baseline RSNA and

MAP in CHF rats compared with Sham rats (Figure 4). The effects

of IMD on the baseline RSNA and MAP peaked at about 30 min

and lasted at least 60 min. Microinjection of IMD (3 or 30 pmol)

into the PVN caused greater decrease in the CSAR in Sham and

CHF rats (Figure 5). IMD in the PVN had no effects on the

baseline HR and HR response to Cap in Sham and CHF rats

(Figure2, 4). Microinjection of IMD (30 pmol) into the anterior

hypothalamic area, which is adjacent to the PVN, had no

significant effects on the CSAR and the baseline RSNA and MAP

in CHF rats (data not shown). The representative recordings

showed that PVN microinjection of IMD (30 pmol) decreased

CSAR in CHF rats (Figure 6).

Effects of AM22-52 and CGRP8-37
AM22-52 microinjection into the PVN significantly increased

the CSAR in both Sham and CHF rats but not CGRP8-37

(Figure 5). The reducement of CSAR response to IMD was

inhibited by the pretreatment with AM22-52 (1 nmol) in the PVN

in both Sham and CHF rats but not CGRP8-37 (Figure 7).

Effect of IMD on Ang II-induced increase in CSAR
Ang II (0.3 nmol) microinjection into the PVN significantly

increased the CSAR in CHF rats compared with Sham rats

(Figure 5). The augmented response of Ang II on CSAR was

inhibited by the pretreatment with IMD (30 pmol) or tempol

(20 nmol) in the PVN in both Sham and CHF rats (Figure 8).

Superoxide anions level in the PVN
Microinjection of IMD (30 pmol) into the PVN significantly

decreased the superoxide anions level in the PVN in CHF rats, but

not in Sham rats (Figure 9). Microinjection of Ang II (0.3 nmol)

into the PVN significantly increased the superoxide anions level in

the PVN in Sham and CHF rats (Figure 9). PVN pretreatment

with IMD (30 pmol) or tempol (20 nmol) significantly decreased

Ang II-induced increase in superoxide anions level in the PVN in

both Sham and CHF rats (Figure 9).

Figure 7. Effect of PVN pretreatment with saline, CGRP
receptor antagonist CGRP8-37 (0.2 nmol) or AM receptor
antagonist AM22-52 (1 nmol) on the CSAR response to the
PVN microinjection of IMD (30 pmol). CSAR: cardiac sympathetic
afferent reflex; RSNA: renal sympathetic nerve activity; MAP: mean
arterial pressure; Cap: capsaicin. Values are mean6SE. *P,0.05 vs.
Saline+Saline; $P,0.05 vs. Saline+IMD; #P,0.05 vs. Sham. n = 6 for each
group.
doi:10.1371/journal.pone.0094234.g007

Figure 8. Effect of PVN pretreatment with saline, IMD
(30 pmol) or tempo (20 nmol) on the CSAR response to the
PVN microinjection of Ang II (0.3 nmol). CSAR: cardiac sympa-
thetic afferent reflex; RSNA: renal sympathetic nerve activity; MAP:
mean arterial pressure; Cap: capsaicin. Values are mean6SE. *P,0.05 vs.
Saline+Saline; $P,0.05 vs. Saline+Ang II; #P,0.05 vs. Sham. n = 6 for
each group.
doi:10.1371/journal.pone.0094234.g008
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Discussion

The primary findings in this study were that the levels of IMD

and Ang II in the PVN were increased in CHF rats; IMD in the

PVN significantly lowered the CSAR and the baseline RSNA and

MAP in CHF rats than those in Sham rats; PVN pretreatment

with IMD suppressed the enhanced CSAR and superoxide anions

responses to Ang II in the PVN in Sham and CHF rats. AM

receptor antagonist AM22-52 increased the CSAR and inhibited

the effect of IMD on CSAR in Sham and CHF rats. These data

indicate that exogenous IMD in the PVN inhibits CSAR via AM

receptor in CHF rats, and attenuates the effect of Ang II in the

PVN on CSAR, which may be through inhibiting Ang II-induced

superoxide anions increase in the PVN.

IMD shares the receptor system consisting of CRLR and

RAMPs with CGRP and AM [10]. In our recent study, all the

receptor components were expressed in the PVN [30], CRLR,

RAMP2 and RAMP3 protein expressions are apparent in the

PVN, but the RAMP1 mRNA and protein expressions are low. In

this study, the effect of IMD on CSAR was blocked with AM

receptor antagonist AM22-52 but not CGRP receptor antagonist

CGRP8-37, one possibility is that the level of RAMP1 expression

remained small in CHF state and it was not enough to block the

effect of IMD, the other is that IMD displayed its action on the

CSAR through AM receptor not CGRP receptor. Furthermore,

AM22-52 increased the CSAR in both sham rats and CHF rats,

whereas CGRP8-37 had no significant effect. These results suggest

that the AM receptor (CRLR/RAMP2 or CRLR/RAMP3) rather

than CGRP receptor (CRLR/RAMP1) is involved in the CSAR

in sham and CHF rats. The endogenous IMD in the PVN may

have inhibitory effect on the CSAR via AM receptor in CHF. It is

speculated that the increased IMD or AM receptor (CRLR/

RAMP2 or CRLR/RAMP3) expression by various strategies in

the PVN may be beneficial for the attenuation of CSAR. The

higher level of IMD may be an important compensatory change in

the PVN in CHF rats, which may contribute to the long-lasting

sympathetic inhibition by attenuating the CSAR in CHF. In the

future study, we should investigate whether endogenous AM could

also inhibit the enhanced CSAR by binding with its receptor

complex (CRLR/RAMP2 or CRLR/RAMP3) in the PVN in

CHF rats and whether the effect of IMD on CSAR is associated

with unidentfied receptor in the PVN.

Ang II and superoxide anions in the PVN causes exaggerated

increases in SNA and CSAR in rats with CHF [23,25,42], and

Ang II in the PVN promotes the increase of superoxide anions

which can strengthen its effect on the CSAR in CHF rats [23].

AM-knockout mice showed Ang II/salt-loading-induced cardio-

vascular injury, all associated with enhanced ROS generation

[43]. IMD is known to inhibit rat cardiac fibroblast activation

induced by angiotensin II [44], and it exerts an antihypertrophic

effect caused by Ang II on neonatal cardiomyocytes by reducing

the level of superoxide [34]. These results suggest that IMD may

have an inhibitory effect on Ang II-induced CSAR response by

lowing superoxide anions level. In this study, the levels of Ang II

and superoxide anions in the PVN were increased in CHF rats,

IMD in the PVN decreased superoxide anions level and

attenuated Ang II-induced CSAR response and superoxide anions

increase in the PVN in CHF rats, which indicate that the

inhibitory effect of IMD on CSAR is partially through inhibiting

Ang II-induced superoxide anions.

The level of IMD is augmented in the presence of oxidative

stress in hypertrophied cardiomyocytes [45]. IMD has a potential

protective role against oxidative stress in human aortic endothelial

cells [46] and rat cerebral endothelial cells [40]. It ameliorated

vascular and renal injury in DOCA-salt hypertensive rats [39] and

attenuated chemia/reperfusion-induced myocardial injury by

inhibiting oxidative stress [37]. NAD(P)H oxidase in the PVN is

a major source of the ROS in modulating the CSAR, and Ang II

microinjecrion into the PVN significantly increases NAD(P)H

oxidase activity which contributes to the effect of Ang II on CSAR

[47]. The inhibition of NADPH oxidase involves in the effects of

IMD on attenuating myocardial oxidative stress injury induced by

Figure 9. Effect of PVN microinjection of saline, IMD (30 pmol)
or Ang II (0.3 nmol) on the superoxide anions level in the PVN
and effect of PVN pretreatment with saline, IMD (30 pmol) or
tempo (20 nmol) on the superoxide anions level caused by
Ang II (0.3 nmol) in the PVN. Values are mean6SE. *P,0.05 vs.
Saline; #P,0.05 vs. Sham. n = 6 for each group (upper panel). Values are
mean6SE. *P,0.05 vs. Saline+Saline; $P ,0.05 vs. Saline+Ang II; #P,
0.05 vs. Sham. n = 6 for each group (lower panel).
doi:10.1371/journal.pone.0094234.g009
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ischemia/reperfusion [37] and ventricular myocyte hypertrophy

induced by Ang II in neonatal rat [34]. These findings suggest that

the inhibition of NADPH oxidase may be one of the mechanisms

of IMD in decreasing superoxide anions in the PVN in CHF rats

or attenuating Ang II-induced superoxide anions in the PVN,

which needs to be explored in future study.

The enhanced CSAR is involved in the sympathetic over-

activation in CHF, and superoxide anions and Ang II in the PVN

promote the increases in SNA and CSAR in CHF rats. In the

present study, we found that IMD and Ang II in the PVN were

increased in CHF rats; IMD in the PVN inhibited SNA and

attenuated the CSAR, and blockade of AM receptors in the PVN

partially prevented its effect; PVN IMD decreased superoxide

anions and attenuated the effects of Ang II on CSAR and

superoxide anions level in the PVN in CHF rats. These results

indicate that IMD inhibits SNA in CHF rats, which is through

attenuating the enhanced CSAR response to superoxide anions

and Ang II in the PVN. Activation of AM receptors in the PVN

mediates the IMD’s effects and IMD in the PVN is an important

mechanism in attenuating CSAR and sympathetic activation in

CHF.
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