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A B S T R A C T

The determination of fat fraction based on Magnetic Resonance Imaging (MRI) requires extremely accurate data
reconstruction for the assessment of pancreatic fat accumulation in medical diagnostics and biological research. In
this study, the signal model of the oil and water emulsion was created with a 3.0 T field strength. We examined
the quantification of the fat fraction from phantom and the intrapancreatic fat fraction using the techniques of
magnetic resonance spectroscopy (MRS) and Iterative Decomposition with Echo Asymmetry and Least-Squares
estimate (IDEAL) in magnetic resonance imaging (MRI). Additionally, we contrasted expert manual pancreatic
fat assessment with MRS and IDEAL pancreatic fat fraction quantification. There was a strong connection between
the true fat volume fraction and the fat fraction from IDEAL and MRS (R2 ¼ 0.99 and 0.99, respectively). For both
phantom and in vivo measurements, Pearson's correlation and linear regression analysis were used. The findings
of the in vivo assessment revealed a variable correlation between the pancreatic fat fraction MRI readings. We also
used MR-opsy for manual pancreatic fat fraction segmentation since it read pancreatic fat fractions more accu-
rately than IDEAL and MRS, which aided in the development of machine learning's ability to assess pancreatic fat
automatically.
1. Introduction

A significant factor in determining the health risks associated with
many metabolic disorders, such as obesity-related type 2 diabetes (T2D),
many forms of malignancies, and major cardiovascular disease, is the
distribution of adipose tissues, particularly visceral fat [1, 2, 3, 4]. Dia-
betes affects approximately 8.5% of the adult population worldwide [1],
and is the key driver of early morbidity and mortality and health care
costs [2]. The pancreas is a crucial organ regulates glucose homeostasis
and energy metabolism. More and more clues in recent years suggests
that T2D, the most common form of diabetes, is caused by reduction in
pancreatic volume and physiological changes of visceral adipose tissues,
especially ectopic fat deposition in the pancreas [3, 4, 5, 6, 7]. Thus,
quantification of such pancreatic changes provides huge potential in
terms of diagnosis and treatment to prevent T2D.
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The precise detection and measurement of pancreatic fat deposition
were challenging in the 20th century because of its retroperitoneal
location in the body. However, within the last decade, accurate exami-
nation of the organs is now more accessible than ever because to ad-
vances in magnetic resonance imaging (MRI) and magnetic resonance
spectroscopy (MRS) methods. MRI is now regarded as the most proper
method for fat quantification due to its features of non-invasive and no
ionizing radiation. Furthermore, MRI is sensitive for recognizing fat tis-
sues from lean relay on chemical-shift properties and T1 relaxation [8].
MRI allows not only the detection of the abnormalities of the pancreas
structure but also the quantification of the dimension and composition of
the organ based on various imaging parameters. On the other hand, MRS
is generally regarded as the gold standard for the quantification of
ectopic fat fraction in clinical trials. It has been used for the measurement
of liver fat [9, 10], tissue composition [11], myocellular adipose tissue
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Table 1. Summary of anthropological details of 16 participants in this study.

Participant
ID

Gender Age Weight
(kg)

Height
(m)

BMI Ethnicity

1 Male 20 71.5 1.82 21.6 NZ European

2 Male 28 88.8 1.79 27.7 NZ European

3 Male 35 106.7 1.88 30.2 NZ European

4 Male 32 89.7 1.75 29.3 Pacific
Islander

5 Male 22 78.7 1.83 23.5 Pacific
Islander

6 Male 55 93.4 1.69 32.7 M�aori

7 Female 38 86.4 1.58 34.6 M�aori

8 Female 43 94.3 1.77 30.1 NZ European

9 Female 52 83.8 1.68 29.7 NZ European

10 Female 48 75.7 1.72 25.6 NZ European

11 Female 21 81.1 1.56 33.3 Pacific
Islander

12 Female 29 74.7 1.67 26.8 Pacific
Islander

13 Female 33 68.2 1.55 28.4 Pacific
Islander

14 Female 39 46.2 1.58 18.5 Asian

15 Female 46 59.1 1.65 21.7 Asian

16 Female 32 62.7 1.63 23.6 Asian
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[12], and brain metabolites. Further, over the past 20 years, Iterative
Decomposition with Echo Asymmetry and Least-Squares estimates
(IDEAL) for MR images gradually became a sophisticated 3-dimensional
(3D) imaging method based on a considerable increase in Dixon's
reconstruction algorithms [13, 14]. IDEAL provides more reliable reso-
nance offsets for separating fat and water phase images by optimizing
their signal-to-noise ratio, which could have been difficult to calculate
due to the impact of magnetic field nonuniformity [15].

The protons in water is separated from the main methylene groups
(–CH2–)n in triglyceride fatty acid chains at resonant frequencies around
3.4 ppm according to the chemical-shift principles in both IDEAL andMRS.
In MRI machine. The unique character of water is reflected by a single
spectral peak, whereas the fat tissue includes several continuous minor
peaks, which represent methyl, olefinic, and carboxyl groups respectively.
These peaks have similar difference chemical shifts compare with water
[16]. Compared with MRS, the multi-fat-peak T2*-IDEAL is a 3D images
technique that presents spatial information and yields a fat-to-water (F/W)
ratio by systematically analyzing the intravoxel dephasing and transverse
relaxation effects on the specific MRI signals. These enabled a more ac-
curate proton ratio measurement within both fat and water underlying
tissues [17]. The latest 3D IDEAL is a water and fat (W and F) content
separating method based on the Dixon technique [18].

However, given that the pancreas is relatively small and has varied
and even hazy boundaries, quantifying fat accumulation inside such tiny
organs remains difficult. Currently, the gold standard approach for
quantifying pancreatic volume and fat deposition is the highly time-
consuming manual operation on MR images by skilled professionals
[19]. Al-Mrabeh et al. has established an efficient manual operation
process called “MR-opsy” in terms of pancreatic fat fraction segmentation
and claimed a good performance [20]. To improve the efficiency of the
pancreatic measurement, we plan to establish a novel deep convolutional
neural network (DCNN) closely imitate to the MR-opsy method to
determine the pancreatic volume and pancreatic fat fraction from
abdominal MRI. Segmentation on small intra organ such as pancreas by
DCNN is a challenging mission as the pancreas structure under MRI are
diverse due to the contamination from its surround organs [21]. Few
previous studies were seen working on automatic pancreas segmentation
on both CT and MRI, however, the outcomes of those studies can only
estimate the pancreas volume but there are no studies up to date claiming
the pancreatic fat fraction measuring function as the DCNN we plan to
establish [21, 22, 23]. So, in this study, we were the first proposing a
method for measuring the pancreatic fat deposition. This study described
a phantom validation to 1) Set a scale reference for both clinical manual
operation and future machine learning in terms of measuring pancreatic
fat fraction; 2) Prospectively compare and evaluate the effectiveness of
T2*-IDEAL, MRS, and expert manual operation in terms of measuring the
MRI-derived intrahepatic and intrapancreatic fat fractions; and 3)
Described the potential algorithms for the novel DCNN that could be used
for pancreatic fat segmentation based on the phantom result.

2. Materials and methods

2.1. Principles of T2*-IDEAL and MRS

In this work, The IDEAL fat fraction was calculated from separating
water signals (W) from fat ones (F) shown in equation (a):

Fat Fraction ðFFIDEALÞ¼ F
ðW þ FÞ � 100%

We also employed the fat spectrummodel [17] in IDEAL based on the
signal model by the following equation (b):

sðtÞ¼
�
W þ F

X
ai � ej2πtðΔfiÞ

�
ej2πtΨ�ðt=T�

2Þ

In this formula, s(t) represents for the signal in each voxel at time t; ai
and Δfi represents the relative amplitude and spectral frequency of F/W at
2

the ith peak respectively. j is the imaginary unit (i); and The signal's trans-
verse relaxation and intravoxel dephasing are both represented by T2*.

MRS data were acquired by the point-resolved spectroscopy method,
which requires placing a single of a few cm3 voxel in region-of-interest
(ROI) of target organs. Obtaining signals through integration, MRS
typically includes noise filtering, apodization, phase correction, and
signal fitting of the peaks within the acquired spectrum, with each
spectral peak area of interest being at 4.7 p.p.m. for W, at 1.3 p.p.m for F.
The software of MRUI was utilized for spectral analysis. The fraction of
fat in MRS was given in equation (c)

Fat Fraction ðFFMRSÞ¼ area under peaks of fat
area under peaks of both fat and water

� 100%

2.2. Phantom study

Using vegetable (soy) oil, distilled water, and undoped water, we
produced a homogeneous emulsion series in order to evaluate the ac-
curacy of each type of quantification result. Lecithin (1% by weight from
Sigma) and fat volume fractions ranging from 0% to 100%were added to
100-ml bottles. The emulsions were stabilised by adding sodium dioctyl
sulfosuccinate salt and agar gel (3% of the weight). The emulsions were
carefully spun over a heat plate to achieve an even dispersion of the
suspension before being gradually cooled to room temperature. The
bottles were then placed in a container filled with solid agar, and the MRI
test was performed using the following parameters: Repetition time: 10
ms, echo times: 2, 4, 6, 8, 3.2, 3.6, and 4.0 ms, flip angle: 5�, receiver
bandwidth: 125 kHz, in-plane spatial resolution: 2 mm, slice lengths: 8
mm, and single signal average. On ten emulsions with a fat content of
10–100% fat, the same scan settings of repetition time ¼ 4s, echo time ¼
23ms, and bandwidth ¼ 2.5kHz were used.

2.3. Clinical participants for validation

The clinical research received approval from the Health and Disability
Ethics Committee (HDECs), Auckland and followed all informed consent
guidelines. The abdominal MR images of 16 healthy participants were
selected for the study (6 males, 10 females, age range 20–55 years, the
details of participants were summarized in Table 1). All those who took
part in the study were given their informed consent. Exclusion criteria
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included being on regular drugs, having a history of cancer, diabetes,
celiac disease, cystic fibrosis, chronic pancreatitis, being pregnant, or
exhibiting upper abdomen pain and nausea. They also had no endocrine
abnormalities or a history of acute viral or inflammatory disorders
requiring medical evaluation or treatment in the three months prior to
the research date. Participants were also disqualified if they had any
general MRI contraindications (such as metallic foreign body or elec-
tronic device implantation).

2.4. MR imaging protocol

We booked a 3.0 T MAGNETOM Skyra scanner at the Center of
Advanced MRI (University of Auckland) and associated all participants in
this study got MRI scans (Siemens, Erlangen, Germany). Eight-channel
abdominal arrays with receive-only capability were used to collect
participant data. In this work, the Dixon sequence for axial T1-weighted
volumetric interpolated breath-hold imaging was applied. Each subject
had a single axial 3D IDEAL spoiled-gradient-echo capture encompassing
the right lobe of the liver and pancreas. A total of 12 slices were acquired,
and the parameters for MRI imaging were established similarly to those for
the phantom study with the exception that resolution in-plane was set at a
range of 2–2.75 mm depending on body habitus. Six echoes spacing 0.8ms
were acquired in total with the first echo between 1.0-1.5 ms. The IDEAL
scans were conducted under giving the participants instruction of 20s
breath-hold section. The measurements, which were reflected in the
Figure 1. Assessment of hepatic and pancreatic fat content in MRI. a.) The volume o
region of interest (yellow circle) on MRI fat image.

3

relative proton density fat fraction (PDFF), were based on T1 bias, T2*
decay, noise bias, and fat depostion [24]. The fat contentmeasurement was
performed and archived by picture archiving and communication system
(PACS) with MRI workstations. The output was automatically determined
by stacking with quantitative coding of degrees of grey values in PDFF.
Each MRS scan consumed 3–4 min with no breath-holding. MRS was
conducted on the pancreas with the same parameters as the phantom, eight
signal averages, and no water suppression. In order to avoid including any
visceral fat surrounding the pancreas when measuring the liver and
pancreas, the voxel was placed inside the organs. The volume located in
hepatic and pancreatic fat content were 30� 30� 30 mm3 and 15� 15�
15mm [3], respectively (Figure 1 a.b).
2.5. MR image analysis

Fat content in both pancreas and liver was measured by experienced
radiologist in MRI center.

2.5.1. Pancreatic fat fraction (PFF)
Utilizing the customized off-line workstation, the areas of focus re-

gion were circled to determine the pancreatic fat concentration (Syn-
go.via, Siemens Healthcare, Erlangen, Germany). Throughout many MRI
slices, each ROI spanned a about 100 mm2area into the pancreatic head,
body, and tail (Figure 1c).
f interest located in liver, b.) The volume of interest located in pancreas, c.) The
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2.5.2. Hepatic fat fraction (HFF)
A single axial slice at the plane near the portal vein was used to es-

timate the amount of hepatic fat based on the acquired multi-echo Dixon
images of the upper abdomen. To avoid including any apparent extra-
and intra-hepatic arteries, the ROI was meticulously circled into the liver
parenchyma to quantify the amount of hepatic fat present.

2.5.3. Post manual pancreatic fat fraction segmentation
The pancreas fat fraction was also segmented manually by experts

followed the description of MR-opsy method described by Al-Mrabeh
et al. [20, 25, 26]. Using Image J to measure the percentage fat for all
highlighted RoiSets within the ROI manager. The finial fat percentage
was obtained by excluding values less than 1% and over 20% on excel
spreadsheet generated by Histogram on Image J. The process of seg-
mentation was shown in Figure 2. For the fat deposition in pancreas, we
only reserved the pixel with fat values of 1%–20% in order to minimize
inclusion of non-parenchymal tissues [20]. We compared the results of
this method with the ones derived from MRS and IDEAL.
2.6. Data and statistical analysis

In the phantom investigation, linear regression was used to evaluate
the fat fractions derived from IDEAL and MRS to the genuine fat volume
fraction. Pixel length was converted into millimeters for further
4

application on manual operation and machine learning. From the in vivo
studies, expert manually derived pancreas fat fraction (PFFMANUAL) based
on phantom scale was compared with the methods of IDEAL (PFFIDEAL)
and MRS (PFFMRS) for validation. In those comparisons, Pearson's corre-
lation coefficient (r) and linear correlation were used. The linear regres-
sion was analyzed by identifying the gradient difference derived by the t-
test. Box-and-whisker plots were drawn from paired t-tests to test whether
there were statistical differences among methods. For the in vivo experi-
ments, the 95% confidence intervals, and P < 0.05 was used to assert
statistical significance.
2.7. Algorithm design for novel DCNN

2.7.1. The overview of the new DCNN
For building up DCNN, we plan to collect moreMRI data from previous

research projects and recruit more participants from our current clinical
study. The MR images include opposite phase series, water and fat images.
We plan to use manual labelled water phase pancreas MR images to
establish the new DCNN that segmented pancreas automatically.

The hyperparameters of new DCNN will be tuned by Bayesian Opti-
mization algorithm [27] inputting the data we currently have, containing
the total number of neurons, the activation function, the optimizer, the
learning rate, the batch size, the epochs, and the total number of layers.
This function can be achieved by package of Keras in Python, which is
Figure 2. The manual MRI segmenta-
tion process for pancreatic fat fraction.
a.) the water image with centered
pancreas. b.) the corresponding fat
image with centered pancreas. c.)
manual segmentation of the pancreas.
d.) transfer of the pancreas boundary
from water image to fat image. e.)
pancreas segmented from the fat image.
f.) threshold adjusted until most of the
inner pancreas pixels were covered.
Using Image J to measure the percent-
age fat for all highlighted RoiSets within
the ROI manager. The finial fat per-
centage was obtained by excluding
values less than 1% and over 20% on
excel spreadsheet generated by Histo-
gram on Image J.
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built on top of Tensorflow. The overview of the DCNN was summarized
in Figure 3.

The pancreas volume can be calculated by accumulating the multi-
plication of each pancreatic area and thickness of MRI slice (3mm). We
enable the DCNN this function via the Cavalieri equation [28].

Volume in vivo¼
X

Volumes ofall pancreatic slices

2.7.2. The erosion process
After training and validating of DCNN, we will use it to pick up the

pancreas from MR fat images with inversed grey values of water images.
In order to reduce the impact of the extra pixel form boundary detection,
we employed erosion algorithm in OpenCV to remove them. Erosion is
one of the important morphological operations. It computes a local
minimum over the area of given kernel, which can be adjusted until we
got satisfy segmenting result. The equation of erosion algorithm was
summarized as:

X Θ B ¼ X � b ¼ {z: (B þ z) ⊆ X}

Where X Θ B is defined as the opening off set X by structural element B,
the erosion of X by B is the set of any b such that B, translated by b, is
contain X.

2.7.3. Pancreatic fat measurement
Traditional manual pancreatic fat segmentation defines areas of in-

terest (ROI) throughout the whole pancreas in order to lessen inter- and
intra-observer variability, and findings were reported by the program of
Image J with automatically analyzed pixel percentage. The pixels that
represented histologically confirmed blood arteries, ducts, or visceral fat
and had fat percentage values between <1% and >20% were carefully
eliminated. We will enable our CNN the same feature as manual opera-
tion for accumulating the corresponding fat pixels. The information of fat
percentage was shown by the different brightness of pixels from the
phantom result, which can be turned into digital signal by the Pillow
algorithm in Python for the machine learning. The pixels of fat are to be
accumulated and pixels with values of <1% and >20% will be excluded.

3. Results

3.1. Summary of phantom study results

Figure 4 provided a summary of the phantom experiment's findings,
where the IDEAL fat gradient heatmaps for separated water, fat, and fat
fraction are displayed. The gradient of each phantom emulsions was
plotted linearly and compared with the true fat volume fraction.
Figure 4d demonstrated the high correlation between the real fat volume
fraction and the fat fraction from IDEAL and MRS (slope ¼ 0.99, R2 ¼
0.99, P < 0.001) in IDEAL and (slope ¼ 0.95, R2 ¼ 0.99, P < 0.001) in
MRS. It was less biased in MRS when compared to the zero-intercept
(0.69). The reason for this is probably because in IDEAL, the
Figure 3. The overview of the new DCNN for
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magnitude values of F and Wwere employed in the fat fraction operation
in Eq. (a) to balance the effects of the inherent noise in the separated fat-
water images and the phase errors caused by eddy currents from the
magnet hardware. It was also claimed that the IDEAL approach is more
accurate at assessing fat content and more dependable at separating fat
from water. The pixel length was converted to length in millimeter
through measuring tools in the app of Image J. We measured the real size
of the diameter (42mm) of the bottle by tape and, the result matched the
one received from the software. We also measure the length of the
container for reference shown in Figure 4c. The result was concluded in
the table, and the average convert ratio was 0.76. The pixel to digital
information conversion was done by python pillow algorithm and the
brightness gradient was generated on machine shown in Figure 4e.

3.2. HFF results of IDEAL and MRS from patients

TheHFF results from two subjects that read from both IDEAL andMRS
was illustrated in Figure 5a. One subject (patient 16) had a lean liver with
theHFFIDEAL readingof 5.32%andHFFMRS readingof 4.94%, respectively.
The other (patient 3) had a relative fattier liver with the HFFIDEAL reading
of 34.28% and HFFMRS reading of 35.61%, respectively. Figure 5.a sum-
marized the paired t-test result between theHFFIDEAL and theHFFMRS from
all 16 MRI scans. The outcome indicated that the two measurements did
not differ significantly (P ¼ 0.239). The Pearson's correlation result (P <

0.01) showed that a strong agreement between the HFFIDEAL and the
HFFMRS. The regression results further proved that the fat fraction read-
ings from both MRS and IDEAL were highly matched. The slope was
0.9787, the intercept was 0.0632, the R2 was 0.99, respectively.

3.3. Validation of PFF results from patients

3.3.1. PFF results of IDEAL and MRS from patients
The PFF results from two subjects that read from both IDEAL andMRS.

Participant 14 had a lean pancreaswith the PFFIDEAL reading of 4.32%and
PFFMRS readingof 6.88%, respectively. Participant 11had a relative fattier
pancreas with the PFFIDEAL reading of 14.23% and PFFMRS reading of
22.36%, respectively. Figure 5b illustrated the paired t-test result between
the PFFIDEAL and the PFFMRS from all 16MRI scans. The result showed that
there was a significant difference between the two readings (P < 0.02).
The Pearson's correlation result (P < 0.05) indicated that there was a
relatively similar trend between the PFFIDEAL and the PFFMRS. However,
the regression results showed that the fat fraction readings from IDEAL
and MRS were not agreed with each other. The slope was 0.5884, the
intercept was 0.7324, the R2 was 0.92, respectively.

3.3.2. PFF validation by manual operation
The PFFIDEAL and PFFMRS were compared with the manually derived

PFF results, which were shown in Figure 6 a.b. The regression correlation
between PFFMANUAL and PFFMRS was 0.2703 with the interception of
1.4005, and R2 of 0.7397. The regression correlation between PFFMANUAL
segmenting the pancreas from MR image.



Figure 4. Phantom results from oil-water emulsion. a.) the water image. b.) the heatmap of fat fraction gradient. c.) the fat images with the result of pixel to millimeter
length conversion measurement. d.) correlation between real fat volume fraction and the mean fat fraction derived by MRS and IDEAL. e.) Fat fraction gradient
heatmap generated by python pillow algorithm for machine learning.
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and PFFIDEAL was 0.4516 with the interception of 1.1308, and R2 of
0.7738. The regression gradient of both readings of PFFMRS and PFFIDEAL
and PFFMANUAL sloped away from the identity line, which means the PFF
readings from the artificial method was not in agreement with the MRI
machine. The t-test result also showed there was a significant difference
between PFFMANUAL and PFFMRS with p < 0.01 and between PFFMANUAL
and PFFIDEAL with p < 0.01. The general pancreatic fat deposition range
was reported as 1.8%–10.4% with a mean of 4.5% [29], which was
shown on the box-plot graph by a dashed line.

3.4. CNN parameters from phantom study

By running Bayesian optimization, we evaluated the optimum of
hyperparameters and layers of DCNN by inputting our limited MR
6

images. The batch size was 726, epochs was 43.5, learning rate was
0.037, neurons was 28.6, and the optimizer was 0.73. We converted the
pixel length (PL) to real length in millimeters (RL) for future study. The
conversion ratio of PL and RL was averaged as 0.76. The fat fraction
information has also been converted into digital signal and applied into
the novel DCNN (Figure 4 e) and ready to use.

The new DCNN was trained by limited numbers of MR images (200)
from the patients, and the preliminary results was shown in Figure 7. The
best segmentation result is close to the expert. However, most of the
images were out of the segmenting accuracy due to the limited training
set. The evaluation parameters were summarized in Figure 7b. We
trained the machine to segment the pancreas from fat MR images and by
applying the erosion algorithm, we can successfully label the potential fat
pixels.



Figure 5. Pancreatic fat fractions (PFF)
and Hepatic fat fractions (HFF) results
from both MRS and IDEAL. a.) t-test box-
plot result showed that the HFF of
IDEAL was similar from PFF of MRS
with p value of 0.239 and Pearson's
correlation and regression of HFF
derived by IDEAL and MRS were also
shown in 16 studies. b.) t-test box-plot
result showed that the PFF of IDEAL
was significantly different from PFF of
MRS with p value of 0.017 and Pearson's
correlation and regression of PFF be-
tween IDEAL and MRS were also shown
in 16 studies.
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4. Discussion

In our study, we compared and evaluated the effectiveness of IDEAL
and MRS in measuring the MRI-derived PFFs. The resulting PFFIDEAL and
PFFMRS data for each processing approach were compared with the
manually derived PFF data to assess the efficiency of these pancreatic fat
fraction quantification methods.

In our phantom study using a set of emulsion standards, we have
demonstrated that the underlying fat volume fraction was well associated
with both the MRS and IDEAL fat fractions (Figure 4). Other studies have
also verified this robust relationship [24, 30]. In the in vivo experiment
for transverse relaxation and intravoxel dephasing (T2, T2*), the IDEAL
algorithm utilized six echoes [31]. We utilized a single echo time of 23ms
for our MRS protocol because the T2 correction required additional echo
times that may have been avoided at the expense of the scan period for
MRS. The results showed that the HFFIDEAL and HFFMRS had great
agreement, while the PFF measurement only had a reasonable correla-
tion between the PFFIDEAL and PFFMRS (Figure 5) since the values were
statistically different. The MRS estimates were almost generally higher
than the IDEAL values. We also noticed that in our data, there were some
extremely large MRS estimates up to 62.8% due to intravoxel field in-
homogeneity in the MRS voxel. Hence this MRS data was abandoned.
Such aberrancies did not appear in IDEAL readings.

The poor PFF correlation between each reading may be attributed to
two reasons. Firstly, MRS voxel placement requires operator expertise in
order to avoid the pancreatic ducts, which can happen because the
7

pancreas is such a small, elongated shaped organ that is frequently
difficult to localize clearly. On localizer images that were scanned after
the patients were positioned inside the MRI tunnel, voxel prescription is
carried out. Since the pancreas MRS was performed after the localizer by
a few minutes, there may have been a spatial mismatch between the
specified voxel and the physiological structure as a result of the patients'
slight mobility during that period. Secondly, respiration caused the
abdominal organs to shift readily [32]. The movement of the diaphragm
during inhalation and expiration causes the pancreas to move along the
superior-inferior axis by roughly 15 mm, which could cause fat signal
contamination due to the large amount of visceral fat around the
pancreas and reflect on MRS spectra. As a result of the liver's relatively
big and uniform structure, which allows for confident positioning within
the organ throughout the respiration cycle, voxel placement is signifi-
cantly simpler for the liver.

In terms of PFF measurements, IDEAL-MRI outperformed MRS. Dur-
ing the patient's breath-hold period, the IDEAL functions clearly and
doesn't call for a high level of operator voxel placement proficiency.
Additionally, following data gathering, IDEAL images were rebuilt, and
fat fraction was calculated on the scanner host computer for an additional
2–3 min. The manual segmentation of HFF and PFF was operated on fat
fraction images directly, which helps to avoid a large amount of back-
ground noise of vessels and non-fat structures. This advantage was also
recognized by parallel validation studies that included large patient co-
horts [24, 33, 34]. However, IDEAL also has intrinsic limitations. Firstly,
IDEAL depends on the respiration restriction of the patient, which is not



Figure 6. Correlation of the manually and machine derived PFF. a.) Regression of MRS PFF and manually derived PFF b.) Regression of IDEAL PFF and manually
derived PFF c.) T-test box-plot results between MRS PFF, IDEAL PFF and Manually derived PFF. The general pancreatic fat fraction range and mean value were noted
with dash line.
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always realistic in certain patients. Secondly, based on Eq (b), to build a
precise model of the fat spectrum, we must assign the values of Δfi and ai,
which are determined by subcutaneous adipose tissue. If the signal of
triglycerides in organs differs greatly from that of subcutaneous fat tissue,
inaccuracies may appear. Thirdly, the values of T2* were assigned for
both water and fat components, which should have been adopted. This
can be addressed by enlarging the acquisition echoes; however, long time
operation also takes potential inaccuracies.

In this study, the manual PFF method was employed to compare the
difference in performance between IDEAL and MRS and to get a more
accurate PFF reading.WeemployedMR-opsymethod that using the Image
J Polygon tool to cycle theROI in the pancreatic parenchymal tissue. These
index regions were selected carefully in order to stay away from any po-
tential contamination of the visceral fat nearby (Figure 2). The threshold
was adjusted until satisfactory fat pixels were exposed. Then pixels within
the threshold range of between 1% and 20%were selected, measured and
converted into fat percentage by Image J tool. The total area of the
pancreas on each slice were obtained and summed. The ratio of the
pancreatic fat area and total pancreas area were noted and counted into
the PFFMANUAL. Based on the result in Figure 6c, in terms of PFF reading.
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The results were exactly laid on the reported general pancreatic fat frac-
tion range (1.8%–10.4% with the mean of 4.5%) [35].

We preliminary evaluated the performance of the DCNN. It is with
feasibility to copy the manual segmentation method onto machine. Based
on the comparison between different fat fraction measuring method, we
solidify the idea that machine learning can significantly improve the
efficiency and accuracy in terms of obesity and other types of metabolic
diseases diagnosing. The knowledge acquired from our study will be
utilized in our future work to focus on the establishment of MRI quan-
tification and to develop machine learning systems to determine the
pancreatic fat depositions in order to link these measurements with
metabolic disorders.

However, there are major limitations of the manual method. Firstly,
there isn't a non-invasively gold standard for measuring fat just in the
parenchymal tissue of the pancreas. With the development of imaging
techniques, in the near future, it is possible to have an superior method
that optimized images with better differentiation the ductal or tiny
vascular structures from parenchymal tissue, such as the T2-SPAIR
sequence [36]. Secondly, the resolution of pancreas imaging in a shorter
period need to be improved. The breath-hold duration was restricted to a



Figure 7. The preliminary results of the temporary DCNN trained by 200 MR images a.) Comparison of segmentation best result of both the DCNN and expert b.)
Evaluation parameters of the DCNN c.) Pancreatic fat segmentation process shown in DCNN.

J.Z. Yang et al. Heliyon 8 (2022) e12478
lot of patient groups, which lowered the resolution of the images. Sparse
scanning techniques may fill the gap soon [37]. Thirdly, the patients
were in different age, gender, and ethnicity groups, which may take
uncertainties in terms of intra organ fat deposition. However, different
methods were applied on measuring the fat fraction for each participant,
which formed comparison. Fourthly, due to the limitation of small data
set, we cannot draw any conclusion on our newly built DCNN. However,
our ideas were feasible to be achieved by machine, which means the
artificial method remains useful because the threshold adjusting can
exclude the areas of visceral fat invasion effectively and the accuracy can
be improved dramatically by examining the detail of the pancreas when
conducting the selection of ROI.

5. Conclusion

In conclusion, the sampling technique has a substantial impact on the
pancreas' ability to quantify fat via MRI. The MRI measurement for
water/fat decomposition is a valuable method for hepatic and pancreatic
fat fraction quantification. Based on our research, we have shown that
the manual pancreatic fat fraction derived approach has a significant
advantage as a pancreatic fat quantification tool. We recommend this
approach as a useful machine learning technique for automating the fat
quantification of pancreatic fat fractions for clinical risk assessment of
metabolic disease and research application.
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