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Abstract

To date, most habitat models of cetaceans have relied on static and oceanographic covariates, and very few have related
cetaceans directly to the distribution of their prey, as a result of the limited availability of prey data. By simulating the
distribution of six functional micronekton groups between the surface and .1,000 m deep, the SEAPODYM model provides
valuable insights into prey distributions. We used SEAPODYM outputs to investigate the habitat of three cetacean guilds
with increasing energy requirements: sperm and beaked whales, Globicephalinae and Delphininae. We expected High
Energy Requirements cetaceans to preferentially forage in habitats of high prey biomass and/or production, where they
might easily meet their high energetic needs, and Low Energy Requirements cetaceans to forage in habitats of either high
or low prey biomass and/or production. Cetacean sightings were collected from dedicated aerial surveys in the South West
Indian Ocean (SWIO) and French Polynesia (FP). We examined cetacean densities in relation to simulated distributions of
their potential prey using Generalised Additive Models and predicted their habitats in both regions. Results supported their
known diving abilities, with Delphininae mostly related to prey present in the upper layers of the water column, and
Globicephalinae and sperm and beaked whales also related to prey present in deeper layers. Explained deviances ranged
from 9% for sperm and beaked whales in the SWIO to 47% for Globicephalinae in FP. Delphininae and Globicephalinae
appeared to select areas where high prey biomass and/or production were available at shallow depths. In contrast, sperm
and beaked whales showed less clear habitat selection. Using simulated prey distributions as predictors in cetacean habitat
models is crucial to understand their strategies of habitat selection in the three dimensions of the ocean.
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Introduction

Since many marine top predators, especially cetaceans, are

currently in decline [1], establishing models that correctly describe

and predict their preferred habitats is critical to develop

appropriate conservation strategies. However, pelagic ecosystems

are vast dynamic and complex systems that represent specific

challenges for modelling cetacean habitats. Oceanographic

processes are characterised by spatial or temporal lags between

physical features and the resulting biological responses [2]. To

provide robust indicators of cetacean distributions, environmental

predictors of habitats must be carefully selected and be represen-

tative of the ecological processes underlying these distributions.

To date, cetacean habitats have mostly been modelled using

oceanographic features and primary production as predictors [3–

6]. Cetaceans were shown to be related to bottom depth or slope,

sea surface temperature, nutrient concentrations, as well as

primary production. Such predictors are assumed to be good

indicators of the distribution of lower trophic levels and

subsequently of the entire food web. However, the main issue

with such distal predictors is the existence of potential lags between

oceanographic processes and biological response at upper trophic

levels. To ensure that models explore direct biological relation-

ships and avoid these lags, habitat modelling should be performed

with predictors as close as possible to driving variables [7], namely

prey distribution, since cetaceans are very sensitive to variations in

prey abundance or quality [8]. However, data on prey distribu-

tions are not available at large spatiotemporal scales, explaining

the scarcity of studies incorporating prey abundance in habitat

models.

Another advantage of incorporating prey distribution in habitat

models is that it provides a good tool to explore foraging strategies

of cetaceans at large scale. Spitz and colleagues [9] demonstrated

that energetic requirements governed cetacean foraging strategies,

in accordance with the Optimal Foraging Theory [10]. Extrap-

PLOS ONE | www.plosone.org 1 August 2014 | Volume 9 | Issue 8 | e105958

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0105958&domain=pdf


olating this strategy of prey selection to habitats, Mannocci and

colleagues [11,12] found that the general energetic requirements

of cetaceans governed their strategies of habitat selection over

large spatial scales. High Energy Requirements (HER) cetaceans

preferentially exploited habitats of high primary production,

whereas Low Energy Requirements (LER) cetaceans were less

sensitive to habitat quality, as expressed by lower primary

production. These results were obtained using habitat models

based on cetacean sightings collected from aerial surveys in the

South West Indian Ocean (SWIO) [11] and French Polynesia (FP)

[12], together with distal static and oceanographic predictors.

In the present study, we aimed to further explore this

hypothesis, using prey distributions as proximal predictors of

habitat quality. In the absence of synoptic datasets of prey, i.e.
mainly micronekton, at such large spatial scales, we turned to

numerical models. One original modelling approach has been

developed [13] as a component of the Spatial Ecosystem And

Population Dynamics Model (SEAPODYM). This model de-

scribes six functional groups of prey defined by their daily vertical

migration patterns in three biological layers from c. 0 to

.1,000 m. It has been successfully used to analyse tuna catch

data [14], simulate habitats and movements of turtles [15] and

predict the large-scale population dynamics of several tuna species

based on hindcast simulations from coupled physical-biogeochem-

ical models [13,16–18].

In this study, we developed habitat models of cetaceans based

on the same sightings as Mannocci and colleagues [11] in the

SWIO and Mannocci and colleagues [12] in FP for the same three

energetic guilds of cetaceans (sperm and beaked whales,

Globicephalinae and Delphininae). Instead of predicting habitat

based on static and oceanographic variables, we implemented

Generalised Additive Models to highlight relationships between

cetacean densities and simulated distributions of their potential

prey. We predicted cetacean habitats at the regional scale and

highlighted the differences between the SWIO and FP. Since

SEAPODYM outputs provide biomass and productivity of

potential prey of cetaceans and match the survey periods, their

use as predictors should limit spatial and temporal lags with the

response variable.

As Mannocci and colleagues [11,12], we wanted to explore to

what extent the energy requirements of cetaceans govern their

strategies of habitat selection. Therefore, we expected HER

cetaceans to have narrower foraging habitats, focusing on areas

with high prey availability to sustain their high energy require-

ments, whereas LER cetaceans would use a wider range of prey

availability. Moreover, since SEAPODYM outputs provide a third

dimension (depth), we investigated emerging statistical relation-

ships between prey groups of different water layers and cetaceans

diving abilities (Figure 1A). Delphininae would be able to access

mostly prey inhabiting epipelagic and mesopelagic layers, whereas

Globicephalinae and sperm and beaked whales would be able to

exploit prey up to the bathypelagic layer.

Data and Methods

Aerial Surveys
Two tropical regions were studied: the SWIO and FP, which

allowed cetacean habitats to be studied in a large range of

environmental conditions. The SWIO can be divided into three

ecoregions: the Mozambique Channel, the Seychelles and the

Mascarene Islands area. The Mozambique Channel is charac-

terised by a very dynamic system of mesoscale eddies [19,20],

inducing a pronounced enhancement of phytoplankton produc-

tion [21]. Enhanced productivity is also associated with mid-ocean

shallow banks of the Seychelles plateau [21], whereas the

Mascarenes are characterised by low-nutrient subtropical waters

[22].

French Polynesia extends from the southern border of the

productive equatorial upwelling (cold tongue) to the core of the

South Pacific oligotrophic gyre, where downwelling precludes any

upward flow of nutrients [23], defining a clear latitudinal

productivity gradient. In the north, the Marquesas Islands are

associated with a significant enhancement of phytoplankton

production owing to an island mass effect [24] and the proximity

of the equatorial upwelling. In the south, extreme nutrient scarcity

in the euphotic layer results in a very low primary production [25].

Aerial surveys were conducted during the austral summer in the

SWIO (December 2009–April 2010) and FP (January–May 2011)

(Figure 2). In the SWIO, the sampled region encompassed an area

from 1 to 27uS and from 39 to 61uE. Six geographic sectors were

sampled to encompass the three ecoregions: Northern, Central

and Southern Mozambique Channel, The Seychelles, Tromelin-

Madagascar and Reunion-Mauritius. French Polynesia lies

between 5 and 30uS, and 156 and 132uW and includes five

archipelagos, corresponding to the following sampled sectors

covering the entire latitudinal productivity gradient: Marquesas,

Society, North and South Tuamotu, Gambier and Australs

Archipelagos.

Data were collected following the same standardised aerial

protocol in both regions. This was based on a line-transect

methodology [26], in which the angle to the track line was

recorded for each observation. This angle, together with the flight

altitude, informed about the perpendicular distance from the track

line, required for the estimation of effort per grid cell (estimation of

the effective strip width by distance sampling, ESW see [11] and

[12]). Survey platforms were high-wing double engine aircrafts

equipped with bubble windows, allowing a vertical observation of

the sea surface. Sightings and group size were recorded at the

lowest possible taxonomic level. Beaufort sea-state, turbidity, glare

severity, cloud coverage and an index of subjective conditions were

also collected on board as detection covariates.

The total survey effort was 83,726 km in the SWIO [11] and

98,476 km in FP [12]. Observed encounter rates collected on

effort amounted 0.0282 Delphininae per km2 in SWIO and 0.0018

in FP, 0.176 Globicephalinae per km2 in SWIO and 0.022 in FP

and 0.007 individuals per km2 in SWIO against 0.004 in FP for

sperm and beaked whales (see Figure S1 and Table S1, and

Mannocci and colleagues [11,12] for details on the sightings). Data

can be found online on the PELAGIS Observatory website

(http://www.observatoire-pelagis.cnrs.fr).

Cetacean guilds
The vast majority of cetaceans sighted during the survey

(conducted in the austral summer) were odontocetes. The

classification of odontocetes species into guilds relied on their

energetic costs. Spitz and colleagues [9] demonstrated that HER

species have a high muscular mitochondrial density and lipid

content because their metabolism burns O2 at high rates, whereas

LER species have a lower muscular mitochondrial density and

lipid content due to lower O2 consumption. Since diving abilities

are restricted by energetic capacities, the energetic costs of living of

cetaceans mirror their diving abilities (depth and duration): species

that have high capacities to save oxygen and reduced energy

requirements are able to perform deep and long dives. Therefore,

we used diving abilities as a proxy for their energy requirements to

classify cetacean species into three guilds: sperm and beaked

whales, Globicephalinae and Delphininae (from deeper to
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Figure 1. Vertical repartition of cetaceans and prey in the water column. The three layers are defined as in SEAPODYM, for an average
situation with an euphotic depth of 100 m. A: Average and maximum diving depths of the three studied cetacean guilds (Delphininae,
Globicephalinae and sperm and beaked whales). B: the six micronekton functional groups as defined in SEAPODYM, classified according to their
daytime layer and their daily vertical migration (see text for details).
doi:10.1371/journal.pone.0105958.g001

Figure 2. Study regions: South West Indian Ocean (A) and French Polynesia (B). Six geographic sectors were sampled in each region. Each
sector was subdivided into bathymetric strata: neritic strata (red; absent in French Polynesia), slope strata (green) and oceanic strata (blue). Sampled
transect lines are represented by solid lines inside sectors. For details on the sampling design, see [11,12].
doi:10.1371/journal.pone.0105958.g002
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shallower divers, see [11] and [12] for the species composition of

these guilds).

Prey types foraged on by studied cetacean species roughly

match the size range of micronekton as defined in SEAPODYM

(prey of 1 to 20 cm in size). All cetacean species studied here

forage on prey included in this size range, although for most of

them, the upper limit of the observed range size of consumed prey

was greater than the upper limit of the modelled range.

Concerning Delphininae, the mean prey sizes rarely exceed

20 cm [27–32]. For Globicephalinae, the range of prey size also

encompasses the SEAPODYM size window [27,33,34]. Lastly,

size range of prey consumed by sperm and beaked whales also

overlap the SEAPODYM size window [27,34–36]. Although

sperm whales are known to prey upon giant squids, Evans &

Hindell [36] showed that squids greater than 1 m in size

represented only 0.6% of all the cephalopods present in diet

samples, and individuals smaller than 30 cm represented 73.5% of

the diet.

SEAPODYM outputs
The SEAPODYM model simulates several functional groups of

micronekton [13], used initially to predict the distribution of tuna

populations [16]. In the present study, only predicted micronekton

distributions were used. Micronekton encompasses actively swim-

ming organisms roughly in the size range of 1–20 cm, including

cephalopods, crustaceans, fishes and jellyfishes [37].

Micronekton modelling is driven by temperature, currents,

primary production and euphotic depth. The physical variables

are provided by the Mercator-Ocean GLORYS-2v1 (GLobal

Ocean ReanalYsis and Simulations) reanalysis. Net primary

production and associated euphotic depth are derived from ocean

colour satellite data (http://www.science.oregonstate.edu/ocean.

productivity/), using the Vertically Generalised Production Model

(VGPM) [38]. GLORYS 2v1 is an eddy-permitting global ocean

reanalysis produced for the 1992–2009 period, with the ocean

general circulation model configuration ORCA025 NEMO [39]

at a resolution of 0.25u61 day and an assimilation method

adapted to this configuration [40]. Because satellite (sea surface

temperature and altimetry) and in situ data are assimilated into

this ocean reanalysis, predicted fields of temperature and currents

are coherent with those of primary production derived from ocean

colour data. Both GLORYS-2v1 outputs and primary production

data were interpolated onto a regular 0.25u60.25u grid with a

weekly time step to be used as forcing for the SEAPODYM model.

In SEAPODYM, the functional groups of micronekton are

characterised by their time of development relative to water

temperature [13], through allometric relationships. Each func-

tional group is modelled as a single multi-species population, with

continuous mortality rates and recruitment. Organisms are

recruited into the micronekton population when they reach a

minimum weight of 1 g (also estimated on the basis of the time of

development related to water temperature) and disappear from it

when they either die or exceed the maximum size. Production is

thus defined as the amount of energy transferred at the time of

recruitment in the functional group.

Micronekton is characterised by nycthemeral vertical migra-

tions induced by daylight variations. Such behaviour is thought to

be mainly a predator avoidance strategy: micronekton sinks to

deeper layers during daytime where predation pressure is lower

[41]. The SEAPODYM model includes six functional groups

defined according to their migration patterns (Figure 1B): epipe-

lagic, non-migrant mesopelagic, migrant mesopelagic, non-mi-

grant bathypelagic, migrant bathypelagic and highly migrant

bathypelagic [13]. Migrant mesopelagic and highly migrant

bathypelagic organisms spend the night in the epipelagic layer

and move back to their respective layers during the day. Migrant

bathypelagic organisms also perform a migration, but only

between mesopelagic and bathypelagic layers.

The three layers are defined relative to the euphotic depth

(Figure S2). In the most recent version of SEAPODYM, the

boundary between epipelagic and mesopelagic layers is defined as

1.5 euphotic depths, whereas the limit between mesopelagic and

bathypelagic layers is 4.5 euphotic depths. The SEAPODYM prey

population model has been parameterised and evaluated with

biomass estimates from micronekton sampling cruises (e.g.,
[42,43]) and ADCP backscatter data [18].

Data processing
Effective strip widths (ESWs) were estimated for each cetacean

guild by fitting detection functions to perpendicular distances using

multiple covariate distance sampling [44] to model the effect of

both distance and detection conditions on detection probability.

Results are presented in [11] for the SWIO and [12] for FP. To

model cetacean habitats, we used micronekton outputs from

SEAPODYM as predictors. Euphotic depth (as used in SEAPO-

DYM and computed from the VGPM model) was included, to

consider variations in vertical accessibility of micronekton to

cetaceans between the different geographic sectors. Since

SEAPODYM outputs were provided at a 0.25u60.25u spatial

resolution, cetacean sightings and sampled surface areas were

aggregated at the same temporal resolution on the same horizontal

grid using ArcGIS 10 [45]. The observed numbers of individuals

as well as sampled surface areas were summed in each grid cell.

The sampled surface area for each single transect was the transect

length multiplied by twice the corresponding associated ESW.

Both production and biomass of each micronekton functional

group (i.e., 12 variables) were tested as potential predictors. As

noted above, the production represents the new cohort of

organisms recruited into the micronekton group when they reach

the minimum weight fixed at 1 g. Therefore, it can provide

different information on the behaviour of predators. The selection

of production rather than biomass for a given group would suggest

that predators have a preference for targeting prey of small sizes,

but that are easier to catch and in greater abundance than the

older and larger organisms accumulated into the biomass of the

corresponding micronekton group. The spatial distributions of

these functional groups are described in Text S1 and Figures S3

and S4.

Habitat modelling
We used Generalised Additive Models (GAMs; [46]) to model

the relative densities of the three cetacean guilds. We used a quasi-

Poisson distribution with variance proportional to the mean,

because the dispersion of our data was greater than that predicted

by the classical Poisson distribution (over-dispersion; [47,48]). The

mean of the response variable was related to the additive predictor

by a log-link function.

The relationship between the response variable (number of

individuals per pixel i) and the additive predictor was

modelled in both regions as log(individuali)~az
P

fi(Xi)z
log(sampledareai)where fi(�X i) is a non-parametric smooth

function (spline) of the covariate X, and log(sampledareai) is the

model offset. This offset allowed the variation in the amount of

effort per pixel to be taken into account [49]. Micronekton

biomass and production were log-transformed prior to model

selection to limit outliers. To avoid over-fitting of the data while

allowing the curve to be non-linear, we constrained the maximum

number of degrees of freedom for each spline to three.
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A selection procedure was implemented based on models with

between one and four covariates, excluding all combinations of

covariates with a pair-wise correlation higher than 0.7 in the

SWIO, and 0.8 in FP (Table S2). These correlations were

calculated with the Spearman correlation test implemented in R

[50], using the Hmisc package [51]. The selection criterion was

the Generalised Cross-Validation score (GCV, the lower the

better). The GCV score is a prediction error criterion: it estimates

the mean error, by removing each datum in turn and re-predicting

it from the model fitted to the remaining data [52]. For each

selected model, we quantified the contribution of each covariate to

the linear predictor, as a percentage [53].

Finally, we produced prediction maps for each guild for both

regions based on the selected models using SEAPODYM outputs

averaged over the period of each survey (3–4 months). We

predicted only within the range of sampled covariate values

(model-based interpolation; [54]) to avoid extrapolation. In order

to allow comparisons between cetacean guilds and regions, we

provided relative density maps, showing predicted densities

(individuals per km2) normalized by the highest predicted density

over the two regions and the three guilds (here, Globicephalinae in

SWIO). Moreover, we mapped uncertainty of the model

parameters with the coefficient of variation (CV). Model selections,

the quantification of contributions and predictions were performed

in R using the mgcv package, especially gam and predict.gam

functions [52,53].

Results

Cetacean habitat models
Delphininae. In the SWIO, the distribution of Delphininae

was best predicted by a model containing, in order of decreasing

contributions: euphotic depth, non-migrant mesopelagic biomass,

epipelagic biomass and migrant bathypelagic production (Ta-

ble 1). This model explained 21.7% of the deviance. In the 5–95%

quantile interval (corresponding to the core data; Figure 3A),

relationships were negative with euphotic depth, positive with non-

migrant mesopelagic biomass and unimodal with the other two

covariates.

In FP, the selected model (19.1% of the explained deviance) also

contained euphotic depth, but as the least contributory covariate

(Table 1). The other selected covariates were non-migrant

bathypelagic biomass and production and epipelagic production.

In the 5–95% quantile interval (Figure 3B), relationships were

positive with non-migrant bathypelagic biomass and epipelagic

production, but negative with non-migrant bathypelagic produc-

tion and euphotic depth.

Globicephalinae. In the SWIO, the selected model for

Globicephalinae explained 17.7% of the deviance and contained,

in order of decreasing contributions (Table 1): epipelagic produc-

tion, euphotic depth, highly migrant bathypelagic production and

non-migrant mesopelagic biomass. In the 5–95% quantile interval

(Figure 4A), relationships were negative (and linear) for euphotic

depth and non-migrant mesopelagic biomass, positive for highly

migrant bathypelagic production and unimodal for epipelagic

production.

Figure 3. Smoothed functions for the selected covariates for Delphininae in the two study regions. The South West Indian Ocean model
is shown in panel A, French Polynesia model in panel B. The solid line is the smooth function, shaded regions represent the 95% confidence intervals.
The percentage indicated below each graph is the contribution of each covariate in the linear predictor.
doi:10.1371/journal.pone.0105958.g003
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In FP, euphotic depth did not appear among the predictors,

with a model explaining 47.1% of the deviance (Table 1). The

selected model contained non-migrant bathypelagic biomass, non-

migrant mesopelagic biomass and production and migrant

bathypelagic production. In the 5–95% quantile interval (Fig-

ure 4B), the relationship was positive with non-migrant bathype-

lagic biomass, whereas for the other three covariates the predicted

density remained very close to zero, indicating a weak effect of

these covariates.

Sperm and beaked whales. The model for sperm and

beaked whales had the lowest explained deviances, both in the

SWIO and in FP, with 8.7% and 12.2%, respectively (Table 1). In

the SWIO, their distribution was best predicted by highly migrant

bathypelagic production, euphotic depth, migrant bathypelagic

production and epipelagic production, in order of decreasing

contributions. Relationships were negative for euphotic depth,

migrant bathypelagic production and epipelagic production in the

5–95% quantile intervals (Figure 5A) but positive with highly

migrant bathypelagic production.

In FP, the selected model included, in order of decreasing

contributions (Table 1), migrant mesopelagic biomass, migrant

bathypelagic biomass and production and euphotic depth.

Relationships were complex in the 5–95% quantile intervals

(Figure 5B), with unimodal relationships for the last three

covariates, but a positive relationship with migrant mesopelagic

biomass.

Predicted distributions
Delphininae. In the SWIO, high relative densities of

Delphininae were predicted in the north of the region (especially

off Kenya and southeast of the Seychelles), in the Mozambique

Channel and south of Madagascar (Figure 6A). Lowest predicted

densities were around the Mascarenes (Tromelin-Madagascar and

Reunion-Mauritius). Mean predicted relative density was

3.8.10202 over the whole region (Table 2), with a ratio of 17.8

between the highest and the lowest density sectors. Uncertainty

was the lowest where density was the highest (Figure 7A).

In FP, the model predicted much lower relative densities, with a

regional mean of only 1.3.10-03 (Table 2). The highest relative

densities were predicted in the southwest of the Marquesas and the

lowest in the south of the region (Figure 6B), with a ratio of 14.1

between the highest and the lowest density sectors. Uncertainty

was the lowest where density was the highest (the same range as in

the SWIO, Figure 7B).

Globicephalinae. In the SWIO, the predicted distribution of

Globicephalinae was similar to that of Delphininae: the highest

relative densities were predicted off Kenya, south of Madagascar

(close to the shelf) and in the Mozambique Channel, the lowest

were predicted east of Madagascar and east of the Mascarene

(Figure 6A). The mean predicted relative density was 1.8.10202

over the region (Table 2). Uncertainty was low over the whole

region, except close to Madagascar and the Mascarene shelves or

slopes (Figure 7A). The between-sector ratio was 7.6.

In FP, the mean predicted relative density over the region was

low (3.6.10204, Table 2). The predictions were relatively homo-

geneous (Figure 6B), especially in the north. The highest relative

densities were predicted west of the Marquesas, and the lowest, in

the south of the region. A low uncertainty was associated with high

densities, but it reached high values in the south, where predicted

densities were the lowest (Figure 7B). The between-sector ratio

was 36.3, the highest value of the three guilds.

Sperm and beaked whales. The sperm and beaked whale

predicted distribution in the SWIO differed from that of the other

two guilds, with a much lower mean relative density (5.3.10204;

Table 2). The highest relative densities were predicted close to the

slopes of Madagascar (Mozambique Channel and south of the

island), the Seychelles and off Kenya. The predicted distribution

was more homogeneous than for Delphininae and Globicephali-
nae, with intermediate relative densities both in oligotrophic and

productive waters (Figure 6A). The between-sector ratio was low

compared to that of the other two guilds, with a ratio of only 2.1

between the highest and the lowest density sectors. An overall low

uncertainty was associated with both high and low predicted

densities (Figure 7A).

In FP, predicted relative densities were the lowest for sperm and

beaked whales, with a mean of 5.4.10204 (Figure 6B, Table 2).

Sperm and beaked whales were homogenously distributed over

FP, with the highest predicted relative densities in the north and

south, and the lowest in central FP. Given the high relative

densities predicted in the Marquesas compared to the other

sectors, the between-sector ratio was 6.1. Uncertainties showed a

different pattern compared to the other two guilds: lowest

uncertainties were associated with low and intermediate predicted

densities, whereas higher predicted densities were associated with

higher uncertainties (Figure 7B). An area of high uncertainty was

found in the northeastern FP.

A comparison of predictions from models with the distributions

of sightings (Figure S1) shows a good agreement for all the three

guilds in both regions.

Discussion

Costs of living and habitat selection
HER cetaceans(Delphininae and Globicephalinae). Del-

phininae have the most energetically costly lifestyle among our

guilds of cetaceans. The most abundant genera (Stenella spp and

Tursiops spp) are known to largely forage at night, mainly from the

surface to 200 m, following both vertical and horizontal migration

of mesopelagic micronekton [55–57]. These two genera also

perform regular or more occasional excursions down to 400–

500 m [56,58]. Given these characteristics, we expected Delphi-
ninae to forage on epi- and mesopelagic prey (Figure 1A).

In the SWIO, Delphininae showed an heterogeneous predicted

distribution (a ratio of 17.8 between sectors), with the highest

relative predicted densities in productive waters. As euphotic depth

was the most contributory covariate, Delphininae appeared to

select areas primarily according to prey accessibility. The

shallowest euphotic depth in the SWIO was 80 m, consequently

the boundary between epi- and mesopelagic layers was 120 m,

resulting in an easily accessible mesopelagic layer for Delphininae
(Figure 8). However, shallow euphotic depth areas were concom-

itant with a high mesopelagic biomass, and deep euphotic depth

areas with a low mesopelagic biomass. The mesopelagic biomass

was the second most contributory covariate with a positive

relationship, hence our results indicates a clear preference for

areas where Delphininae might optimise their foraging success i.e.
where mesopelagic biomass was the highest and the most

accessible.

In FP, euphotic depth was less contributory than in the SWIO,

which may be an indication that Delphininae may have selected

foraging areas more on the basis of prey density than accessibility.

In this oligotrophic region, epi- and mesopelagic layers were

poorer than in the SWIO. To sustain their foraging success

Delphininae might have to forage in the bathypelagic layer, where

overall prey biomass/production were higher. However, the

bathypelagic layer was deeper than the average foraging depth

of Delphininae (200 m, Figure 8), thus they might not sustain the

costs induced by foraging at such a depth on a regular basis.
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Figure 4. Smoothed functions for the selected covariates for Globicephalinae in the two study regions. The South West Indian Ocean
model is shown in panel A, French Polynesia model in panel B. The solid line is the smooth function, shaded regions represent the 95% confidence
intervals. The percentage indicated below each graph is the contribution of each covariate in the linear predictor.
doi:10.1371/journal.pone.0105958.g004

Figure 5. Smoothed functions for the selected covariates for sperm and beaked whales in the two study regions. The South West
Indian Ocean model is shown in panel A, French Polynesia model in panel B. The solid line is the smooth function, shaded regions represent the 95%
confidence intervals. The percentage indicated below each graph is the contribution of each covariate in the linear predictor.
doi:10.1371/journal.pone.0105958.g005
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Therefore, the overall foraging conditions in FP were not in favour

of the guild, explaining why the overall relative density in FP was

on order of magnitude lower than in the SWIO.

Globicephalinae exhibited similar spatial patterns to Delphini-
nae, but appeared to select areas on a different basis. In the

SWIO, high densities of Globicephalinae were found in areas with

intermediate epipelagic production and shallow euphotic depth.

Similar to Delphininae, Globicephalinae appeared to select areas

where high production was the most accessible. High densities

were predicted on the slope of the Seychelles and southern

Madagascar, in accordance with previous field observations

[59,60].

Figure 6. Predicted distributions (relative densities) for the three cetacean guilds in the two study regions. In the South West Indian
Ocean (A) empty pixels were due to the absence of SEAPODYM outputs for the bathypelagic micronekton functional groups in the neritic strata
(bathymetry ,200 m). The limitation of predictions inside the range of sampled covariates values resulted in empty pixels in French Polynesia (B). In
order to enhance contrast, we used a log colour scale.
doi:10.1371/journal.pone.0105958.g006
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In FP, the bathypelagic biomass was the most contributory

predictor, with a similar relationship as for Delphininae, whereas

the other three covariates had low contributions and little effects

on density. Globicephalinae might select this deep layer for the

same reason as Delphininae. However, in contrast to Delphininae,

this layer was probably more accessible for Globicephalinae which

can dive deeper (Figure 8): up to 1,500 m for Peponocephala
electra [61], the most frequently identified species both in the

SWIO and in FP, 1,019 m at dawn and dusk for Globicephala
macrorhynchus [62] and 700 m for Pseudorca crassidens [63]. Due

to their greater diving abilities, the bathypelagic layer would have

been more accessible to Globicephalinae even in deep euphotic

depth areas (Figure 8). This could explain the more homogeneous

predicted distribution compared to Delphininae, as Globicephali-
nae could forage in the bathypelagic layer even in southern FP.

LER cetaceans (sperm and beaked whales)
Distribution patterns differed for sperm and beaked whales

which have the lowest cost of living. In the SWIO, they showed a

slight preference for areas with a high production. However, the

low ratio (2.1) of the mean relative predicted densities between

sectors may be an indication that sperm and beaked are less

dependent with respect to variations in prey availability, and

suggest that they could sustain their needs in both productive and

oligotrophic areas. In FP, this ratio was higher (6.1), because

relative densities were higher around the Marquesas compared to

the other sectors. However, in FP, the mean relative predicted

densities were the same as those in the SWIO: about 5.1024.

Beaked whales forage between 460 and 1,890 m [64,65], while

sperm whales forage between 400 and 1,300 m [66,67] and

Kogidae potentially forage up to 1,500 m, as inferred from their

diets [68] (Figure 8). Since these foraging depth ranges encompass

the three vertical layers defined in SEAPODYM, our results agree

with the observed behaviours of these deep-diving species. In both

regions, the most contributory covariates of habitat models

corresponded to deep layers, i.e., either mesopelagic (SWIO) or

bathypelagic (FP), with positive relationships. The relationships for

the other selected variables were negative and thus more difficult

to explain. A negative relationship with the distribution of

epipelagic production might reflect a general preference for clear

and deep waters rather than shallow coastal waters. Finally, in

agreement with their low costs of living, the relative predicted

densities of sperm and beaked whales showed low variations both

within and between regions.

Table 2. Statistics of the predictions for Delphininae, Globicephalinae and sperm and beaked whales.

South West Indian Ocean French Polynesia

Geographic sectors
Mean Predicted
Relative Densities Mean CV Geographic sectors

Mean Predicted
Relative Densities Mean CV

Delphininae NMC 2.6.10202 14.80 MAR 3.8.10203 17.90

CMC 5.4.10202 12.02 NTU 1.4.10203 15.90

SMC 2.5.10202 14.20 STU 1.0.10203 15.20

RM 3.8.10203 22.20 GAM 5.6.10204 24.60

SE 4.4.10202 12.70 SOC 9.1.10204 14.60

TM 3.0.10203 27.30 AUS 2.7.10204 31.40

Whole Region 3.8.10202 17.80 Whole Region 1.3.10203 20.40

Between-sector ratio 17.79 Between-sector ratio 14.12

Globicephalinae NMC 2.7.10202 14.70 MAR 5.9.10203 18.10

CMC 3.1.10202 13.46 NTU 1.0.10203 15.52

SMC 2.9.10202 13.13 STU 9.1.10204 14.12

RM 5.6.10203 15.54 GAM 5.9.10204 48.10

SE 1.7.10202 12.63 SOC 8.3.10204 16.30

TM 4.0.10203 15.63 AUS 1.6.10204 71.84

Whole Region 1.8.10202 14.01 Whole Region 9.6.10204 34.60

Between-sector ratio 7.58 Between-sector ratio 36.25

Sperm and Beaked Whales NMC 5.5.10204 15.84 MAR 1.3.10203 22.20

CMC 6.1.10204 16.48 NTU 2.2.10204 19.05

SMC 7.5.10204 12.99 STU 2.0.10204 16.60

RM 3.9.10204 14.82 GAM 2.2.10204 12.40

SE 7.5.10204 13.90 SOC 2.6.10204 17.76

TM 3.7.10204 16.30 AUS 4.2.10204 11.90

Whole Region 5.3.10204 14.90 Whole Region 5.4.10204 18.40

Between-sector ratio 2.05 Between-sector ratio 6.14

Mean relative predicted densities and associated mean uncertainty (CV, %) are given for each geographic sector and for the whole regions for the three guilds. The ratio
between the highest and the lowest density sector is indicated for each region (between-sector ratio). In the South West Indian Ocean, NMC: Northern Mozambique
Channel, CMC: Central Mozambique Channel, SMC: Southern Mozambique Channel, RM: Réunion-Mauritius, SE: Seychelles, TM: Tromelin-Madagascar. In French
Polynesia, MAR: Marquesas, NTU: North Tuamotu, STU: South Tuamotu, GAM: Gambier, SOC: Society, AUS: Australs.
doi:10.1371/journal.pone.0105958.t002
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Figure 7. Uncertainty maps associated with the predictions for the three cetacean guilds in the two study regions. In the South West
Indian Ocean (A) empty pixels were due to the absence of SEAPODYM outputs for the bathypelagic micronekton functional groups in the neritic
strata (bathymetry ,200 m). The limitation of predictions inside the range of sampled covariates values resulted in empty pixels in French Polynesia
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Comparison with previous studies
Very few dedicated surveys have been conducted in the SWIO

and FP to document cetacean abundance and distribution [69].

Mannocci and colleagues [11,12] conducted the first habitat

modelling studies at the scale of these regions, relying on the same

sightings, hypotheses and modelling procedure as presented here,

but using oceanographic and static predictors, whereas we used

simulated micronekton distributions as predictors.

Direct comparison between the two modelling approaches is

difficult, as modelling by Mannocci and colleagues [11,12] was

based on a smaller sampling unit (the 10 km-transect segment as

compared to the 0.25u60.25u pixel in the present study). Despite

this difference, the two studies yielded fairly similar prediction

maps [11,12]. In particular, predictions for Delphininae show the

highest densities in the Mozambique Channel and the Seychelles

in the SWIO, and around the Marquesas in FP. Both studies

predicted very low densities of sperm and beaked whales in the

SWIO and FP compared to the other two guilds, with the highest

densities on the slope in the SWIO, and around the Marquesas in

FP. Results were more divergent for Globicephalinae: Mannocci

and colleagues [11] predicted intermediate densities to the east of

Madagascar, whereas our models predicted low densities in this

area.

To date, SEAPODYM has only been used to predict tuna

populations dynamics [13,16–18], albacore tuna catch rates [14]

and the habitat preferences of sea turtles [15]. Our study is the first

to use the simulated distribution of micronekton as a predictor of

cetacean habitats. Such predictors provide additional insights into

cetacean distribution, by integrating the food web, as micronekton

is at least two trophic levels closer to cetaceans than primary

production. In addition, as depth is a key factor in cetacean

foraging strategies, considering the vertical dimension in the

models by using micronekton functional groups appears to

improve cetacean habitat models.

The relationships of marine predators with their prey have

already been studied at the fine scale, notably at the prey patch

level. Torres and colleagues [70] demonstrated that habitat

modelling of dolphins was more successful with environmental

variables than with prey distributions. This was explained by

habitat heterogeneity at the fine scale, coincident with the

patchiness of prey distribution. Benoit-Bird and colleagues [71]

also studied the spatial relationships between predators and their

prey for two seabird and one seal species. They demonstrated the

importance of prey patch characteristics, but found no direct

spatial relationship between predators and their prey. These

studies indicated that, at small scale, prey patch characteristics (the

physical habitat inducing prey aggregation) appears to be more

important for predators than the overall prey biomass. However,

processes highlighted at such small spatial scales refer to foraging

behaviour and are not readily accessible in large-scale sighting

surveys.

At a broader scale, Hazen and Johnston [72] studied the

relationships between cetacean sightings and oceanographic and

biological variables collected along a transect in the central Pacific.

They used acoustic echo-sounding to study the spatial distribution

of the deep scattering layer. Cetaceans were related to the density

of the deep scattering layer with respect to their diving capacities:

pilot whales distribution was correlated with high acoustic densities

(B). In order to enhance contrast, we used the same colour scale (in log) for each guild in both regions but the colour scale is not comparable
between the different guilds.
doi:10.1371/journal.pone.0105958.g007

Figure 8. Water column structure in productive (a) and oligotrophic (b) areas of the South West Indian Ocean and French Polynesia.
The diving abilities of the three cetacean guilds (Delphininae, Globicephalinae and sperm and beaked whales) are indicated. Corresponding
productive and oligotrophic areas are delimited in the two study regions on the right panel.
doi:10.1371/journal.pone.0105958.g008
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of prey in the mid- and deep layers, whereas Stenella dolphins and

false killer whales were associated with a shallower backscattering

layer. Hazen and colleagues [73] developed a habitat model of

Mesoplodon spp in the Bahamas, based on the detection of

foraging clicks. The resulting model (Generalised Linear Model)

explained 54% of the variance, with five significant covariates:

bottom depth, salinity, temperature, prey density and number of

single targets. The latter two covariates had a positive effect on

foraging activity, and their depth matched the known foraging

depth of beaked whales. Although these two studies are based on

in situ prey data, their conclusions are similar to ours, which, in

contrast, rely on simulated prey distributions: cetaceans directly

respond to the horizontal and vertical distributions of their prey in

accordance with their known diving abilities.

Modelling considerations
GAMs are common tools in habitat modelling, given their

ability to model non-linear relationships [2]. Our models are based

on large sample sizes (1,473 pixels were used for modelling in the

SWIO and 1,821 in FP), with a large number of presences (see

[16,17] and Figure S1), thus providing a good statistical basis.

Nevertheless, the ecological interpretation of complex relation-

ships detected through GAMs can be difficult and need to be

analysed with caution.

Low explained deviances are common in GAMs, especially for

cetaceans. For example, in the California Current Ecosystem,

Becker and colleagues [74] obtained deviances ranging from 5 to

32% for delphinids and a deviance of 5% for the sperm whale with

their encounter rates models, with six oceanographic potential

variables in the model selection procedure and three degrees of

freedom. In the Eastern Tropical Pacific, Forney and colleagues

[75] obtained deviances ranging from 5 to 8% for sperm and

beaked whale and from 8 to 28% for delphinids species with their

encounter rates models, with nine oceanographic potential

variables and three degrees of freedom. Deviances of the models

built by Mannocci and colleagues [11,12] ranged between 9.6 and

30% for Delphininae and Globicephalinae and were about 5% for

sperm and beaked whales. In comparison, our models resulted in

higher explained deviances, ranging from 18 to 47% for

Delphininae and Globicephalinae, and from 9 to 13% for sperm

and beaked whales. This suggests that incorporating prey data

might improve cetacean habitat models.

It should be kept in mind that the prey data used here are model

outputs, and thus include a degree of uncertainty. Even if the

ocean reanalysis was produced with data assimilation techniques,

the physical forcing (especially the currents) is not always fully

consistent with in situ measurements, particularly in the deeper

layer and the equatorial region (e.g., [76]). The VGPM model

used to compute vertically integrated primary production provides

an estimate inferred from empirical relationships based on surface

chlorophyll content [77]. The parameterisation of coefficients of

energy transfer from primary production to functional groups is

still preliminary and under revision using parameter optimisation

approach with large datasets of acoustic data.

Nevertheless, the similar predicted distributions obtained when

using SEAPODYM outputs and static and oceanographic

variables [11,12], suggest that SEAPODYM micronekton outputs

may be accurate enough to provide robust predictions at the

regional scale. However, it should be noted that in areas or depths

where micronekton functional groups are not modelled by

SEAPODYM (e.g., bathypelagic functional groups over the

continental shelf, where by definition the deepest layer does not

exist), we were not able to provide predictions of cetacean

densities. This might be important for Delphininae, given that this

guild contains several species with extensive coastal populations

[78,79]. This limitation does not concern studies based on static

and oceanographic covariates, such as Mannocci and colleagues’

[11,12].

Conclusion
This study confirms the findings of Mannocci and colleagues

[11,12] concerning the habitat selection of cetaceans. Delphininae
and Globicephalinae, with relatively high costs of living, showed a

strong dependency on prey biomass and production. In the

productive but contrasting SWIO, they might optimise their

foraging strategies by selecting areas where biomass and produc-

tion are the highest and the most accessible. In the oligotrophic

FP, they might forage in the deeper layers to sustain their energy

requirements, which might induce greater foraging costs and

explain their lower densities. The deep layer accessibility might

even become a limiting factor for Delphininae occurrence in

regions of lower productivity. Conversely, for sperm and beaked

whales with the lowest costs of living, we did not find any strong

differences within and between regions, indicating that they might

be able to sustain their energy requirements by exploiting both

productive and oligotrophic areas. This apparent lack of

preference for productive areas might be due to their deep diving

abilities, emancipating them from the constraint induced by the

strong variability in resources in upper layers, whereas in the

bathypelagic layer micronekton is more evenly distributed across

the ocean basins.

The use of prey biomass and production as predictors in

cetacean habitat models provided encouraging results. The

relationships between cetaceans and their potential prey are

consistent with the results of acoustic-based studies, which relate

cetacean occurrence to estimated in situ prey densities [72,73].

Our study demonstrates that simulated micronekton distributions

are valuable for understanding cetacean strategies of habitat

utilisation in both the horizontal and the vertical dimensions, and

therefore are useful for predicting cetacean habitats without

conducting expensive surveys of prey distributions.

Supporting Information

Figure S1 Numbers of individuals observed per sam-
pled pixel for each cetacean guild in the two study
regions. Sightings observed in the South West Indian Ocean are

presented in panel A, sightings in French Polynesia in panel B.

The 25th, 50th, 75th quartiles and the maximum number of

individuals per pixel are indicated at the top left of each map. For

details on the sightings, see [11,12].

(TIF)

Figure S2 Euphotic depth (m) in the South West Indian
Ocean (A) and French Polynesia (B). Values were averaged

over the survey period of each region.

(TIF)

Figure S3 SEAPODYM micronekton outputs in the
South West Indian Ocean. Values were averaged over the

survey period for the whole region. Covariates were log-

transformed before modelling.

(TIFF)

Figure S4 SEAPODYM micronekton outputs in French
Polynesia. Values were averaged over the survey period for the

whole region. Covariates were log-transformed before modelling.

(TIFF)
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Table S1 Surveyed effort (km) and observed encounter
rates (individuals per km2) of cetacean guilds in each
sector in the two study regions.

(PDF)

Table S2 Correlation matrix for SEAPODYM covariates
in the South West Indian Ocean (in red) and French
Polynesia (in blue). Correlations were calculated with Hmisc

package using the Spearman correlation test in R.

(PDF)

Text S1 Micronekton outputs description.

(PDF)
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