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Abstract

Synchronization of neuronal responses over large distances is hypothesized to be important for 

many cortical functions. However, no straightforward methods exist to estimate synchrony non-

invasively in the living human brain. MEG and EEG measure the whole brain, but the sensors 

pool over large, overlapping cortical regions, obscuring the underlying neural synchrony. Here, 

we developed a model from stimulus to cortex to MEG sensors to disentangle neural synchrony 

from spatial pooling of the instrument. We find that synchrony across cortex has a surprisingly 

large and systematic effect on predicted MEG spatial topography. We then conducted visual 

MEG experiments and separated responses into stimulus-locked and broadband components. 

The stimulus-locked topography was similar to model predictions assuming synchronous 

neural sources, whereas the broadband topography was similar to model predictions assuming 

asynchronous sources. We infer that visual stimulation elicits two distinct types of neural 

responses, one highly synchronous and one largely asynchronous across cortex.
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1. Introduction

Two of the most widely used tools to study dynamic cognitive processes in the human 

brain are magnetoencephalography (MEG) and electroencephalography (EEG). These 

measurement techniques provide whole brain coverage at millisecond time resolution, 

allowing researchers to extract complex spatiotemporal dynamics non-invasively in both 
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healthy and clinical populations. The electric and magnetic fields measured by these 

instruments reflect the superposition of all cellular processes that generate current. These 

processes span temporal scales from a millisecond or less (e.g., action potentials) to 

slow cortical potentials (< 1 Hz; Birbaumer et al., 1990); they span cellular scales from 

dendritic spines to axons and dendrites; and they span circuitry scales, from the idiosyncratic 

fluctuations in the membrane potential of a single neuron to highly synchronized responses 

across centimeters of brain tissue (Buzsaki et al., 2012).

Much of the MEG and EEG literature has focused on neural responses that are synchronized 

across extended regions of cortex. Widespread neural synchrony has been observed in 

many tasks and states. For example, rhythmic responses in the field potential, believed to 

reflect underlying widespread synchrony, often accompany sensory information processing 

(Buzsaki et al., 2012). Changes in cortical states are often characterized by changes 

in synchrony (such as alertness versus asleep (Steriade et al., 1993)), and neurological 

disorders can be correlated with changes in neural synchrony (Uhlhaas and Singer, 2006).

It is thus important to characterize neural synchrony with noninvasive tools. In recent 

decades, there have been substantial advances in measurement methodology such as 

high-density EEG (Robinson et al., 2017) and on-scalp MEG sensor arrays (Iivanainen 

et al., 2017), and in biophysical forward modeling of neuronal currents to extracranial 

sensor responses (Stenroos and Nummenmaa, 2016). Nonetheless, it is still not possible to 

unambiguously infer the spatiotemporal pattern of neural source activity from the measured 

sensor responses. This is because each sensor pools over large and overlapping cortical 

regions, resulting in many possible combinations of source activity that could explain any 

particular observed pattern of sensor responses (Hämäläinen et al., 1993). In some cases, 

increases in power measured extracranially are explained by greater coherence across cortex 

(but, on average, decreased power in cortical fluctuations (Musall et al., 2014)). In other 

cases, increases in power measured extracranially are explained by increases in the power of 

local cortical fluctuations without accompanying widespread synchronization (Frauscher et 

al., 2015).

One way to make inferences about the spatiotemporal pattern of neuronal sources giving 

rise to MEG or EEG data is to invert the biophysical forward model. Because there are 

many more neural sources than there are sensors, the problem is ill-posed (there are many 

solutions). Typically, researchers arrive at a single solution by applying a regularizer or 

other constraints. For example, one can choose the source activity solution with the smallest 

L2-norm (e.g., with minimum norm estimation (Hamalainen and Ilmoniemi, 1994)). This 

may be appropriate when there is no a priori knowledge of the likely pattern of source 

activity. However, the assumptions implicit in the regularizers are, at best, an approximation, 

and in some cases may be highly inaccurate. For example, regularizers will penalize “silent 

sources”, such as simultaneous neural responses from opposite-facing dipoles, even though 

such neural responses may be present and even the largest source of activity. In the extreme, 

seizures are defined by widespread and highly synchronous neural activity. Accurate 

interpretation of the cortical sources of seizure activity has important health implications 

and is an active area of study (Akalin Acar et al., 2008).
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Here, we present an alternative approach that makes use of prior knowledge to predict sensor 

responses from visual stimulation by combining an encoding model from stimulus to cortex 

with a forward model from cortex to sensors (Fig. 1). This approach allows us to separate 

the contribution of neural synchrony on the cortex from the pooling function of the sensors. 

By doing so, we can test specific but constrained hypotheses about the spatiotemporal 

pattern of neuronal responses.

Specifically, we examine two components of the MEG response to visual stimuli which 

are believed to reflect different kinds of neural processes with different degrees of cortical 

synchrony. One component is a stimulus-locked response, fluctuations in the MEG signal 

at the frequency of stimulus contrast-reversals. The second component is a broadband 
response, a spectrally broad increase in amplitude, including temporal frequencies that 

are not in the stimulus. The stimulus-locked response is often measured extracranially 

(reviewed by Norcia et al., 2015), whereas broadband responses are more typically measured 

intracranially (Miller et al., 2014). There has been little study of the two signal components 

in the same individuals in the same experiments with noninvasive methods. Here, we 

measure both of these signal components in the same subjects and compare the spatial 

patterns of the responses across the sensor array to patterns predicted by model-based 

simulations. Comparing the data to simulations with known ground truth helps to make 

inferences about the processes that give rise to the data.

To generate the two types of responses, we conducted a visual steady-state MEG experiment 

where subjects viewed a large high contrast-reversing dartboard pattern. This is a widely 

used paradigm to study stimulus-locked responses, also known as the steady-state visually 

evoked field (‘SSVEF’) or the steady-state visually evoked potential in EEG (‘SSVEP’) 

(Adrian and Matthews, 1934; Van Der Tweel and Lunel, 1965; Norcia and Tyler, 1985; 

Regan, 1989; Norcia et al., 2015). The steady-state paradigm with simple, high-contrast 

patterns has also been shown to be effective for eliciting broadband responses, both in 

intracranial measurements (Winawer et al., 2013) and MEG measurements (Kupers et al., 

2018). While present in the gamma band, broadband responses show different response 

patterns compared to narrow-band gamma oscillations, for example to visual grating stimuli 

(Henrie and Shapley, 2005; Ray and Maunsell, 2011; Hermes et al., 2015; Bartoli et al., 

2019). Increased broadband power has been characterized across the brain (Crone et al., 

1998; Miller et al., 2007, 2009, 2014), is thought to be generated by different neural circuits 

compared to evoked responses (Manning et al., 2009; Miller et al., 2009; Milstein et al., 

2009), and correlates well with the fMRI BOLD signal (Mukamel et al., 2005; Hermes et al., 

2012; Hermes et al., 2017). Both of these signal components are likely to be important for 

understanding how cortical circuits encode visual information.

2. Results

2.1. Visually driven MEG response can be separated into a stimulus-locked and 
broadband component

Subjects viewed a large-field (22° diameter) dartboard pattern that contrast-reversed 12 

times per second, interspersed with blanks (zero-contrast, mean luminance). We separated 

the sensor responses into two components, one time-locked to the stimulus (stimulus-locked) 
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and one that is not (broadband), using the same method as in (Kupers et al., 2018). Because 

the acquisition and analysis methods were the same as in the prior study, we combined data 

from that study (N = 6) with the newly acquired data (N = 6), for a total of 12 datasets.

The stimulus-locked response tends to be large in visually responsive sensors and is defined 

as the difference in amplitude between stimulus and blank periods at 12 Hz (Fig. 2, left 

panel). The second component is a spectrally broad increase in amplitude (Fig. 2, right 

panel). The broadband response is defined as the elevation in amplitude over baseline 

from 60 to 150 Hz (excluding harmonics of the contrast-reversal rate). By definition, the 

broadband signal is not time-locked to the contrast-reversal rate of the stimulus (12 Hz or 

its harmonics). This method of separating the responses differs from the more conventional 

method of summing the amplitude (or power) within distinct temporal frequency bands. 

For example, 83 Hz and 84 Hz would both be considered part of the gamma band, but we 

include 83 Hz and exclude 84 Hz in the broadband computation, since 84 Hz is a harmonic 

of the contrast-reversal rate.

2.2. Stimulus-locked and broadband responses differ in their sensor topography

Both stimulus-locked and broadband responses are largest in posterior sensors, as expected 

from neural activity in visual cortex. However, the two components show distinct spatial 

topographies across these posterior sensors (Fig. 3). The stimulus-locked response is split 

into two groups of sensors, extending laterally to left and right. There is a decreased 

amplitude in the central posterior sensors (Fig. 3, top row). This pattern holds for individual 

subjects and data that are sensor-wise averaged across subjects. Because we define the 

stimulus-locked responses as the amplitude component of the Fourier transform at the 

stimulus frequency, the plots do not show phase data. The phases of the left and right two 

regions are in approximate counter-phase in both the single subject and the group average 

(see the script makeFigure3PhaseMaps.m).

The broadband responses differ in their spatial topography: the largest response is in the 

central posterior sensors, at approximately the same location where the stimulus-locked 

responses show a decrement in amplitude (Fig. 3, bottom row). The overall spatial pattern 

of broadband responses is unimodal, whereas the stimulus-locked responses tend to be 

bimodal. These differences in spatial topographies can be seen at both group level and in 

individual subjects (Fig. 3 and Supplementary Fig. S1).

We considered whether the difference in response pattern could be due to the fact that the 

stimulus-locked response is defined at a single frequency, whereas the broadband response 

is spread across a large frequency band. For example, if the broadband response was also 

bimodal, but the specific pattern differed across temporal frequency bands, then combining 

across bands might blur out the distinct spatial peaks. We checked for this possibility 

by analyzing the spatial pattern of the broadband response in separate, narrow frequency 

bands, and find that each band tends to show unimodal patterns, similar to what we find 

for the analysis combined across 60–150 Hz (Supplementary Fig. S2). Moreover, when 

the stimulus-locked response is analyzed to include harmonics of 12 Hz up to 144 Hz, 

combining across many frequencies, it retains a bimodal distribution (Supplementary Fig. 
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S3). Thus, the difference in pattern does not appear to arise from the bandwidth of the 

signals.

Why are the spatial topographies of stimulus-locked and broadband responses different? 

Typically, a difference in sensor topography would be interpreted as a difference in source 

topography. For example, the broadband responses might arise from one set of visual areas 

and the stimulus-locked response from a different set. However this interpretation is unlikely 

given prior measurements from intracranial ECoG electrodes: both stimulus-locked and 

broadband responses are reliably measured from the same electrodes spanning multiple early 

visual areas (Winawer et al., 2013).

Instead, we hypothesize that the stimulus-locked and broadband responses measured in the 

MEG sensors both originate from sources in early visual cortex, differing in their temporal 

properties rather than spatial properties. Specifically, we speculate that the same (or similar) 

cortical locations generate both types of responses, but that the sources generating the 

stimulus-locked response are synchronized across a large spatial extent, whereas those 

generating the broadband response are not.

2.3. An MEG encoding model: predicting sensor responses from the stimulus

To assess whether a difference in temporal properties alone could account for the observed 

differences in spatial topographies, we simulate two types of cortical activity, one with 

widespread neural synchrony (synchronous) and one without (asynchronous), with both 

types of activity arising from the identical set of cortical locations. For the synchronous 

and asynchronous simulations, we separately compute the predicted spatial topographies 

in the MEG sensors. We then compare these predicted topographies to the observed MEG 

topographies from the stimulus-locked and broadband data components.

Importantly, whether or not there is widespread neural synchrony is an independent question 

from whether or not the responses are time-locked to the stimulus. For example, it is 

possible that neuronal responses contain frequencies not in the stimulus, but that are 

synchronized across space. These responses would be synchronous but not time-locked to 

the stimulus. This might occur if multiple cortical locations respond with the same temporal 

non-linearities. The converse is also possible: each local region could be time-locked to the 

stimulus, but differ in phase, rendering the responses asynchronous (out of phase) across 

space.

We developed an encoding model that takes a visual stimulus as input, generates a predicted 

response on the cortical surface, and projects these predicted cortical responses to MEG 

sensors. To do so, we first extract a spatial and temporal feature from the stimulus: the 

contrast aperture and the contrast-reversals (Fig. 4, Step 1.1).

The contrast aperture is then used to select cortical locations (surface vertices) in visual 

areas V1, V2, and V3 with preferred visual field centers falling within the aperture (Fig. 

4, Step 1.2). These visual field preferences are computed for each individual subject by 

applying the anatomical retinotopy templates by Benson et al. (2014) to the reconstructed 

cortical surface of a T1-weighted anatomical image.
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The contrast-reversals are used to simulate the neural time series, which we assume to 

be a harmonic at the contrast-reversal rate (Fig. 4, Step 1.3). For all the selected surface 

vertices, we assume unit amplitude and a fixed frequency. Other sources (locations outside 

V1-V3 or with visual field locations outside the stimulus aperture) have a time series with 

no modulation (all zeros). For the synchronous simulation, the harmonics for all cortical 

locations have the same phase. For the asynchronous simulation, the phases are randomized 

across cortical locations. This distinction is specified by a binary synchrony parameter.

The simulated cortical activity matrix is then multiplied by the gain matrix to generate 

predicted sensor responses (Fig. 4, Step 2). The gain matrix, also referred to as the ‘volume 

conductor model’ or ‘forward model’, describes the weighted sum of cortical locations that 

contribute to each MEG sensor based on the cortical geometry, the sensor locations, and the 

physics of magnetic fields. Because the geometry of cortex and position in the MEG differs 

across subjects, the gain matrix and predicted sensor maps also differ between subjects. For 

each subject, and on the average across subjects, we compare the predicted MEG sensor 

responses with the observed MEG sensor responses by summarizing the predictions as the 

average amplitude at the input frequency across simulated epochs.

2.4. Source synchrony affects predicted MEG sensor topography

Our model predictions show qualitatively different spatial topographies depending on the 

underlying synchrony. For synchronous sources, the model predicts the largest amplitudes 

in two lateralized groups of posterior sensors, separated by a decrease in amplitude in the 

central posterior sensors (Fig. 5, top row). In contrast, model predictions for asynchronous 

sources can be characterized as a single region of large response, located at the central 

posterior sensors (Fig. 5, bottom row). The differences in predicted topographic sensor maps 

for synchronous versus asynchronous simulations are clear at both the group level and in 

individual subjects. The general patterns hold for different methods used to derive the gain 

matrix (for predictions using the Boundary Element Model method, see Supplementary Fig. 

S7).

2.5. There are shared topographic features between the two model predictions and the 
two data components

The difference in spatial topography across MEG sensors between the synchronous and 

asynchronous model predictions bears some similarity to the observed difference between 

the stimulus-locked and broadband responses. First, the asynchronous simulation predicts 

one centralized response region, similar to the topography of broadband responses (compare 

Figs. 3 and 5, bottom rows). Second, the synchronous simulation predicts two lateralized 

response regions, also observed in the stimulus-locked sensor topography (compare Figs. 3 

and 5, top rows). The precise locations of the lateralized regions differ between the model 

predictions and the stimulus-locked data, with the model outputs being more lateralized 

than the stimulus-locked data. There are several possibilities for this discrepancy, which we 

return to in the Discussion. Nonetheless, the fact that the two distinct data topographies 

are qualitatively predicted from the two simulations is surprising, given that the two 

simulations use exactly the same cortical sources, with exactly the same frequency and 
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amplitude, differing only in their relative phase across cortical locations (single phase versus 
randomized phases).

The two simulations differ in predicted amplitude as well as spatial topography, with 

larger sensor responses for the synchronous than the asynchronous simulation. In particular, 

the peak response from the synchronous simulations is about 2x larger than the peak 

response from the asynchronous simulation. These peaks are at different sensors, with the 

synchronous peak lateral and the asynchronous peak more central. Comparing the same 

sensors within the lateral regions, the responses are about 10x larger for the synchronous 

than the asynchronous sources.

Differences in response amplitude are also observed for the two components of the MEG 

data, with the stimulus-locked responses much larger than the broadband responses. For 

example, for the sensor in Fig. 2, there is an approximate 2-fold (189%) increase in 

stimulus-locked amplitude and only a 14% increase in broadband amplitudes, consistent 

with our previous observations comparing these two signal components (Kupers et al., 

2018).

This observed amplitude difference is in line with the hypothesis that stimulus-locked 

responses arise from widespread synchronous cortical activity while the broadband 

responses arise from largely phase-randomized activity: The sum of synchronous activity 

will tend to be larger than the sum of asynchronous activity (Krusienski et al., 2012; 

Winawer et al., 2013; Hermes et al., 2017; Kupers et al., 2018).

2.6. Cancelation of synchronous source activity explains lateral sensor topography 
predicted by encoding model

Why do the model predictions from synchronous neural sources show bimodal activation 

peaks in the sensor topography, whereas predictions from asynchronous sources do not? 

One possibility is that the predicted ‘gap’ between the two activation peaks for synchronous 

sources (but not asynchronous sources) is caused by large-scale cancelation of neuroelectric 

fields from opposite-facing dipoles, arising from the cortical geometry (folding pattern). 

Occipital cortex is highly folded (Duvernoy, 1999) and each of the early visual maps, 

V1-V3, contain deep sulci. As a result, a large stimulus such as the one in our experiments, 

will activate a broad swath of these maps, resulting in many locations where there are 

opposite-facing dipoles from either side of the sulcus. For example, in subject S12, there 

are large regions in each of V1, V2, and V3 which include two opposing sulcal banks (Fig. 

6). Because multiple visual field maps could contribute to signal cancelation, we consider 

the effects of simulations with only subsets of the maps (Supplementary Fig. S5). These 

show that simulations with V2 and V3 (without V1) tend to show model predictions similar 

to those that include V1-V3, indicating a likely contribution from V2 and V3 in terms of 

large-scale signal cancelation, consistent with previous analyses (Ales et al., 2010b).

The cortical folding pattern interacts with synchronous and asynchronous sources 

differently. Synchronous source activity will add when the dipoles are parallel, causing a 

large response at the sensor level, and cancel when the dipoles are opposite facing (Fig. 7, 

top row). For asynchronous sources, there is partial cancelation regardless of whether the 
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dipoles are parallel or opposite facing (Fig. 7, bottom row). Overall, the largest sensor 

signals will come from synchronous sources that are parallel, with lower signal from 

asynchronous sources (Fig. 7, upper left vs lower left).

To test whether the bimodal distribution in sensor topography from the synchronous 

simulation is caused by cancelation arising from the cortical geometry, we modified our 

encoding model by making the gain matrix positive only. A positive-only gain matrix 

preserves the sign of the source activity when projected to the sensors so that synchronized 

source activity cannot cancel. Changing the gain matrix in this way has a big effect on 

the sensor predictions from synchronous sources (Fig. 8, top row), but not asynchronous 

sources (Fig. 8, bottom row). For this positive-only gain matrix, the difference in topography 

between the synchronous and asynchronous simulations disappears (Fig. 8, second column). 

This topography closely resembles the observed topographic maps for the broadband 

component of the MEG responses (Fig. 3, bottom row). These results indicate that the 

idiosyncratic ‘gap’ in the spatial pattern of the synchronous simulation is caused by 

cancelation of neuroelectric fields, presumably from opposite facing dipoles in upper and 

lower bank of the Calcarine sulcus. When preserving the sign of dipoles our encoding 

model, we showed that spatial topography predicted by synchronous sources is caused by 

signal cancelation due to the cortical folding in early visual cortex.

3. Discussion

We developed a visual encoding model for MEG that predicts sensor responses to stimuli 

and showed that the predicted topographies in MEG sensors depend on whether cortical 

responses are synchronous or asynchronous. We compared these model predictions to 

observed MEG data from subjects viewing a contrast-reversing pattern separated into a 

stimulus-locked and a broadband component. We found that the two data components have 

different spatial topographies in the MEG sensors, where the topography of the stimulus-

locked data component was similar to the synchronous simulation, and the topography of the 

broadband data component was similar to the asynchronous simulation.

3.1. Cortical geometry mediates the relationship between source synchrony and sensor 
topography

The simulations support the interpretation that the differences in spatial topography between 

the two data components lie in the temporal properties of source activity, not spatial 

properties. To understand how temporal properties of the neural responses influence spatial 

topography in the sensor data, it is necessary to consider the cortical geometry.

Previous studies have argued that the geometry of primary visual cortex results in a peculiar 

property of the V1-driven evoked (time-locked) EEG response. Specifically, according to 

‘the cruciform hypothesis’, responses to stimuli in the lower visual field and upper field can 

result in a similar voltage time series except with opposite polarity (Jeffreys, 1971; Jeffreys 

and Axford, 1972b, 1972a). This result has been attributed to the fact that the upper and 

lower field representations of V1 lie on opposite sides of the Calcarine sulcus, resulting in 

opposing dipoles. This explanation is consistent with our observation that the time-locked 

portion of the MEG response to a large stimulus (containing contrast in both lower and 
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upper visual field) tends to result in a spatial gap in the topography: the gap is where signals 

from opposite-facing dipoles cancel. This interpretation is supported by our simulations 

showing that when the effect of dipole cancelation is removed, there is no gap (Fig. 8).

Related questions have received considerable interest in recent years: namely, whether the 

upper and lower field representations of V1 perfectly cancel in EEG sensor responses, and if 

V1 is the only visual area that can exhibit this phenomenon (Ales et al., 2010b, 2013; Kelly 

et al., 2013a, 2013b). Our observation that the stimulus-locked signal has a systematically 

different spatial topography than the broadband signal does not depend on whether the 

cancelation comes from V1 only, or also from V2 and V3. In fact, sensor cancelation in both 

EEG and MEG can result from spatially extended source activity in any cortical location, 

or even from small patches of randomly distributed responses across cortex (Ahlfors et al., 

2010). The question of whether synchronous source activity causes cancelation at the sensor 

level depends only on whether opposing dipoles are simultaneously activated. Since there 

are more likely to be opposing dipoles in areas of cortex with high curvature, there is a 

relationship between the cortical curvature, neural synchrony, and the spatial pattern in the 

sensor responses.

The prior studies focused on evoked potentials (Ales et al., 2010b, 2013; Kelly et al., 

2013a, 2013b) and evoked fields (Ahlfors et al., 2010), defined by trial-averaging the data 

time-locked to stimulus onset, or simulating simultaneous sources. A novel finding in this 

study is that the broadband signal does not show cancelation and is thus much less affected 

by the details of the cortical geometry. This is evident in both data and simulations. We 

conclude from this that the broadband signal is asynchronous not only with respect to the 

stimulus, which is true by definition of this data component, but also across space.

Our modeling was motivated by the observation that the spatial topography differed between 

the stimulus-locked and broadband responses. The particular feature that stood out was the 

bimodal spatial pattern in the stimulus-locked response. This pattern appears in a number of 

other studies employing visual steady paradigms (Moratti et al., 2006; Kamphuisen et al., 

2008; Giani et al., 2012; Pisarchik et al., 2019) or in the evoked response to presentation 

of static images (Mecklinger et al., 1998; Schoenfeld et al., 2002; Golubic et al., 2011). 

Not every study observes this bimodal pattern (e.g., see figure 2C in (Zhigalov et al., 

2019), which does not show this pattern). Our proposal that the bimodal pattern in our 

study reflects signal cancelation may also explain the pattern in some of these other studies. 

However, the predicted spatial pattern in the sensors is highly dependent on features of 

the individual subject’s cortical and head geometry, as well as on which sources are most 

active. For example, we see that simulations that omit V1 sources still predict bimodal 

distributions, whereas simulations that omit V2/V3 do not (Supplementary Fig. S5). Hence, 

for any particular study, whether or not the sensor pattern looks bimodal will likely depend 

on spatiotemporal properties of the cortical response, which are stimulus dependent, the type 

of sensors, and the geometry of the individual’s head and brain.

3.2. Asynchrony between cortical sources reduces the amplitude of sensor responses

As discussed in the previous section, synchronous cortical activity results in cancelation 

due to the cortical geometry. This influences the sensor spatial topography. Asynchronous 
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cortical activity also results in cancelation, but for a different reason and at a different spatial 

scale. The asynchrony in the neural responses means that their time series may be rising 

in one cortical location while falling in a neighboring location. This asynchrony may play 

out at a very fine scale, e.g., < 1 mm, perhaps within single cortical columns. This kind 

of local cancelation does not depend on the cortical folding pattern, which varies slowly at 

the sub-mm scale. Hence, asynchrony between sources has a general effect of reducing the 

amplitude across the sensor array. At the extreme, the summed response of n cortical sources 

with random phases will grow with the square root of n, and with synchronous sources with 

n. As a result, we expect synchronous source activity to translate to large sensor responses. 

This is confirmed in our simulations in which equal amplitude neural responses result in 

large or small sensor responses. This logic has been used to explain why both evoked and 

oscillatory ECoG responses are large compared to broadband responses (Winawer et al., 

2013; Hermes et al., 2015, 2017). The same principle can also explain why scalp EEG 

responses at lower temporal frequencies are large: lower temporal frequencies are more 

synchronous across space than higher frequencies (Pfurtscheller and Cooper, 1975).

In sum, our model captures two types of cancelation. One type is the cancelation from 

synchronous activity across large-scale variation in cortical geometry (such as the folding of 

the large sulci in visual cortex), which translates to a spatial effect at the sensor level. The 

second type of cancelation arises from asynchronous activity in local responses and causes 

an overall amplitude reduction across the sensor array.

This second type of cancelation has an important implication for the interpretation of 

neuroscience data: the largest signal measured by the instrument cannot be assumed to 

reflect the largest amount of underlying neural activity (see similar reasoning in (Musall et 

al., 2014; Butler et al., 2017; Hermes et al., 2017). For the same reason, evoked potentials, 

although they can be quite large, are often a poor predictor of the fMRI BOLD signal, which 

is relatively insensitive to neural synchrony at the millisecond scale (Foucher et al., 2003; 

Winawer et al., 2013).

3.3. Phase-locking across cortex vs time-locking to the stimulus

One of the interesting observations from our simulations is the qualitative match between 

the synchronous simulation and stimulus-locked data on the one hand, and the asynchronous 

simulation and broadband data on the other hand. Our results here suggest that the time-

locked response to our contrast-reversing stimuli is in large part also synchronous across 

space, whereas the broadband response is not synchronous across space. This pattern may 

be a general feature of visual encoding in early visual areas. A rapid set of coherent signals 

arrive in visual cortex, giving rise to the time-locked signal. These responses then set off 

a cascade of local intracortical process, which are not synchronized across space or to the 

stimulus. We described these as two visual circuits in prior work (Winawer et al., 2013).

One might be tempted to reason that our results are circular. If the signals are time-locked 

to the stimulus, are they not necessarily synchronized? And if they are asynchronous with 

one another, is it not the case that they will necessarily be asynchronous with respect to 

the stimulus? In fact, this is not correct. The agreement between data and simulations are 

not a consequence of definitions, but rather they are an empirical result. For example, it 
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is possible for cortical responses to be synchronized across space but not time-locked to a 

stimulus onset. This occurs, for example, with certain pharmacological manipulations that 

increase long-range synchrony even without a stimulus (Musall et al., 2014). Increased 

synchrony across space that is not time-locked to stimulus onset also occurs with gamma-

band oscillations in response to certain types of stimuli. These spatially synchronous but 

non-time locked responses are sometimes called ‘induced’ rather than ‘evoked’ oscillations 

(Tallon-Baudry and Bertrand, 1999). Oscillations that are thought to be synchronous across 

space but not time locked to a stimulus also occur in other frequency bands, such as alpha 

and beta bands (Berger, 1929; Adrian and Matthews, 1934).

The converse is also true: neural responses can be stimulus-locked but not synchronous 

across space. For example, recordings across cortical depth show that there are stimulus-

locked (‘evoked’) responses whose phase varies across depth, sometimes resulting in a 

phase reversal between supragranular and infragranular layers (Haegens et al., 2015). Even 

though these responses are out of phase with each other, they will each show their own 

time-locked response to stimulus onset. Similarly, responses in different cortical regions (say 

V1 and parietal cortex) may each be time-locked to the stimulus but vary in onset (hence 

asynchronous across space) (Chen et al., 2007; Cottereau et al., 2011). Hence whether 

a response is time-locked to a stimulus or not is independent from whether it is highly 

synchronous across space.

3.4. Where does the broadband response come from?

In our forward model, we used a traditional approach of minimizing differences between 

conditions: The synchronous and asynchronous simulations were identical in all ways except 

one (the degree of phase-locking between cortical locations). An alternative approach would 

be to use a more biophysical simulation, including model neurons that generate both evoked 

and asynchronous responses. To do so requires a biophysical model that generates high 

frequency broadband responses. There are several models of how this might arise, including 

the temporal integration of Poisson spike arrivals in synapses and dendrites (Miller et 

al., 2009), and the tendency for neurons to exhibit up-down phase changes (Milstein et 

al., 2009). Another possibility is that responses at non-stimulus frequencies arise from 

non-linear interactions between neural responses at the driven frequency and the background 

neural activity. Such nonlinearities have been postulated to explain variability in the EEG 

responses at the stimulus frequency, and could also contribute to responses outside the 

driven frequency (Mast and Victor, 1991; Victor and Mast, 1991). Following our prior work 

(Winawer et al., 2013), we implemented model neurons adapted from the Miller model, and 

combined their outputs with the MEG head model (gain matrix) to predict time series in 

the MEG sensors. This more biophysically realistic simulation produces the same pattern of 

effects as the simpler simulation: a unimodal spatial distribution of sensor responses for the 

broadband signal, and a more bimodal distribution for the stimulus-locked (Supplementary 

Fig. S6).

Alternatively, in principle, it is possible that broadband responses measured extracranially 

(EEG or MEG) could arise from non-neural sources, such as artifacts from eye movements 

(Yuval-Greenberg et al., 2008), head muscle contractions (Muthukumaraswamy, 2013), 
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or environmental electromagnetic noise. We do not believe these artifacts explain the 

broadband responses we observed. First, as we demonstrated in our previous paper 

measuring broadband responses (Kupers et al., 2018), neither the rate nor the direction 

of microsaccades varies systematically with the observed broadband responses in individual 

subjects: Subject data containing the highest microsaccade rate do not show the largest 

broadband response and vice versa, and the direction of microsaccades does not 

systematically bias to left or right visual field. Moreover, when removing epochs with 

microsaccades from the analysis, the broadband response remained evident in each 

individual subject.

Second, the characteristics of these noise artifacts do not overlap with our measured 

broadband responses (see also the Discussion section “Challenges in measuring extracranial 

broadband responses” in (Kupers et al., 2018)). For instance, the MEG spike field artifact, 

which can be confused with broadband neural activity (Yuval-Greenberg and Deouell, 

2009), has a spatial topography affecting mostly temporal and frontal MEG sensors (Carl et 

al., 2012). Our broadband responses are confined to middle posterior sensors and therefore 

are unlikely to be contaminated by spike field artifacts. Saccadic spike potentials, caused 

by the retina-to-cornea dipole, introduce artifacts between 4 and 20 Hz (Keren et al., 2010). 

These frequencies are lower than the range we use to define our measure of broadband 

responses (60–150 Hz), hence unlikely to affect our measurements. Although, head muscle 

contraction and environmental noise contributions have been reported to cause spectrally 

broad artifacts (Muthukumaraswamy, 2013), it is unlikely that these noise sources only 

affect central occipital sensors but not lateral occipital MEG sensors.

3.5. Relationship to previous work on modeling MEG/EEG signals

MEG/EEG data have been subject to a variety of computational models, which can broadly 

be divided in three groups. The approaches with the longest history and most used are 

forward models (predicting sensor responses from cortical data) and inverse modeling 

(predicting cortical responses from sensor data). In addition, decoding models have started 

to become more widely used. The models infer the stimulus (or stimulus features) from the 

sensor data. From the three groups, our visual encoding model overlaps mostly with the 

forward modeling approach, but differs in that it predicts the sensor responses from stimulus 

features.

3.5.1. Inverse and constrained inverse models—Inverse models are used to infer 

the cortical source activity from the MEG/EEG sensor responses. They neither predict brain 

activity nor sensor responses from the input (e.g., a visual stimulus), differing from our 

approach here. A benefit of these models is that no a priori knowledge of neural sources is 

needed. However, inverse models are ill-posed, since there are many more cortical sources 

than there are MEG or EEG measurement channels (Hämäläinen et al., 1993). To the degree 

that source activity differs from model assumptions, it will be inaccurate. Consider our 

two simulations (synchronous and asynchronous); they had activity in the identical set of 

sources, yet resulted in different spatial topographies. The correct source localization would 

return the identical sources. But because the inverse problem is ill-posed, this solution is 
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not likely to be found. Instead, inverse solutions to the simulated sensor responses would 

incorrectly return different source locations.

Several studies have used inverse models to reconstruct sources of retinotopic responses 

(Moradi et al., 2003; Poghosyan and Ioannides, 2007; Sharon et al., 2007; Brookes et al., 

2010; Cicmil et al., 2014; Nasiotis et al., 2017). These reconstructions were able to capture 

retinotopic maps in early visual at a coarse scale (order of centimeters), but contained large 

errors (e.g., failure to localize sources from the upper visual field due to penalizing the 

reconstruction of two active sources canceling out at the sensor level).

One approach to improve localization error is Retinotopy Constrained Source Estimation. 

This method uses visual field maps to guide constraints on the number of solutions when 

inverse modeling the sources. For example, one can create a correlation matrix that only 

includes visual field areas to constrain the possible solutions (Hagler et al., 2009; Hagler 

and Dale, 2013; Hagler, 2014; Cottereau et al., 2015) or apply an exhaustive search to 

define neighboring sources for every stimulus location (Ales et al., 2010a; Inverso et al., 

2016). This approach has been shown to increase source localization accuracy, e.g., decrease 

cross-talk for sources in visual areas with close proximity like V1 and V2. This kind of 

approach is complementary to ours. It is useful to infer neural responses in paradigms where 

an encoding model is not feasible.

3.5.2. Decoding model—MEG-based decoding models have been used to predict 

stimulus features from sensor data, similar to the fMRI decoding literature (Haxby et al., 

2001). There are many purposes for decoding models. One is to facilitate comparison with 

other data types when a linking model is lacking, for example comparing MEG to fMRI 

(Cichy et al., 2016b) or to a neural network (Cichy et al., 2016a). A second purpose is to ask 

how stimulus representations unfold over time (King and Dehaene, 2014), or how they are 

localized in temporal frequency bands (Pantazis et al., 2018). Generally, decoding models 

can reveal the presence of information about a stimulus or stimulus feature. In contrast, 

encoding models explicitly postulate computations or representations of the system, and thus 

offer more general system descriptions (Naselaris et al., 2011).

3.5.3. Forward models—Forward models compute the propagation of source activity 

to sensors. The source activity can either be simulated or defined by a separately acquired 

fMRI session (e.g., a retinotopy experiment), before projected from cortex to sensors. This 

type of computational model is closest to our approach, but again, differs from our encoding 

model in that these forward models do not take visual stimuli as an input.

Previous forward models have been used to create simulated sensor responses as a 

benchmark to test specific analyses methods, e.g., brain connectivity analyses in EEG 

(Haufe and Ewald, 2019), accuracy of volume conduction head models (Henson et al., 

2009; Stenroos et al., 2014; Stenroos and Nummenmaa, 2016), guide subdural electrode 

placement for epilepsy monitoring (Lopes et al., 2020), or provide ‘ground truth’ sources 

when combined with inverse modeling in both healthy (Sharon et al., 2007; Akalin Acar 

and Makeig, 2013; Nasiotis et al., 2017) and patient populations (Akalin Acar et al., 

2008). Some recent publications of open-source EEG/MEG toolboxes have now advanced to 
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simulating electromagnetic fields with biologically plausible noise (Barzegaran et al., 2019) 

or cellular-level circuits (Neymotin et al., 2020).

In contrast to work in single-unit electrophysiology (Simoncelli and Heeger, 1998; Rust et 

al., 2005; Mante et al., 2008), functional MRI (Dumoulin and Wandell, 2008; Kay et al., 

2008, 2013b) and ECoG (Hermes et al., 2019), visual encoding models that take stimuli 

as input and predict the measured response as output are not commonly used in EEG 

and MEG. This modeling approach has been highly successful in elucidating fundamental 

properties of sensory encoding, such as linear filtering (Enroth-Cugell and Robson, 1966; 

Movshon et al., 1978), spatial pooling (Kay et al., 2013a), and normalization (Heeger, 

1992). Our work is one of the first to extend this approach to MEG and was useful in 

characterizing two types of visual responses, one highly synchronous across space, one 

largely asynchronous.

3.6. Assumptions of the model

Our visual encoding model contained two parts: an encoding model from stimulus to 

cortex based on retinotopic atlases (Benson et al., 2014) and a physics-based model of 

the propagation of cortical currents to magnetic flux at the sensors, based on overlapping 

spheres (Huang et al., 1999; Tadel et al., 2011). Both of these model components include a 

number of simplifying assumptions.

Advantages of the simplifications are that the model is easy to use, and when the model 

makes interesting predictions, they are interpretable. For instance, there were two interesting 

predictions made from our simulations. First, the synchronous and asynchronous simulations 

led to different spatial topographies (more bimodal for the synchronous simulation, and 

unimodal for the asynchronous simulation). This phenomenon was explained by cancelation 

due to the cortical folding pattern in the synchronous simulations. Second, the amplitude 

was generally lower for the asynchronous than the synchronous simulation. This was 

explained by partial cancelation between nearby sources in the asynchronous simulations. 

These two features of the simulations were also found in the data. Therefore, the benefit 

of model interpretability transfers to the data, providing plausible explanations for the 

phenomena observed in the experiments. Nonetheless, it is important to consider how robust 

the patterns found in the simulations are: specifically, are the patterns highly dependent on 

the simplifying assumptions of the model?

3.6.1. Encoding model assumptions—The encoding model from stimulus to cortex 

has three simplifying assumptions. First, cortical activity was confined to only three visual 

areas, V1, V2, and V3. Second, within these visual areas, responses were simulated as 

having the same amplitude or zero. Third, the phases of the cortical responses were either all 

identical (synchronous simulation) or completely random (asynchronous simulation). None 

of these assumptions holds exactly in the brain. For example, there are differences in EEG 

sensor response timing and amplitudes for checkerboard stimuli that vary in eccentricity 

(Jeffreys, 1971; Ales et al., 2013; Inverso et al., 2016), and higher level visual areas beyond 

V1-V3 can also show steady state responses to contrast-reversing stimuli (Ales et al., 

2012). The steady state response to contrast-reversing patterns may also differ in amplitude 
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between visual areas, as suggested by fMRI-constrained source localization of EEG signals 

(Di Russo et al., 2005, 2007).

In additional simulations, we tested whether deviations from these assumptions had a great 

impact on the main findings and found that they did not. Most importantly, we found 

that the difference in spatial topography —more bimodal for synchronous simulations 

and unimodal for asynchronous simulations— was found across a variety of simulation 

conditions. First, we simulated responses in 9 visual areas beyond V1-V3, as described 

in Benson and Winawer (2018). These simulations showed broadly similar patterns to 

those from only V1-V3 (Supplementary Fig. S7). Second, we simulated responses limited 

to different eccentricity bands. Except when responses were confined only to the fovea, 

simulations showed the same general patterns as those including cortical activity for the 

entire stimulus aperture (Supplementary Fig. S8). Third, we simulated intermediate levels 

of synchrony between 0% and 100% (Supplementary Fig. S9). These simulations show that 

fully asynchronous (0%) and fully synchronous (100%) levels are not special cases: rather, 

the two types of spatial patterns we found using those extreme levels were each found over a 

range of synchrony values. Together, these additional tests show that the pattern of results is 

not highly dependent on any one of the simplifying assumptions of the encoding model.

3.6.2. Physics-based forward model assumptions—We used the overlapping 

spheres (OS) volume conductor head model to compute the gain matrix for each individual 

subject (Huang et al., 1999). Some investigators have argued that a model derived from a 

three-shells boundary element model (BEM) (Kybic et al., 2005; Gramfort et al., 2010), 

while more computationally intensive to compute, is more accurate (Henson et al., 2009; 

Stenroos et al., 2014). To test whether our conclusions depended on using a particular 

forward model, we implemented the BEM in each of our participants and found that 

the predictions did not differ substantially in spatial topography from the OS model for 

either synchronous or asynchronous sources (Supplementary Fig. S7, panel A and B). This 

provides some assurance that the pattern of results obtained from the simulations are not 

an artifact of idiosyncratic assumptions made in the OS model. For both the overlapping 

spheres and the boundary element model, we assumed that the neural generators are dipoles 

oriented normally to the cortical surface. Some researchers have suggested that, at least in 

the case of EEG signals, monopole neural generators play a larger role than is traditionally 

thought (Riera et al., 2012), and that therefore signal cancelation from opposite-facing 

dipoles might have only a small influence on EEG sensor measures (Butler et al., 2019). If 

correct, this might explain some of the differences found between EEG and MEG measures 

of visually driven signals, but would not explain MEG results (Riera et al., 2012).

3.7. Fitting model parameters

We compared patterns found in our simulations to patterns observed in the MEG data, but 

we did not attempt to fit parameters of the model. For example, we simulated 0% and 100% 

neural synchrony, but did not fit a free parameter with intermediate values to best explain 

the data. Nor did we try to estimate the degree to which cortical response amplitude varies 

with retinotopic location or visual field map. To do so would require not just comparing 
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simulations to the data, but instead specifying and fitting free parameters in a model from 

stimulus to cortex to sensors.

If the model has too many parameters (for example, a unique amplitude for every surface 

vertex), then the model will be ill-posed, similar to the problem of source localization 

(Hämäläinen et al., 1993; Helmholtz, 1853). Clearly, if each of the several hundred vertices 

in the V1-V3 maps are independently fit with one or more parameters (such as a gain 

factor, receptive field location, receptive field size, etc.), the problem will be ill-posed. It 

might be possible, however, to find a low-dimensional parameterization of the multi-variate 

response, making the problem well-posed. To our knowledge, a low parameter encoding 

model of signals across entire visual field maps does not yet exist, but there are promising 

developments. For example, Benson and colleagues (Benson et al., 2017) reparametrized 

spatial encoding models for fMRI developed by Kay et al. (2008, 2013b) with just a handful 

of global parameters.

While we reported qualitative similarities between simulations and data, we also observed 

quantitative differences. For example, the synchronous simulation predicts two lateralized 

responses which are more laterally spaced than the stimulus-locked responses. Such 

quantitative differences are not surprising because we did not fit model parameters to 

the data, as discussed above. It is likely that visual field maps beyond V1-V3 contribute 

to the measured responses, but also that neural responses are not uniform in amplitude 

across eccentricity (Ales et al., 2013) or polar angle (Liu et al., 2006). Accounting for 

these possibilities would likely lead to closer matches between data and model. Similarly, 

allowing the degree of synchrony to vary between 0 and 100% might lead to greater overlap 

in the predicted and observed spatial topography across MEG sensors. Other factors which 

limit model accuracy of the current simulations include errors in MEG-MRI alignment 

and simplifications assumed in the head models. An important goal in future work will 

be to express simulation frameworks like our encoding model presented here with low-

dimensional parameterizations that can be fit to data, and to optimize each stage of the 

computations to maximize model accuracy.

3.8. Conclusion

The ability to measure human brain activity at high temporal resolution has value to 

scientists and clinicians in many fields. EEG and MEG are important instruments for this 

reason. Typically, temporal properties of the EEG or MEG sensor responses are used to 

make inferences about the temporal dynamics of the underlying neural responses, and 

spatial properties of the sensor responses are used to infer spatial properties of the cortical 

responses. Our study showed that the spatial pattern of sensor responses can be used to 

make inferences about the temporal pattern of neural responses. We were able to make 

this observation through simulations with a visual encoding model, which showed that the 

degree of large-scale neural synchrony across cortex can have a large impact on the spatial 

topography of MEG sensor responses. This modeling result, combined with experimental 

data, allowed us to make inferences about the degree of large-scale synchrony underlying 

two types of visually driven MEG measures, stimulus-locked and broadband responses. 

Kupers et al. Page 16

Neuroimage. Author manuscript; available in PMC 2022 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We infer that the former is highly synchronized across cortex, whereas the latter is largely 

asynchronous.

The modeling approach we developed can be extended and applied to a wide range of 

paradigms to test specific and constrained hypothesis about the spatiotemporal pattern of 

neural responses measured non-invasively in the living human brain.

4. Methods

We re-analyzed and extended a published data set (Kupers et al., 2018). The extensions 

include adding anatomical MRI data for subjects who only had MEG data in the prior paper, 

and adding new subjects with both MRI and MEG data. The collection of new data adhered 

as closely as possible to the previously published methods. Several of the sections below - 

Stimuli, Experimental design, MEG Data acquisition, and MEG preprocessing – are highly 

similar to text in the previous paper since they describe the same experiment.

4.1. Subjects

The previous study included 8 subjects from New York University measured with MEG. 

We were able to recruit 6 of these subjects to participate in anatomical MRI measurements. 

We also recruited 6 new subjects for both MEG and MRI. The combined set of 12 subjects 

includes 8 females, ages 20–42 years (M = 28.3 / SD = 6.4 years) with normal or corrected-

to-normal vision. All subjects provided written informed consent. The experimental protocol 

was in compliance with the safety guidelines for MRI and MEG research and was 

approved by the University Committee on Activities involving Human Subjects at New 

York University.

4.2. Stimuli

Stimuli were contrast-reversing dartboard patterns (12 square wave contrast-reversals per 

second), windowed within a circular aperture with a diameter of 22°. (The previous study 

also included blocks with half-circle apertures, but these were not used for the new subjects 

and thus are not analyzed in this paper.) A uniform gray equal to the mean luminance of the 

black and white checks (206 cd/m2) was the background for the dartboards and was shown 

in the full screen during blank blocks. For more details, see methods and figure 1 of (Kupers 

et al., 2018).

4.3. Experimental design

Experiments consisted of multiple runs, 72 s each, containing alternating blocks of 

stimulation (contrast-reversing dartboards) and blanks (uniform gray field), 6 s each. There 

was a fixation dot in the middle of the screen throughout the run, switching between red and 

green at random intervals (averaging 3 s). The subjects were instructed to maintain fixation 

throughout the run and press a button every time the fixation dot changed color. The subjects 

were asked to minimize their blinking and head movements during the 72 s runs. After each 

run, there was a short break to blink and relax (typically 30 s to 1 min).
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In the previous study (Kupers et al., 2018), we obtained fifteen runs per subject. Within 

each run, the six stimulus blocks included two with full-circle apertures, two with left 

semicircular apertures, and two with right semicircular apertures. For the current study, only 

the full-circle apertures were analyzed. For the six new datasets, we obtained fewer runs 

(10 per subject rather than 15), but the left and right semicircular apertures were replaced 

with the full-circle apertures. In total, there were 30 full-circle stimulus blocks per subject 

for the prior datasets (15 runs by 2 stimulus blocks, counting only the stimulus blocks with 

full-circle apertures) and 60 for the new datasets (10 runs by 6 stimulus blocks).

4.4. Data acquisition

4.4.1. MEG—The MEG data were acquired with a whole head Yokogawa MEG 

system (Kanazawa Institute of Technology, Japan) containing 157 axial gradiometers. The 

measurements were recorded at 1000 Hz with online high-pass and low-pass filters. The 

high-pass cutoff was 1 Hz, and the low-pass cutoff was either 200 Hz (prior study) or 500 

Hz (new datasets). For registration of the head, we measured each subject’s head shape 

prior to the MEG scan using a handheld FastSCAN laser scanner (Polhemus, VT, USA). 

We used the laser scanner to digitize 8 locations: 3 on the forehead, the nasion, the left and 

right tragus, and the left and right peri-auricular points, and marked these locations with a 

non-permanent pen. We then placed 5 electrodes on the same locations on the forehead and 

peri-auricular points. Before and after the main MEG experiment, recordings were made of 

the marker locations (electrodes) within the MEG dewar.

4.4.2. MRI—Structural MRI scanning was conducted at the New York University Center 

for Brain Imaging using either a 3T Siemens Allegra (subjects S1, S3–S6), or a 3T Siemens 

Prisma (subjects S2, S7–S12). High resolution T1-weighted (T1w) whole brain anatomical 

images (1 mm3 isotropic voxels) were collected for each subject with a 3D rapid gradient 

echo (or ‘MPRAGE’) sequence.

4.5. Data analysis

4.5.1. Reproducible computation and code sharing—All analyses were conducted 

in MATLAB (MathWorks, MA, USA). The analysis code and data are made publicly 

available via the Open Science Framework at the URL (https://osf.io/52mqt/). The code on 

this site includes scripts to reproduce all figures from the minimally preprocessed data. Each 

data figure has a single script named makeFigureX (where ‘X’ is the figure number).

4.5.2. MEG preprocessing—Raw MEG files were read into MATLAB by the 

FieldTrip Toolbox (Oostenveld et al., 2011). MEG data contained 6 s stimulus and 6 s 

blank blocks, which were sub-divided into 1 s non-overlapping epochs. The first 1 s epoch in 

each block was excluded from analysis to avoid the transient response caused by a change of 

the stimulus.

We then detected and removed outlier sensors and epochs by an automated routine. 

This routine was also used in our previous study (Kupers et al., 2018) and is publicly 

available in the code repository linked on the OSF website (https://osf.io/52mqt/, function 

nppPreprocessData.m). This routine computes the variance of the time series within each 
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1 s epoch and labels as ‘bad’ those epochs having a variance that was either 20 times 

smaller or 20 times larger than the median variance across all epochs. If more than 20% 

of the epochs were ‘bad’ across individual sensors, the entire epoch was removed from the 

analysis. Similarly, if more than 20% of the epochs were labeled ‘bad’ within individual 

sensors, the entire sensor was removed. For those ‘bad’ epochs that were not removed by 

previous thresholds, the 1 s time series replaced by the spatially weighted interpolation of 

time series from nearby sensors (i.e., weighting sensors inversely with the distance). On 

average, this automated procedure removed 4.9 sensors and 2.3% of the 1 s epochs per 

subject session due to noise or defect sensors. This preprocessing step is similar to other 

preprocessing algorithms (e.g., ‘Autoreject’ by (Jas et al., 2018)) and we believe that any 

such algorithm could substitute our preprocessing routine.

MEG data were separated into two data components: a stimulus-locked and broadband 

value. For comparison of the two signal types, we choose to analyze both types in 

units of amplitude. Although we defined the broadband response in terms of the power 

spectrum in prior work (Winawer et al., 2013; Kupers et al., 2018) (the square of the 

amplitude spectrum), we choose units of amplitude for both components in this paper. The 

amplitude domain is justified because both the stimulus-locked and broadband responses 

were normally distributed in amplitude, whereas only broadband (not stimulus-locked) 

distributions were normally distributed in power. Normally distributed variables are better 

suited for statistical summaries than skewed distributions. Nonetheless, the pattern of 

results does not change if we compute both data components as power, or stimulus-locked 

responses in amplitude and broadband responses in power.

For all but one subject (S10), the stimulus-locked component was computed as in the 

previous study. In short, we computed the Fast Fourier Transform of the time series within 

each 1 s epoch, extracted 12 Hz amplitudes for every epoch, and averaged this value across 

epochs separately for stimulus and blank. Data were then summarized into one value per 

sensor as the difference in amplitude between averaged stimulus and blank epochs.

For subject S10, we computed the stimulus-locked amplitudes after averaging the time series 

across epochs (sometimes called the coherent spectrum). This was because the MEG data 

for this subject contained a large alpha response close to the stimulus frequency, thereby 

masking the stimulus-locked response. Because the stimulus locked response has about the 

same phase in each epoch, but the alpha rhythm does not, averaging in time reduces the 

alpha rhythm much more than the 12 Hz stimulus locked response. After averaging in 

time and the computing the 12 Hz amplitude from the Fourier transformed time series, the 

stimulus-locked component was summarized as for the other subjects described above. If 

instead we remove S10 entirely from the analysis, or if we compute the coherent signal for 

all subjects, the spatial topography of the group average stimulus-locked signal is largely 

unchanged.

The computation for the broadband component was identical for all subjects and both 

studies: we took the geometric mean of the log amplitude within 60–150 Hz, excluding 

frequencies that could potentially include stimulus-locked harmonics (multiples of 12). As 

with the stimulus locked response, this resulted in one value per epoch per sensor, which 
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were averaged separately for stimulus and blank periods and summarized as the difference 

between the stimulus and blank amplitudes.

To increase the signal-to-noise ratio of the broadband response, we applied a denoising 

algorithm on individual 1 s epochs developed in our lab previously (Kupers et al., 2018). 

This denoising algorithm, called NoisePool-PCA, identifies sensors that show small or no 

response to the stimulus as the ‘noise pool’. Data from the noise pool are used to compute 

noise components for each 1 s epoch using principal components analysis. These noise 

components are then projected out from all sensor time series for each 1 s epoch. For 

every subject, we projected out the number of PCs that gave the highest coefficient of 

determination, or the first 10 PCs if no maximum was reached within the first 10 PCs. The 

denoising algorithm increases the SNR in the broadband response, but does not cause a 

systematic change in the spatial pattern of the sensor responses. This is evident from figures 

9 and 10 in Kupers et al. (2018), top row.

4.5.3. MRI preprocessing—T1-weighted anatomy scans were co-registered and 

segmented into gray and white matter voxels using FreeSurfer’s recon-all auto-segmentation 

algorithm (Dale et al., 1999; Fischl et al., 1999). For each individual subject’s cortical 

surface, we applied anatomical templates of retinotopy using the publicly available 

algorithm published by Benson et al. (2014). This algorithm uses an algebraic model of 

retinotopy on the flattened cortical surface anatomy, resulting in a template for occipital 

areas V1, V2, and V3, with their corresponding eccentricity and polar angle representation. 

The eccentricity template ranges from 0.1 to 80° in visual angle and the polar angle template 

from 0 to 360°. The Benson and Winawer (2018) algorithm is implemented in a Docker 

(https://hub.docker.com/r/nben/occipital_atlas) and does not need any manual intervention. 

The V1-V3 templates are reported to be at least as accurate as visual maps based off 6.4 min 

of retinotopy scans (Benson and Winawer, 2018).

To check the contribution of higher visual areas to the spatial topography of predicted 

responses in MEG sensors, we ran our model simulations with two more atlases 

(Supplementary Fig. S7). The first additional atlas was the extended version of the Benson 

and Winawer (2018) templates providing polar angle and eccentricity maps for V1, V2, 

V3, hV4, VO1/2, LO1/2, TO1/2, V3A/B. This allowed us to limit the cortical sources to 

the stimulus aperture in every visual area (0.18–11°). The second atlas was a probabilistic 

atlas of visual areas provided by Wang et al. (2015). This atlas provides the borders of 25 

visual areas: V1v/d, V2v/d, V3v/d, hV4, VO1/2, PHC1/2, TO1/2, LO1/2, V3A/B, IPS0-5, 

SPL1, and FEF. These areas were defined by an experiment with a stimulus extent of ~15° 

eccentricity.

4.5.4. MRI-MEG alignment—We used the Brainstorm toolbox (Tadel et al., 2011) to 

align the T1-weighted anatomy to the MEG helmet and the head using 6 fiducials points: the 

nasion, left/right peri-auricular, interhemispheric, anterior and posterior commissure. This 

procedure resulted in a single coordinate space for all three measurements.

When importing subject’s FreeSurfer folder into the Brainstorm toolbox, the T1w anatomy 

and cortical surfaces are by default downsampled to 7501 vertices per hemisphere. We 
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likewise downsampled the retinotopic atlases to the same resolution using nearest-neighbor 

interpolation.

4.5.5. V1-V3 source time series simulation using noiseless sine waves—For 

simulations in Figs. 5 and 8, the cortical time series for responsive voxels (i.e., in the V1-V3 

maps and with population receptive field (pRF) centers within the stimulus aperture) were 

sine waves of unit amplitude and frequency of one cycle per epoch. The time series for all 

other vertices was fixed at 0. We generated 1000 epochs for a simulation, each consisting of 

10 time points.

For the synchronous simulations, the phase of each sine wave was identical. For 

asynchronous simulations, the phase was randomized across epochs. For Supplementary 

Fig. S9, we simulated time series with intermediate levels of synchrony. Here, the phases 

were sampled from Von Mises distributions varying in width (kappa parameter) between all 

asynchronous (kappa = 0) and all synchronous (kappa = 100* pi).

4.5.6. V1-V3 source time series simulation using a more complete, 
biologically plausible generation of cortical responses—In addition to simulating 

cortical time series using noiseless sine waves, we also implemented a more detailed 

simulation of synchronous and asynchronous V1-V3 responses based on neural biophysics 

(Supplementary Fig. S6). This simulation generates ECoG responses in visual cortex to 

full-field contrast-reversing dartboard patterns and is adapted from the simulation previously 

published by Winawer et al. (2013). In brief, we first simulate incoming spikes generated 

by a Poisson process. Each spike elicits a synaptic current assuming a time-invariant linear 

system, characterized by a gamma impulse response function (exponent 2, time constant 

0.0023 s). These currents are then summed by the dendrite as a leaky integrator (time 

constant alpha = 0.1 s). The time constants are identical to those by Winawer et al. (2013) 

and based on a specific version of the ECoG simulation published by Miller et al. (2009).

The time-varying rate of the spike arrivals is modeled as the sum of three process: an 

evoked response, an induced response, and spontaneous activity. The evoked response rate 

is an impulse response function convolved with the stimulus reversal events. The induced 

response is an elevated rate whenever the stimulus is present. The induced activity is 

constant across time. The rates are 15 spikes/second/synapse for the evoked and induced 

response, and 10 spikes/second/synapse for the spontaneous activity. (For the evoked 

response, the rate is the mean across time). We simulated 100 1 s epochs with 1 ms 

time bins. Just as in our simple simulation, we simulate these ECoG responses for each 

vertex within V1-V3 and multiply the responses with individual subject’s gain matrix to get 

predicted MEG sensor responses (see next Section 4.5.7). The exact details of all steps in 

simulation are in the MATLAB script, makeSupplementaryFigure6.m.

To analyze the simulated data, we extract the stimulus-locked and broadband amplitudes 

from stimulus and blank periods in MEG sensors, using the same procedure as for the 

analysis of actual MEG data with one modification. For the stimulus-locked response, we 

subtracted the estimated broadband component. This is because the simulated broadband 
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response, unlike the observed MEG broadband response, included temporal frequencies that 

overlapped the stimulus frequency.

4.5.7. Forward model (sources to sensors)—After the alignment of the T1w 

anatomy and MEG sensor space, we computed the gain matrix (also known as ‘head model’ 

or ‘lead field matrix’) with Brainstorm’s MEG Overlapping Spheres method (Huang et al., 

1999). This algorithm fits one local sphere under each MEG sensor, resulting in a weighted 

sum of cortical locations in FreeSurfer’s downsampled pial surface contributing to that MEG 

sensor. For panel A and B in Supplementary Fig. S7, we use the three-shells Boundary 

Element Model (BEM) instead (Kybic et al., 2005; Gramfort et al., 2010). The constrained 

gain matrix derived from BEM contained the same number of vertices as the Overlapping 

Spheres head model.

For both head models, the gain matrices were limited to one orientation per vertex 

perpendicular to the cortical surface.

To predict the responses of the MEG sensors, we use the following equation:

R = G ⋅ S (1)

where R is the predicted sensor responses (k time points by m sensors), in this case 10,000 

time points (1000 epochs of 10 time points) by 157 sensors. G is the constrained gain 

matrix computed by Brainstorm (n sources by m sensors), in this case 15,002 sources by 157 

sensors. S is the source activity (k time points by n sources), in this case 10,000 time points 

(1000 epochs of 10 time points each) by 15,002 sources.

4.5.8. Summary metrics and visualization—To summarize the simulated neural 

responses predicted by the forward model, we computed the amplitude at the input 

frequency of the sine wave (1 cycle per epoch) using the Fourier transform of the predicted 

responses R for the V1-V3 time series. This was done separately for synchronous or 

asynchronous simulated time series. We averaged the amplitudes across epochs for each 

sensor as for MEG data. MEG data were summarized in individual subjects into stimulus-

locked and broadband amplitudes. For every subject, we subtract the mean signal across 

blank epochs from the mean signal across stimulus epochs.

Because the stimulus-locked frequency (12 Hz) is within the typical alpha range, one might 

be concerned that our contrast summary measure reflects the endogenous alpha rhythm 

and not the stimulus-driven response. To check for this, we compared the responses at the 

stimulus frequency and a nearby frequency (12 Hz and 11 Hz), both when the stimulus 

is present and when it is absent (blanks). We find that when the stimulus is present, the 

amplitude at the stimulus frequency is about 20 times larger than the amplitude at adjacent 

frequencies. During the blank, this is not the case - the amplitude is about the same across 

nearby frequencies in the alpha band. This is consistent with the 12 Hz amplitude during 

visual stimulation being largely driven by the stimulus. See s_reviewFigures.m for details.

The stimulus-locked and broadband amplitudes were thresholded by a signal-to-noise ratio 

(SNR) of 1. The SNR was calculated as the ratio of the mean to the standard deviation of 
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the stimulus-locked or broadband summary measure across 1000 bootstraps. Group averages 

were calculated as the mean SNR across subjects.

We visualized the predictions or observed data for each sensor on a topographic sensor 

map using the FieldTrip toolbox (Oostenveld et al., 2011). Observed data have a color map 

restricted to the 97.5th percentile of the plotted response, predicted responses are normalized 

by the maximum of the synchronous sensor-wise average across subjects. We further plotted 

isocontour lines around the 10 sensors with the largest response (93.6th percentile of the data 

or model predictions.

Topographic sensor maps were summarized as 1-dimensional line plots. A narrow, vertical 

Gaussian pooling window was used to compute a weighted average across all sensors 

for each horizontal bin. This pooling window averaged amplitudes for each sensor falling 

within the bin, using 100 equally sized bins from the most left to most right located MEG 

sensor. For individual observers, the average sensor amplitudes were computed from the 

contrast map (difference between average stimulus and average blank epochs for either 

stimulus-locked or broadband responses). Error bars were computed by bootstrapping the 

weighted average and taking the standard deviation across 1000 bootstraps for each bin. 

For the group average, we used the arithmetic mean across observers for stimulus-locked or 

broadband responses to compute the weighted group average and error bars representing the 

standard error across observers for each bin.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A visual encoding model for MEG.
The modeling approach predicts sensor responses starting from a visual stimulus as 

input. The first stage predicts cortical responses from the stimulus. The second stage 

predicts sensor responses from the cortical activity. For illustration purposes, only the left 

hemisphere (LH) is depicted. (The forward model uses both hemispheres.).

Kupers et al. Page 30

Neuroimage. Author manuscript; available in PMC 2022 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Separating the MEG response into a stimulus-locked and asynchronous component.
Left panel: Average amplitude spectrum of a single posterior MEG sensor for a contrast-

reversing pattern and blank (mean-luminance) periods. The black dot in the gray head 

schematic indicates the sensor location. The amplitude spectrum was computed in one-

second epochs and averaged across ~300 epochs per condition. The response at 12 Hz 

(orange arrow) and harmonics are time-locked to the stimulus, which contrast-reverses 

12 times/s. Right panel: Zoom of frequencies from 60 to 150 Hz reveals a broadband 

elevation (blue arrow). The calculation of broadband responses excludes frequencies that are 

multiples of the stimulus frequency (12 Hz). Data from subject S12. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this 

article).

Kupers et al. Page 31

Neuroimage. Author manuscript; available in PMC 2022 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. The stimulus-locked and broadband responses show different spatial topographies.
Top row: The stimulus-locked responses on topographic MEG sensor maps and 1-

dimensional summary representations of posterior sensors. The black contour lines indicate 

the 10 sensors with the largest response amplitudes. Amplitudes are set to 0 if the signal-to-

noise ratio was below 1 (see Methods). In both single subject and group average maps, 

the topography shows two laterally displaced regions with large responses. Line plots show 

the average across posterior MEG sensors from left to right in 100 bins (red line) with 

gray error bars representing the standard deviation across bootstraps for the individual 

subject (left column) or standard error of the mean across subjects for the group average 

Kupers et al. Page 32

Neuroimage. Author manuscript; available in PMC 2022 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(right column). Bottom row: Same as top row but for broadband response. The broadband 

topography differs from the stimulus-locked topographies, with the largest responses in the 

central posterior sensors. Data from single subject S12. Group average topographic maps 

depicts sensor-wise averaging. (See Supplementary Fig. S1 for individual data from all 

subjects). For a movie of the responses unfolding over time, see makeFigure3movie.m. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article).
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Fig. 4. Stimulus-referred modeling approach.
From stimulus to cortex. Step 1.1: The high contrast-reversing dartboard pattern is reduced 

to two features: a spatial and a temporal feature. The spatial feature is the contrast aperture, 

by reducing the stimulus to a single image which will be binarized. The temporal feature 

is the contrast-reversal rate (12 reversals/s), by treating each pixel’s luminance change 

as a single contrast-reversal (thus luminance changes from black-to-white as well as white-

to-black). Step 1.2: The contrast image is used to build a cortical mask: select cortical 

locations in V1-V3 which preferred population receptive field (pRF) center falls within the 

stimulus aperture, by applying the anatomical retinotopy template developed by Benson 

et al. (2014) to every individual’s cortical surface. Step 1.3: V1-V3 cortical activity is 

simulated as sine waves or zeros and can be described as a matrix with k time points 

by n locations (represented as green vertices). The degree of neural synchrony is set by 

a binary synchrony parameter. This parameter defines whether simulated cortical activity 

will be synchronous (phase-locked) or asynchronous (phase randomized) across cortical 

locations. In both simulations, sine waves have unit amplitude, a frequency equal to the 

contrast-reversal rate and identical cortical locations (i.e., the only difference is their relative 

phase). From cortex to sensors. Step 2: To project the neural activity from cortex to 

MEG sensors, we multiply the cortical activity matrix by the gain matrix. This gain matrix 

contains a set of weights (n locations by m sensors) which defines the contribution of 

each source to each sensor, derived from the cortical geometry and the sensor locations. 

This multiplication results in predicted MEG responses (k time points by m sensors). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article).
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Fig. 5. Visual encoding model predicts different spatial topography depending on synchrony, 
matching observed MEG data.
Left column: Sensor-wise average for a single subject (S12). The first column shows the 

model output for sources that are synchronous (top) or asynchronous (bottom) across space. 

The synchronous sources in the model result in two laterally displaced response peaks in 

the sensor map and 1-dimensional summary representations of posterior sensors, as do the 

stimulus-locked responses in the data. The asynchronous sources in the model result in a 

single central response peak, approximately matching broadband responses. Predicted sensor 

responses for both synchronous and asynchronous simulations are normalized to the largest 

response in the synchronous spatial map. Line plots show weighted average across posterior 
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MEG sensors in 100 bins from left to right. In contrast to Fig. 3, individual subject’s line 

plots do not have error bars as the simulation does not include noise. Right column: Same 

as panel A but sensor-wise group average across all 12 subjects. For all individual subject 

model predictions, see Supplementary Fig. S4. For a comparison of model predictions using 

only V1 or V2-V3 without V1 sources see Supplementary Fig. S5. For a movie of the 

predicted responses unfolding over time, see makeFigure5Movie.m.
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Fig. 6. An example folding pattern in occipital cortex.
The figure shows an oblique slice perpendicular to the calcarine sulcus (purple line) from a 

T1-weigthed image of subject S12. In each of the V1-V3 maps, there are regions containing 

opposite-facing sulcal walls. Three examples are indicated by the white arrows.
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Fig. 7. The effect of cortical geometry and neural synchrony on MEG sensor responses.
The cancelation hypothesis predicts that a difference in spatial topographies across MEG 

sensors is caused by an interaction between the geometry of the cortex and the degree of 

neural synchrony. First column: If neighboring sources (S1 and S2, green sine waves) are 

located such that their dipole orientations are parallel to each other, their responses will add 

at the sensor level. Second column: In contrast, if sources are located such that their dipole 

orientations are opposite-facing their source responses will interfere at the sensor level. 

Beside the relative dipole orientation, the summation or cancelation of underlying source 

response also depends on the time-locking (or relative phase) of sources contributing to the 

MEG sensor responses (red sine waves): synchronous sources will largely sum or cancel 

at the sensor level (first row, yellow gradient), whereas asynchronous sources will partially 

cancel at the sensor level (second row, blue gradient) (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.).
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Fig. 8. Preventing cancelation in visual encoding model affects predicted MEG sensor responses 
for synchronous, but not asynchronous sources in early visual cortex.
First column: Predicted MEG sensor amplitudes using a standard forward model which 

allows for neural sources to cancel their current density. Data are identical to first column 

of Fig. 5. Second column: Predicted sensor amplitudes using modified forward model, i.e., 

using the absolute values of gain matrix, preventing neural sources to cancel their current 

density. Data are plotted to with the same scaling as in the left column. Third column: 
Ratio of predicted sensor amplitudes predict by the standard and modified encoding model 

(modified model divided by standard model). Preventing cancelation affects the topography 

of synchronous, but not asynchronous of V1-V3 sources. The contour lines are drawn at 

93.6th percentile of the model predictions, corresponding to the 10 sensors with the largest 

response. Data are from group average.
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