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Abstract 

Background: Genotype–phenotype predictions are of great importance in genet-
ics. These predictions can help to find genetic mutations causing variations in human 
beings. There are many approaches for finding the association which can be broadly 
categorized into two classes, statistical techniques, and machine learning. Statistical 
techniques are good for finding the actual SNPs causing variation where Machine 
Learning techniques are good where we just want to classify the people into different 
categories. In this article, we examined the Eye-color and Type-2 diabetes phenotype. 
The proposed technique is a hybrid approach consisting of some parts from statistical 
techniques and remaining from Machine learning.

Results: The main dataset for Eye-color phenotype consists of 806 people. 404 people 
have Blue-Green eyes where 402 people have Brown eyes. After preprocessing we gen-
erated 8 different datasets, containing different numbers of SNPs, using the mutation 
difference and thresholding at individual SNP. We calculated three types of mutation 
at each SNP no mutation, partial mutation, and full mutation. After that data is trans-
formed for machine learning algorithms. We used about 9 classifiers, RandomForest, 
Extreme Gradient boosting, ANN, LSTM, GRU, BILSTM, 1DCNN, ensembles of ANN, and 
ensembles of LSTM which gave the best accuracy of 0.91, 0.9286, 0.945, 0.94, 0.94, 
0.92, 0.95, and 0.96% respectively. Stacked ensembles of LSTM outperformed other 
algorithms for 1560 SNPs with an overall accuracy of 0.96, AUC = 0.98 for brown eyes, 
and AUC = 0.97 for Blue-Green eyes. The main dataset for Type-2 diabetes consists of 
107 people where 30 people are classified as cases and 74 people as controls. We used 
different linear threshold to find the optimal number of SNPs for classification. The final 
model gave an accuracy of 0.97%.

Conclusion: Genotype–phenotype predictions are very useful especially in forensic. 
These predictions can help to identify SNP variant association with traits and diseases. 
Given more datasets, machine learning model predictions can be increased. Moreo-
ver, the non-linearity in the Machine learning model and the combination of SNPs 
Mutations while training the model increases the prediction. We considered binary 
classification problems but the proposed approach can be extended to multi-class 
classification.
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Background
All humans are different from each other like our eye color and other physical charac-
teristics. Why are we all different? Why our physical characteristics differ? The answer 
to this question lies in genetic variations in human beings [1]. Human DNA consists of 
about 3 billion bases, and more than 99.9% of those bases are the same in all people [2]. 
In human DNA, there is only a 0.1% difference. Some genes function as protein-making 
instructions, and others do not [3]. Genes in humans range in number from a few hun-
dred bases of DNA to more than two million bases. In all humans, most genes are the 
same, although a limited number of genes within individuals are slightly distinct. Alleles 
are forms of minor variations of the same gene in their sequence of DNA bases. These 
small differences contribute to each person’s distinctive physical characteristics [4]. Two 
kinds of alleles are available. The dominant allele is always expressed, even if there is 
only one copy of it for the organism. Only if the person has two copies of it and does not 
have the dominant allele of that gene is a recessive allele expressed. This pair of alleles is 
known as a genotype and determines the appearance or phenotype of the organism [5].

These physical characteristics may be the product of one gene mutation, such as the 
Mendelian trait, or more than one gene. If more than one gene mutation affects any 
physical characteristic, then it is called phenotypes. In humans, most of the traits are 
polygenic [6]. SNPs are single base pair polymorphic DNA regions that differ from per-
son to person frequently. In each chromosome, SNPs occur with a proportion of 1 SNP 
per 1000 base pairs [7]. To establish the relationship between genotypes and phenotypes, 
genome-wide association studies are used and include scanning the genome to identify 
single nucleotide polymorphisms associated with the phenotype of interest. Positive ties 
between an SNP and a phenotype mean that the associated SNP contributes to the trait 
or is similar to a genetic variant in a chromosomal region that contributes to the trait [8].

There are several ways to discover the relation between SNPs and phenotypes. Some 
are statistical methods and others are approaches to machine learning [9, 10]. This arti-
cle focus on a hybrid approach that uses thresholding at individual SNP based on muta-
tion and machine learning for finding an association.

The two methods used for Genome-wide-association-studies are quantitative trait 
locus mapping and Haplotype association. A quantitative trait locus (QTL) is a region 
of DNA that is linked to a particular phenotype that varies in degree and may be due to 
polygenic effects. Analysis of variance called marker regression at the marker loci is the 
simplest approach for QTL mapping. A t-statistic is determined in this method to com-
pare the averages of the two marker genotype groups. The F-statistic is used for more 
than two potential genotypes [11]. There are various approaches, including score checks, 
logistic regression, and Bayesian methods, for Haplotype association with a phenotype. 
Furthermore, both techniques estimate haplotype frequencies since haplotypes are typi-
cally not observed directly. If an association signal is detected, it is possible to use linkage 
imbalance to optimize the signal where an association is detected. Alleles are in linkage 
disequilibrium when they do not occur spontaneously with respect to each other. If two 
alleles occur more frequently than expected on the same haplotype, there is a positive 



Page 3 of 26Muneeb and Henschel  BMC Bioinformatics          (2021) 22:198  

linkage imbalance, and negative LD occurs less often than expected when alleles occur 
together on the same haplotype [10]. A collection of advanced statistical and computa-
tional algorithms such as a Support vector machine or Random forest can be used to 
make predictions by mathematically mapping the complex associations between a set 
of SNPs to complex phenotypes [12]. To map the associations with the phenotype, these 
methods use supervised or unsupervised approaches. Prediction models of supervised 
machine learning traits are developed by training preset learning algorithms to map the 
relationships between the genotype data of the individual sample and the associated 
phenotype. By mapping the pattern of the selected characteristics within the training 
genotype data, optimal predictive capacity for the target phenotype is achieved. Some 
models use gradient descent procedures and parameter estimation iterative rounds to 
look for optimal predictive power across the training data space. Machine learning algo-
rithms use multivariate, non-parametric methods that identify patterns from data that 
are not normally distributed and highly correlated [13, 14].

To predict the phenotype, we can use SNPs. Some Genotype–Phenotype predictions 
fall into the issue of classification. We used the Machine Learning and Deep Learning 
methods in this article to find a connection between SNPs and the eye-color phenotype.

We started our research work with a question. “Can deep learning methods outper-
form existing techniques like Machine learning and Statistical technique?”. To make a 
proper comparison we must implement the existing techniques, or we must have results 
from other researchers. We adopted the second approach of using existing results for 
Eye-color and Type-2 diabetes. There are some common steps before genotype data is 
passed to deep learning methods like data cleaning, SNPs encoding, etc [15, 16]. After 
that, we proposed and implemented a simple pipeline which is explained in the manu-
script to achieve the existing accuracy with deep learning. Now the question is raised 
“if we already have methods for phenotype prediction then why use deep learning 
methods?”

These are the reasons.

• SNPs identified by existing approaches for classification can be different from those 
identified by the deep learning algorithms, which carry high explanatory value in 
non-linear decision-making processes and in turn increases prediction accuracy.

• LSTMs [17] and 1D-CNNs [18] are known to perform well at handling sequential 
data like (text sequences). Genotype data can be treated as sequential data so the 
information obtained from SNPs in any chromosome can be used for final predic-
tion.

• Deep Learning methods lend themselves to transfer learning [19], which facilitates 
the transfer of knowledge from large datasets to smaller ones.

Table  1 summarizes the results of already developed techniques. Researchers used 
Multinomial regression and the Irisplex model for eye color prediction. Evaluation 
measure is Area under the curve and accuracy shown in the second last column. Last 
column shows the number of SNPs condsidered for classification.

Type-2 diabetes is a purely polygenic phenotype and finding the optimal number of 
SNPs can significantly affect the performance of the model. In 2017, about 462 million 
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people were affected by type 2 diabetes which corresponds to 6.28% of the world’s popu-
lation [26]. Type-2 diabetes is not only related to genotype but there are also many fac-
tors like gender, age, Body mass index, and other environmental effects which can affect 
the risk of developing this particular disease [27].

To classify people into cases or controls rather than using genotype data most of the 
researchers used different factors like gender, age, body mass index, environmental 
effects, daily routine, and food consumption [28–30].

Researchers used 408 SNPs in 87 genes involved in significant Type-2 diabetes in 462 
cases and 456 Korean cohort studies controls in article [31]. By using the help vector 
machine strategy, they got a 0.65% accuracy with a combination of 14 SNPs in 12 genes. 
Figure 1 shows the flowchart of the overall approach.

Materials and methods
This section summarizes the dataset, methods, and machine learning model used for 
analysis. There are two main processes in the whole manuscript. The first is the SNPs 
selection process and the other is finding the best model for classification. There is varia-
tion in both processes which can affect the results.

• SNPs pre-selection (number of SNPs to be included or passed to algorithm for clas-
sification)

• Finding the best model (variation in hyper-parameters in each model)

To find the best model we designed a simple pipeline to achieve high accuracy. For eye-
color phenotype, we generated multiple datasets containing a different number of SNPs. 
After that, we applied 9 classifiers for each dataset. When we applied an algorithm to any 
dataset, we also considered different hyperparameters specific to that algorithm to find 
the optimal result. This whole pipeline is computationally expensive but reliable because 
after finding the best model which can be from machine learning or deep learning para-
digm, we can use it to classify people based on genotype data into specific phenotype. 
As far as machine learning algorithms (Random forest and XGBOOST) are concerned 
no additional modifications are performed. But for deep learning algorithms (ANN, 
1DCNN, and LSTM) we tried different architectures with different parameters to find 
the optimal model.

Table 1 Result of eye-color prediction using the already developed techniques for different 
population

“–” means no data found for that cell. The last column shows the number of SNPs considered for classification. The second 
and third column represents the result for Blue eyes and Brown eyes respectively

Method Blue-eyes Brown-eyes Population Metric SNPs

Multinomiallogistic regression 0.91 0.93 Dutch Europeans [20] AUC 24

Multinomial logistic regression – 0.93 Saudi population [21] AUC 5

IrisPlex model 0.96 0.96 Dutch Europeans [11] AUC –

IrisPlex model 0.79 0.91 Iraqi population [22] AUC 6

Multinomial regression 0.966 0.913 Slovenian population [23] AUC 6

Decision tree models 0.89 0.94 New Zealand population [24] Accuracy 6

IrisPlex 0.95 0.58 United States population [25] Accuracy 6
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Dataset

The dataset considered for this analysis is taken from OPENSNP. The dataset consists of 
806 people. 404 people have Blue-Green eyes where 402 people have Brown eyes [32].

Dataset preparation

The dataset we have is in the AncestryDNA, ftdna-illumina, and 23andme file format. 
All the genotype files must be converted to 23andme standard format. So the Ances-
tryDNA file must be converted to the 23andme file format. Ftdna-illumina is encrypted 
file format so we ignored files in that format.

AncestryDNA file has 5 columns.

Fig. 1 Flowchart of machine learning approach for genotype phenotype predictions. This flowchart presents 
an overview of the hybrid approach for genotype–phenotype prediction. After cleaning data, multiple 
datasets were generated using mutation thresholding, containing different numbers of SNPs. Different 
machine learning algorithms with various hyper-parameters were considered for training the model
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• rsid
• chromosome
• position
• allele1
• allele2

where as 23andme file has 4 columns.

• rsid
• chromosome
• position
• genotype

allele1 is the reference allele whereas allele2 is the alternative allele. These two col-
umns must be merged like this “allele1allel2” to convert AncestryDNA to 23andme 
file format. After that all the genotype files in 23andme file format.

Data pre‑processing

The dataset have 3 types of files.

• Phenotype
• Genotype
• SNPs

The phenotype file contains the phenotype for each person. Genotype files con-
tain the genotype information for each person. These files are in the standard format. 
Where SNPs consist of all the SNPs for which associations are to be tested for eye 
color phenotypes. These files are in VCF format. All the SNPs are merged in one file 
to make an SNPs database. Before analysis it is important to make sure that dataset is 
clean.

Quality control

Quality control on GWAS data are delicate pre-processing steps for any genotype–
phenotype association analysis, and that they can strongly affect results and biologi-
cal interpretation [33–35]. All the genotype files and SNPs file must be preprocessed 
before the SNPs pre-selection process. These are the quality control steps considered 
for this analysis.

• Missing SNPs
• Duplicate SNPs

SNPs with missing reference allele or alternative allele are simply removed without con-
sidering any kind of imputation technique. There is a possibility that the SNPs database 
contains duplicate SNPs, so duplicate SNPs must be removed from the dataset.
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Coding

The users are grouped by phenotypes and mutations are identified for each SNP. The 
mutation encoding is 0 for none, 1 for partial, and 2 for full mutation. Tables 2 3 4 show 
the corresponding calculation for coding and SNPs preselection process.

Counts the number of mutations the user has for each SNP.

SNPs preselection

There were about 1304138 SNPs for both phenotypes. 804482 SNPs removed due to too 
many missing user observations for both phenotype.

To reduce the number of SNPs calculate the absolute difference between each type of 
mutation for both phenotypes. Equations 1 2 3 show the calculation.

Absolute Difference for each type of mutation should be greater than predefined thresh-
old. If absolute difference is less than predefined threshold than discard that SNP.

(1)absoluteFullDifference = phenotypeAFM − phenotypeBFM

(2)absolutePartialDifference = phenotypeAPM − phenotypeBPM

(3)absoluteNoDifference = phenotypeANM − phenotypeBNM

Table 2 Mutation type at each SNP

Reference allele is compared to person genotype to find mutation type

SNP Rsid Ref Alt User genotype Mutation 
coding

Mutation type

1 rs3753834 C T CC 0 No mutation

2 rs625149 G T GT 1 Partial mutation

3 rs625149 G A AA 2 Full mutation

Table 3 Percentage of 3 types of mutation at each SNP

Calculate the percentage of 3 types of mutation for each SNP

PFM percentage of full mutation, PNM percentage of no mutation, PPM percentage of partial mutation

SNP Rsid Person1 Person2 … PersonN PFM PNM PPM

rs82 2 1 … 0 57.142857 14.285714 28.571429

rs85 2 1 … 1 57.142857 0 42.857143

… … … … … … … …

rs373523829 NaN NaN … NaN 0 0 0

Table 4 Compare the 3 types of mutations for 2 phenotype

PA means phenotype A and PB means phenotype B. Phenotype A is Brown eye color and Phenotype B is Blue‑Green eye 
color. In general, if Phenotype A represents the case or the Phenotype B is the control or vice‑versa. PFM percentage of full 
mutation, PNM percentage of no mutation, PPM percentage of partial mutation

SNP Rsid PA-PNM PA-PPM PA-PFM PB-PNM PB-PPM PB-PFM

rs82 5.21978 36.538462 58.241758 2.754821 33.057851 64.187328

rs85 5.698006 31.908832 62.393162 6.376812 34.202899 59.42029

… … … … … … …

rs72552726 99.6139 0.3861 0 98.876404 1.123596 0
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After that, we find the maximum and minimum for each type of mutation which will 
be used in further calculations for thresholding. It is a single SNP scanning process 
that is also used in statistical techniques to find the association. Equations 4 5 6 7 8 9 
show the calculation where FM means full mutation, PM means Partial mutation and 
NM means no mutation.

Selects SNPs that have a significant difference in mutation percentage between pheno-
type groups based on a linear threshold that is modeled after the dominant-recessive 
disease model. Equations 10 11 12 show the calculation for linear thresholding which is 
repeated for each type of mutation and if SNP is above the lower threshold for any type 
of mutation then that particular SNP is selected.

One important point to notice here is the slope in Eq. 10 which is the controlling 
factor based on which we can increase or decrease the SNPs. A lower value of Slope 
will lower the mutation threshold and more SNPs will be selected. Whereas increas-
ing Slope will result in a reduction of SNPs but SNPs with high mutations are selected.

Multiple datasets are generated using linear thresholding. These are the controlling 
factor values and the corresponding number of SNPs.

• Slope = − 1.14, SNPs = 107
• Slope = − 0.5, SNPs = 3
• Slope = − 1, SNPs = 32
• Slope = − 1.5, SNPs = 1560
• Slope = − 2, SNPs = 9,824
• Slope = − 3, SNPs = 36,961
• Slope = − 3.5, SNPs = 50,260
• Slope = 5, SNPs = 86,688

(4)maxFullMutation = max(phenotypeAFM, phenotypeBFM)

(5)minFullMutation = min(phenotypeAFM, phenotypeBFM)

(6)maxPartialMutation = max(phenotypeAPM, phenotypeBPM)

(7)maxPartialMutation = min(phenotypeAPM, phenotypeBPM)

(8)maxNoMutation = max(phenotypeANM, phenotypeBNM)

(9)maxNoMutation = min(phenotypeANM, phenotypeBNM)

(10)Threshold = slope ∗maxFullMutation+ intercept

(11)LowerThreshold = (1− Threshold/100) ∗maxFullMutation

(12)selectedSNPs = minFullMutation <= LowerThreshold
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Association studies are commonly used for GWAS by comparing allele or genotype fre-
quencies between Phenotype A and Phenotype B. Indeed, the most widely used tech-
nique is the single SNP scan, consisting of sequentially evaluating each SNP with the null 
hypothesis of no association. In order to associate SNPs to the phenotype, different tests 
may be used. In principle, machine learning algorithms should deal with genome-wide 
SNPs. Datasets with a large number of characteristics, however are subject to the curse 
of dimensionality. Therefore a more efficient approach involves first reducing the total 
number of SNPs to a manageable level through a screening process and searching for 
causal loci among those passing data sets containing different numbers of SNPS.

Data separation and score

In order to achieve a similar Brown/Blue-Green ratio on all subsets, samples were ran-
domly permuted. The dataset was then divided into a train dataset (540 samples) and a 
dataset for research (266 samples). The Brown/Blue-Green ratio was around 1. in both 
the train and test sets. To test the predictions of the different models, we used accuracy 
as the score. We used different dropout rates for all the understudy models, in order to 
prevent over-fitting. We then assessed the models trained on the entire train set on the 
test set.

Models and implementation

We used Randomforest and Extreme Gradient Boosting on all the datasets, whereas 
ANN, 1DCNN, LSTM, GRU, BILSTM, and Ensembles of LSTM/ANN were used on 
datasets containing 3, 32, 107, and 1560 SNPs.

A very critical step in finding the relationship between SNPs and phenotypes is finding 
the best machine learning architecture. If a model includes several layers and processing 
units in each layer, then there is a risk of overfitting the training data with the resulting 
model. If the model of layers and processing units is reduced, then the resulting model 
underfits the training data. It is necessary to find the optimal model architecture for any 
machine learning problem [36].

Artificial neural network

An ANN has hundreds or thousands of integrated, artificial neurons called processing 
units. Input and output units are made up of these processing units. Based on an internal 
weighting scheme, the input units obtain varying sources and structures of information 
and the neural network aims to learn from the information provided to generate one 
output report. ANNs often use a series of learning principles called backpropagation, an 
abbreviation for backward propagation of error, to refine their performance outputs, just 
as humans need instructions and instructions to come up with a conclusion or output. 
An ANN initially goes through a training process where it learns to identify trends in 
SNPs [37, 38]. The network contrasts its real output generated with what it was intended 
to achieve the desired output during this controlled process. Using backpropagation, the 
disparity between all effects is modified.This suggests that the network operates back-
ward, moving from the output unit to the input units to change the weight of its interac-
tions between the units until the lowest possible error is generated by the discrepancy 
between the real and expected result.
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Each dataset is passed to ANN with output labels. The main advantage of using ANN 
is the non-linearity produced by the activation function. For datasets consisting of 3, 32, 
107, and 1560 SNPs we used ANN containing a different number of layers and the differ-
ent number of processing units in each layer.

We can use any activation function like sigmoid equation  13 and relu equation  14 
where x represent the input. Equation 15 represents the softmax activation function and 
different elements of the equation.

Equations 16 17 show the functionality of ANN and explain different parameters used in 
the equation.

Figure 2 shows the architecture of an Artificial Neural Network.

One‑dimensional convolution neural network

Deep learning is a part of machine learning and can play an important role in real-world 
applications, such as bioinformatics and computational biology [40], remote sensing 
[41], photogrammetric computer vision [42], medicine [43], and 3D modeling [44]. Dig-
ital signal and image analysis using deep learning methods, particularly convolutional 
neural networks, is an explosively growing field.

(13)S(x) =
1

1+ e−x

(14)f (x) =







0 for x < 0

x for x ≥ 0

(15)

σ
(

�zi
)

=
ezi

∑K
j=1 e

zj

�z = Input Vector

ezi = Standard exponential function for input vector

ezj = Standard exponential function for output vector

K = Number of classes in the multi − class classifier

(16)

αl
j = σ

(

∑

k

ωl
jkα

l−1

k + blj

)

σ is the activation function

αl
j is the activation of the jthneuron in the lthlayer

blj is the bias of the j
thneuron in the lth layer

The sum is over all neurons k in the ( l − 1)th layer

(17)

ωl
jk denote the weight for the connection from the

kth neuron in the ( l − 1)th layer to the

jth neuron in the lth layer
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For image recognition, Convolution Neural Network (CNN) models have been 
generated in which the algorithm accepts a two-dimensional input representing the 
pixels and color channels of an image, in a process called feature learning. It is pos-
sible to extend this same method to one-dimensional data sequences. The model 
derives characteristics from sequence data and maps the sequence’s internal charac-
teristics. A 1DCNN is very successful in deriving features from the overall dataset’s 
fixed-length section, where it is not so important where the feature is placed in the 
segment [16, 45]. Genotype data is sequential information, so it is possible to use 
1DCNN for phenotype prediction. This model integrates information from several 
SNPs and relies on the filter size in each layer on the number of SNPs that would be 
merged.

Figure 3 shows the architecture of one-dimensional convolution neural network.

Recurrent neural network

For sequential data or time-series data, a recurrent neural network (RNN) is used. 
These are widely used, such as language translation, natural language processing (NLP), 
voice recognition and image captioning, for ordinal or temporal problems. They iden-
tify themselves by their “memory” because they take data from previous inputs to affect 
the current input and output. Although conventional deep neural networks assume that 
each other is independent of inputs and outputs, the performance of recurrent neural 
networks depends on the sequence’s previous elements. Although future events will also 
help to assess the performance of a sequence in question.

Fig. 2 Artificial network network structure. Selected SNPs are passed to a fully connected network. Each 
connection represents the weight learned by the model. The number of hidden layers and the number 
of neurons in each layer can be changed. Each circle is a processing unit which will perform will perform 
activation function on a combination of input from the previous layer. It is a binary classification problem so 
the output layer contains 2 processing units [39]
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Gated recurrent units

Gated recurrent units (GRU) are correlated with LSTM as both use the different way 
of gating data to avoid the issue of vanishing gradient. The GRU controls, but without 
having to use a memory unit, the flow of information like the LSTM unit. Without any 
influence, it only exposes the full secret content. GRUs train faster than LSTMs because 
fewer parameters are available. It has only two gates, a reset gate and a gate for updates. 
The update gate works in a similar way to the LSTM forget and input gate. It determines 
what data to throw away and what fresh data to add. Another gate that is used to deter-
mine how much past knowledge to forget is the reset gate.

Long short‑term memory

As a recurrent neural network, a long short-term memory (LSTM) has a similar con-
trol flow. It handles information that passes on data as it propagates forward. The varia-
tions are the events inside the cells of the LSTM. Such operations are used to enable the 
LSTM to retain or forget information. The cell state serves as a network’s “memory”. In 
principle, the cell state will hold relevant data during the sequence processing. So even 
data from the earlier time steps will make it possible for later time steps to decrease the 
short-term memory impact. Data is added or removed to the cell state through gates 
as the cell state goes on its journey. The gates are different neural networks that decide 
which knowledge about the cell state is permitted. The gates will learn what data during 
training is necessary to keep or forget [16].

The Forget Gate decides what information should be thrown away or preserved. The 
Input Gate is used to change the state of the cell. The gate of production determines 
what should be the next hidden state. The hidden state includes information about ear-
lier inputs.

The hidden state is also used for predictions. The output is the hidden state. The can-
didate state is created using combine. The candidate gate holds possible values to add to 

Fig. 3 One dimensional architecture. Selected SNPs are passed to a 1DCNN. N, X, Y, and Z represent the size 
of the input layer, and X, Y, Z represent the filter size for the first layer, second layer, and third layer. A and B 
represents the number of the filter in the first layer and second layer. As it is 1DCNN so kernel size or filter size 
has one dimension equal to 1 and the other is variable. The number of hidden layers, the number of filters 
in each layer, and the size of the filter can be changed. It is important to form the proper model. At the end 
output of the last 1DCNN layer, after global averaging, is connected to the fully connected network. In a fully 
connected network number of layers and the number of neurons in each layer can also be changed [45]
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the cell state. The new cell state and the new hidden cell state are then moved to the next 
stage. These gates make LSTM suitable for the prediction of genotype–phenotype [46] 
and we can make few changes to the structure of the LSTM state to make it better for 
the dataset of genotype.

Figure 4 shows the architecture of an LSTM.
Equations 18, 19, 20 represents the functions in LSTM cell. F,C,I and O are the forget, 

Candidate, Input and Ouput gates.

Bidirectional LSTM

A Bidirectional LSTM (BILSTM), is a sequence processing model that consists of two 
LSTMs: one taking the input in a forward direction, and the other in a backward direc-
tion. BILSTMs increase the amount of knowledge accessible to the network efficiently. 
It involves duplicating the first recurrent layer of the network so that there are two 

(18)

ft = sigmoid
(

Xt ∗ Uf +Ht−1 ∗Wf

)

Ct = tanh(Xt ∗ Uc +Ht−1 ∗Wc)

ft = sigmoid(Xt ∗ Ui +Ht−1 ∗Wi)

ft = sigmoid
(

Xo ∗Uf +Ht−1 ∗Wo

)

Ct = ft ∗ Ct−1 + It ∗ Ct

Ht = Ot ∗ tanh(Ct−1)

(19)

Xt = Input Vector

Ht−1 = Previous Cell Output

Ct−1 = Previous Cell Memory

Ht = Current Cell Output

Ct = Current Cell Memory

(20)

Wf ,Uf = weight vectors for forget gate

Wc,Uc = weight vectors for candidate gate

Wi,Ui = weight vectors for input gate

Wo,Uo = weight vectors for output gate

Fig. 4 LSTM architecture. Selected SNPs are passed to a LSTM cell
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side-by-side layers now then supplying the input sequence to the first layer and provid-
ing a reverse copy of the input sequence to the second.

Random forest

Random Forest is a combination of many decision trees. A decision tree is a technique 
for creating classification or regression models. They are called decision trees since 
many branches of if…then…” decision splits are used for the prediction—similar to the 
branches of a tree.

The most frequent indicator for determining the best split” is Gini impurity and infor-
mation gain for classification tasks. Bagging and boosting are two primary ways of inte-
grating the outputs into a random forest of different decision trees.

Bagging, also known as Bootstrap aggregation (used in Random Forests) Bagging 
works the following way: on randomly sampled subsets of the data, decision trees are 
trained, while sampling is done with replacement. A major benefit of bagging over indi-
vidual trees is that the model variance is minimized. Individual trees are very susceptible 
to overfitting and very sensitive to data noise. As long as our individual trees are not 
connected, without raising the bias, combining them with bagging will make them more 
resilient. The final outcome of our model is calculated by averaging over all predictions 
from these sampled trees or by majority vote [47].

Random Forest is suitable for genotype data, especially for SNP ranking. They are 
already used for genotype–phenotype predictions and good at handling noisy data. 
SNPs that do not contain useful information are discarded and the final prediction is 
based on the useful SNPs only [48, 49]. Figure 5 shows the working of the random forest.

We used the GridSearch strategy to find the best model. Following are the parameters 
used in GridSearch.

• criterion =  gini, entropy
• minimum samples split = 0.01, 0.015, 0.02, 0.025
• maximum depth =  None, 4, 5
• minimum samples leaf = 0.0025, 0.005, 0.01, 0.015
• maximum features = sqrt, 0.3, 0.4, 0.5
• number of estimators = 500, 1000, 3000

Figure 5 shows the structure of a Random Forest.

XGBOOST

XGBoost stands for Extreme Gradient Boosting; which uses the Gradient Boosting 
method to find the precise approximations to the best tree model. It employs a range 
of nifty tricks that make it exceptionally efficient, especially with structured data. In 
the xgboost model compute the second-order gradients, which offers more knowledge 
on the path of gradients to get the minimum of our loss function. Although gradient 
improvement uses our base model’s loss function as a proxy to minimize the overall 
model error [50].

A decision tree, train only one model on the dataset and use that for classification. 
We can try different parameters for a bit or increase the data, but still, we are still using 
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a single model. Even if we create an ensemble, all the models are trained and separately 
applied to the dataset.

Instead of training all models in isolation from each other, successive train models 
are boosted, with each new model trained to correct the mistakes made by the previous 
ones. Models are added sequentially until there can be no further changes. The advan-
tage of this iterative technique is that the new models added are focused on correcting 
the mistakes produced by other models.

We used the GridSearch strategy to find the final model. Following are the parameters 
used in GridSearch.

• minimum child weight =  1, 5, 10
• gamma = 0.5, 1, 1.5, 2, 5
• subsample = 0.6, 0.8, 1.0
• colsample bytree = 0.6, 0.8, 1.0
• maximum depth = 3, 4, 5

Figure 6 shows the structure of an XGBOOST.

Ensembles of ANN and LSTM

Ensemble learning is the process by which multiple classifiers, are strategically generated 
and combined to solve a particular computational intelligence problem. Ensemble learn-
ing is primarily used to improve the prediction. As this article is focused on improving the 
accuracy of prediction not on finding the actual casual SNP so, an ensemble of different 

Fig. 5 Random forest. Dataset after preprocessing is passed to each Decision Tree. Each decision tree is 
trained on train data and for each test sample prediction from each decision tree is considered. The final 
decision for each sample is based on Majority voting. The depth of the tree determines the number of SNPs 
used for classification. SNPs with high idnformation gain on the top
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classifiers can be utilized [51, 52]. The important point here is which model will be used 
as a part of the ensemble. We can make decision based on the performance of the model 
on training data or validation data. Both training accuracy and validation accuracy can be 
combined to select the best model. We choose those models for which validation accuracy 
was greater than 0.92. The is no hard and fast rule for selecting the simple models because 
it also depends on the knowledge learned by each model. To find the models we tried all the 
combinations of the following parameters and threshold on validation accuracy. The ration-
ale behind using this approach is each parameter given below can affect the performance of 
the model and also the knowledge learned by the model. To see that we analyzed the con-
fusion matric of each model. As you can see in the figure some models performed well for 
Brown eyes and some for Blue-Green eyes. When we use a combination of all models then 
a well-defined boundary is plotted in hyperdimensional space which improves accuracy. 
There is no benchmarking for this process. If only those models are selected which have the 
same confusion matrix then the ensemble method will not improve the accuracy [53].

• Activation Function = Sigmoid, Relu, Softmax
• Dropout Rate = 0.2, 0.3, 0.5
• Optimizer = Adam, SGD, RMSprop
• Batch Size = 1, 10, 15, 20
• Validation Split = 0.2, 0.3, 0.4
• Number of Epochs = 10, 20, 50, 100

Figure 7 shows the Ensemble approach for prediction.

Results
Considering the different numbers of SNPs can strongly affect the performance of a 
model. Form a machine learning perspective SNPs are acting as features and considering 
more features will result in overfitting. For any phenotype finding the optimal SNPs for 

Fig. 6 Extreme gradient boosting. XGBOOST trains models in succession, with each new model being 
trained to correct the errors made by the previous ones. Models are added sequentially until no further 
improvements can be made
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Fig. 7 Ensemble approach. “Find the best models” show the approach to find the best model. Each 
combination of the different parameters is executed to find the best model. This is computationally 
expensive to find the models to be included in the ensemble. “Ensemble of best models” shows the final 
model. All the models which are to be used in the ensemble are non-trainable and their output is combined 
and connected with the fully connected network to produce the final model
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classification is an important task [54]. Moreover, the different SPNs are responsible for 
different phenotypes so, the selected SNPs which perform well for one particular pheno-
type may not work for any other phenotype. To predict any other phenotype SNPs pre-
selection process has to be repeated.

We applied all algorithms in this order.

• Machine Learning (1. Random Forest 2. XGBOOST)
• Deep Learning (1. Artificial Neural Network 2. 1DCNN 3. GRU, LSTM, and BIL-

STM)
• Ensembles of ANN and LSTM

For the eye-color dataset, the existing techniques have an accuracy of about 90–96%. 
So, we applied algorithms to meet that accuracy. For type-2 diabetes we already got high 
accuracy, so we stopped at that Random Forest.

Table 5 summaries the results of Random Forest and Extreme Gradient boosting Clas-
sifier [55] for all the dataset containing a different number of SNPs, mentioned in the 
first row. We used a GridSearch for finding the optimal parameters for each model. All 
other cells are representing the Accuracy of the model for SNPs in the column and the 
classifier in a specific row.

For extreme gradient boosting we tried 3 loss functions which are hinge, logistic and 
logitraw, and boosters which are gbtree, gblinear, and dar. Extreme gradient boosting 
gave an accuracy of 0.93 when used with Logistic loss function [56] and default booster 
which is gbtree for both scaled and unscaled dataset.

Tables 6, 7, 8, and 9 show the results of ANN, GRU, LSTM, BILSTM, and 1DCNN 
with different parameters for datasets containing 3, 32, 107, and 1560 SNPs respec-
tively. For each table from 6 to 9 the first column represents the model name and the 
first represents the different parameters used. The last column represents the Accu-
racy of a specific model with specific parameter values. Even a good architecture can 

Table 5 Results of random forest and extreme gradient boosting classifier

“–” means no results because of too long computation time. The different boosters used for XGBOOST are gbtree, gblinear, 
and dar. Different loss functions used for XGBOOST are hinge, logistic, and logitraw. The first row represents the number of 
SNPs used for Eye‑color classification. The first column represents the classifier and different boosters used for the model. 
Scaling and No Scaling means dataset is scaled or not scaled for particular experiment or not

Classifiers 107 3 32 1560 9824 36,961 50,260 86,688

Random forest 0.92 0.89 0.91 0.90 0.86 0.81 0.81 0.82

(No scaling) (booster = gbtree, gblinear, dar) 0.88 0.89 0.88 0.92 0.92 0.92 0.92 –

0.88 0.89 0.91 0.87 0.82 0.83 0.82 –

0.88 0.89 0.88 0.92 0.92 0.92 0.92 –

(No scaling) (loss function = hinge, logistic, logitraw) 0.91 0.89 0.92 0.92 0.92 0.92 0.92 –

0.92 0.89 0.92 0.93 0.92 0.92 0.93 –

0.91 0.89 0.92 0.91 0.92 0.92 0.93 –

(Scaling) (booster = gbtree, gblinear, dar) 0.88 0.89 0.88 0.92 0.92 0.92 0.92 –

0.85 0.89 0.90 0.86 0.78 0.78 0.73 –

0.88 0.89 0.88 0.92 0.92 0.92 0.92 –

(Scaling) (loss function = hinge, logistic, logitraw) 0.91 0.89 0.9211 0.93 0.92 0.92 0.92 –

0.92 0.89 0.92 0.93 0.92 0.92 0.93 –

0.91 0.89 0.92 0.91 0.92 0.92 0.93 –
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perform badly when hyper-parameters are not tunned very well, so to find the opti-
mal parameters we must search through a list of different parameters.

In the end, we tried ensembles of LSTM and ANN. The table 10 shows the result 
for the Ensemble of ANN and LSTM. Figure 8 show the individual model confusion 
matrix used in the ensemble of LSTM, Figs. 9, 10 and 11 show the result of the final 
best LSTM based ensemble model.

Type‑2 diabetes prediction

We also tested the proposed approach onType-2 diabetes phenotype. We consid-
ered different linear thresholds and the results for the optimal number of SNPs are 

Table 6 Table summarizes the accuracy of ANN, GRU, BILSTM, LSTM, and 1DCNN model for 3 SNPs

LSTM performs well with an accuracy of 0.9%

Model, SNPs = 3 Activation Dropout Optimizer Batchsize Epochs Validation Accuracy

ANN Sigmoid 0.2 Adam 1 10 0.2 0.88

Sigmoid 0.2 Adam 10 20 0.4 0.89

Relu 0.3 RMSprop 15 50 0.3 0.89

Relu 0.3 SGD 1 50 0.2 0.89

GRU Sigmoid 0.2 Adam 1 10 0.2 0.895

Sigmoid 0.2 RMSprop 10 50 0.3 0.895

BILTM Sigmoid 0.2 Adam 1 10 0.2 0.895

Sigmoid 0.3 RMSprop 10 100 0.3 0.895

LSTM Sigmoid 0.2 Adam 1 10 0.2 0.9

1DCNN Sigmoid 0.2 Adam 1 20 0.2 0.88

Sigmoid 0.2 Adam 1 50 0.2 0.89

Softmax 0.3 RMSprop 20 100 0.3 0.89

Softmax 0.2 Adam 20 50 0.2 0.89

Relu 0.3 RMSprop 15 50 0.4 0.89

Table 7 Table summarizes the accuracy of ANN, GRU, BILSTM, LSTM, and 1DCNN model for 32 SNPs

ANN, GRU, and 1DCNN perform well with an accuracy of 0.92%

Model, SNPs = 32 Activation Dropout Optimizer Batchsize Epochs Validation Accuracy

ANN Softmax 0.3 RMSprop 10 100 0.2 0.91

Softmax 0.3 SGD 1 100 0.2 0.91

Relu 0.3 RMSprop 15 50 0.2 0.91

Relu 0.3 SGD 20 100 0.2 0.92

Relu 0.3 SGD 1 100 0.3 0.92

GRU Sigmoid 0.2 Adam 1 10 0.2 0.92

Sigmoid 0.3 Adam 1 50 0.2 0.91

Sigmoid 0.2 SGD 1 20 0.2 0.91

BILSTM Sigmoid 0.2 RMSprop 15 20 0.2 0.91

1DCNN Sigmoid 0.2 Adam 1 20 0.3 0.92

Sigmoid 0.2 Adam 15 100 0.3 0.92

Softmax 0.3 Adam 10 50 0.2 0.91

Softmax 0.2 RMSprop 20 100 0.2 0.91

Relu 0.3 RMSprop 10 50 0.2 0.91
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summarized in table 11. Figures 12 and 13 shows the Confusion matrix and AUC of 
the best classification results.

• Total people = 104, Cases = 30, Controls = 74

Table 8 Table summarizes the accuracy of ANN, GRU, BILSTM, LSTM, and 1DCNN model for 107 
SNPs

1DCNN performs well with an accuracy of 0.92%

Model, SNPs = 107 Activation Dropout Optimizer Batchsize Epochs Validation Accuracy

ANN Sigmoid 0.3 SGD 1 50 0.3 0.9

Relu 0.2 SGD 1 10 0.3 0.9

Softmax 0.2 Adam 1 10 0.2 0.91

Relu 0.3 SGD 15 50 0.2 0.91

LSTM Relu 0.2 SGD 10 50 0.2 0.9

Relu 0.3 Adam 1 20 0.2 0.9

Relu 0.3 SGD 1 50 0.2 0.9

Sigmoid 0.2 SGD 1 10 0.4 0.91

1DCNN Sigmoid 0.2 Adam 1 20 0.3 0.92

Sigmoid 0.2 Adam 1 50 0.3 0.91

Relu 0.3 Adam 1 20 0.2 0.895

Table 9 Table summarizes the accuracy of ANN, GRU, BILSTM, LSTM, and 1DCNN model for 1560 
SNPs

ANN and LSTM perform well with an accuracy of 0.945%

Model, SNPs = 1560 Activation Dropout Optimizer Batchsize Epochs Validation Accuracy

ANN Sigmoid 0.2 Adam 1 10 0.3 0.94

Sigmoid 0.2 Adam 1 100 0.2 0.93

Sigmoid 0.2 SGD 10 100 0.2 0.945

Relu 0.2 SGD 15 100 0.2 0.94

Sigmoid 0.2 Adam 15 10 0.3 0.94

BILSTM Sigmoid 0.2 SGD 1 100 0.1 0.93

Sigmoid 0.2 SGD 1 30 0.2 0.94

GRU Sigmoid 0.2 SGD 1 50 0.2 0.94

Sigmoid 0.2 Adam 1 20 0.3 0.94

LSTM Sigmoid 0.2 Adam 10 10 0.1 0.945

Sigmoid 0.2 SGD 1 30 0.3 0.93

1DCNN Relu 0.2 RMSprop 15 20 0.2 0.91

Relu 0.2 RMSprop 20 50 0.3 0.9

Relu 0.3 RMSprop 20 50 0.2 0.91

Relu 0.5 RMSprop 20 50 0.1 0.91

Table 10 Ensemble of LSTM and ANN

10 LSTM models and 40 ANN models were used for prediction

SNPs = 1560 Accuracy

Ensemble of LSTM 0.96

Ensemble of ANN 0.95
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• Training data split, Cases = 20 and Controls = 49
• Test data split, Cases = 10 and Controls = 25

Conclusion
Genotype–phenotype predictions are very useful especially in forensic. These pre-
dictions can help to identify SNP variant association with traits and diseases. Pro-
vide insight into the ethnic variation of complex traits. It leads to the discovery of 
novel biological mechanisms. To translate biological insights into medical advance-
ments and making drugs. A combination of both statistical and Machine Learning 
approach for Genotype–phenotype predictions can yield the best results. Selecting 
SPNs based on mutation difference and the parameters used for the machine learning 

Fig. 8 Confusion matrices of the 10 LSTM models used for the stacked ensemble model. There are few 
models that are good at classifying the Brown eyes and others at Blue-Green. Consider Model 3 which 
classifies Brown eyes very well, whereas model 4 performs well on Blue-Green. When results of such models 
are combined optimal result is obtained. There are few models that perform equally well for both classes like 
model 7

Fig. 9 Accuracy and Loss of the best ensemble of LSTM for training. The final stacked model is training for 
10 Epochs to avoid overfitting. The first plot shows the model accuracy on training data and the second plot 
shows the model loss for training data
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model can significantly impact the performance of prediction. Given more datasets, 
machine learning model predictions can be increased. Moreover, the non-linearity 
in the Machine learning model and the combination of SNPs Mutations while train-
ing the model increases the prediction. We considered binary classification problems 

Fig. 10 Confusion matrix of the best ensemble of LSTM

Fig. 11 ROC of the best ensemble of LSTM. ROC for class 0 which is Brown eyes is 0.98, ROC for class 1 which 
is Blue-Green eyes is 0.98

Table 11 Type-2 diabetes results

Random forest with grid search was used for prediction

SNPs = 32 Train accuracy Test accuracy

Random Forest 0.98 0.97
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but this approach can be extended to multi-class classification. Crime investigation 
can be assisted using the prediction of an individual’s externally visible characteristics 
(EVCs) like their eye, hair, and skin color from a crime scene stain.

Following are the specs of the computer and library used for implementing models 
and generating results. The system specifications are: Intel(R) Core(TM) 7-9750H CPU 
@ 2.60Hz, 16 GB RAM as well as a NVIDIA GeForce RTX 2060 GPU, running Micro-
soft Windows 10. Moreover, the development specifications are: Cuda compilation tools 
release 10.0, V10.0.130, Deep Learning framework Keras 2.4.3, Python 3.6.8, and Ten-
sorflow 2.3.1. For eXtreme Gradient Boosting (XGBOOST) we used xgboost python 
library, version 1.0.2.
Acknowledgements
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Fig. 12 Confusion matrix of the best random forest model

Fig. 13 ROC for the best random forest model. ROC for class 0 which is controls is 0.95, ROC for class 1 which 
is Cases is 0.95
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