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INTRODUCTION
Sepsis is one of the most common causes of death in 

postoperative patients. Despite recent developments in 
antibiotic treatment and general critical care practices, rates 
of mortality due to severe sepsis and septic shock are still 

increasing worldwide [1-3]. In particular, surgical site infections 
complicate recovery following surgery and increase hospital 
stay and medical care costs. Some studies have reported that 
the rate of death from sepsis is between 20% and 30%, and 
early recognition and risk stratification are needed to improve 
outcomes for patients with sepsis [4,5]. 
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Purpose: Sepsis is one of the most common causes of death after surgery. Several conventional scoring systems have 
been developed to predict the outcome of sepsis; however, their predictive power is insufficient. The present study applies 
explainable machine-learning algorithms to improve the accuracy of predicting postoperative mortality in patients with 
sepsis caused by peritonitis. 
Methods: We performed a retrospective analysis of data from demographic, clinical, and laboratory analyses, including the 
delta neutrophil index (DNI), WBC and neutrophil counts, and CRP level. Laboratory data were measured before surgery, 
12–36 hours after surgery, and 60–84 hours after surgery. The primary study output was the probability of mortality. 
The areas under the receiver operating characteristic curves (AUCs) of several machine-learning algorithms using the 
Sequential Organ Failure Assessment (SOFA) and Simplified Acute Physiology Score (SAPS) 3 models were compared. 
‘SHapley Additive exPlanations’ values were used to indicate the direction of the relationship between a variable and 
mortality. 
Results: The CatBoost model yielded the highest AUC (0.933) for mortality compared to SAPS3 and SOFA (0.860 and 0.867, 
respectively). Increased DNI on day 3, septic shock, use of norepinephrine therapy, and increased international normalized 
ratio on day 3 had the greatest impact on the model’s prediction of mortality. 
Conclusion: Machine-learning algorithms increase the accuracy of predicting postoperative mortality in patients with 
sepsis caused by peritonitis.
[Ann Surg Treat Res 2023;105(4):237-244]
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Many investigators have tried to identify reliable biomarkers 
for diagnosis and management of sepsis. CRP and procalcitonin 
levels are the most frequently used diagnostic and prognostic 
markers, but their ability is limited [6]. Despite numerous 
investigations, no single biological marker has been shown to 
reliably identify patients at risk of developing severe sepsis or 
septic shock [7,8]. In addition to biomarkers, several clinical 
scores, including the Acute Physiology and Chronic Health 
Evaluation (APACHE) score, the Sequential Organ Failure 
Assessment (SOFA) score, and the Simplified Acute Physiology 
Score (SAPS), reflect disease severity and predict sepsis 
outcomes.

Machine learning has been used in various clinical 
fields in efforts ranging from diagnosis to prediction [9-11]. 
Because of the success of machine learning in other clinical 
applications, this study sought to explore whether machine-
learning algorithms can also predict mortality in patients with 
sepsis caused by peritonitis. In addition, explainable artificial 
intelligence (AI) has recently been introduced to explain the 
specific decisions made by AI models [12-15]. Explainable AI 
can help assess the interpretability and explainability of risk 
predictors for mortality in patients with sepsis caused by 
peritonitis. This study compares the performance of several 
machine-learning models with those of conventional SAPS3 
and SOFA scores.

METHODS
This study was approved by the Institutional Review Board of 

the Kangdong Sacred Heart Hospital (No. 2022-03-009). It was 
performed in accordance with the Declaration of Helsinki and 
written informed consent was waived due to its retrospective 
nature. 

Patients
We retrospectively reviewed the medical records of patients 

who underwent surgery for septic peritonitis at the Kangdong 
Sacred Heart Hospital from July 2011 to December 2021, a 600-
bed teaching hospital in Seoul (Fig. 1). 

Sepsis is defined as a case in which microbial etiology was 
proved or suspected in addition to systemic inflammatory 
response syndrome (SIRS). SIRS is defined by the satisfaction 
of any 2 of the following components: (a) body temperature of 
>38 °C or <36 °C; (b) leukocytosis (>10,000/µL), leukopenia 
(<4,000/µL) or >10% band formation; (c) heart rate of >90 
beats/min; and (d) respiratory rate of >24 breaths/min. Septic 
shock refers to a case in which the arterial blood pressure is 
continuously <90 mmHg, the mean arterial pressure is <60 
mmHg, or a decline in systolic pressure >40 mmHg from 
baseline occurs without other causes such as hypotension or 
inadequate fluid resuscitation [16]. Patients aged <18 years; who 
were pregnant; who had hematologic abnormalities; who had 
received granulocyte colony-stimulating factors, glucocorticoids, 
or other immunosuppressants; and who died within 72 hours 
after surgery were excluded. 

Data collection 
Clinical characteristics of interest were age, sex, diagnosis, 

operation time, transfusion, blood culture results, presence of 
septic shock, and hospital mortality. Postoperative mortality 
was limited to cases of death within 30 days of surgery due 
to sepsis only. Patients who required reoperation, mechanical 
ventilation, or renal replacement therapy were documented 
as well. The SAPS [17] and SOFA scores [18] were calculated to 
measure the severity of the patient’s condition. The American 
Society of Anesthesiologists (ASA) physical status classification 
[19] was referenced from the anesthesia record chart. 

Patients underwent surgery
for septic peritonitis

(n = 321)

Patients were
eligible for study

(n = 297)

Final patients analyzed
in this study

(n = 242)

Survivors
(n = 183)

Non-survivors
(n = 59)

Patient exclusion
due to missing values

(n = 55)

Exclusion criteria (n = 24)
- Age 18 yr (n = 1)

- Pregnant (n = 1)
- Hematologic abnormalities (n = 2)
- Administration of GCSF, glucocorticoids,
immunosuppressants (n = 19)

- Postoperative mortality within 72 hr (n = 5)

Fig. 1. Patient flowchart. GCSF,  
granulocyte colony-stimulating 
factor.
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Blood sample measurement
The delta neutrophil index (DNI), WBC and neutrophil 

counts, and CRP level were measured <12 hours prior to 
surgery (day 0), 12–36 hours after surgery (day 1), and 60–84 
hours after surgery (day 3). DNI measurement is part of the 
routine complete blood count tests performed at our institution. 
DNI calculations were performed by an automatic cell analyzer 
(ADVIA 2120 Hematology System; Siemens Healthcare 
Diagnostic). DNI values were calculated by subtracting the 
fraction of polymorphonuclear neutrophils from the number of 
myeloperoxidase-reactive cells. 

Statistical analysis
For statistical analyses, IBM SPSS Statistics ver. 28.0 (IBM 

Corp.) was used. The categorical variables are shown as absolute 
and relative frequencies, and continuous variables are shown as 
mean ± standard deviation values. The chi-square tests were 
used to compare categorical values, and the independent t-test 
was used to compare continuous variables between groups. A 
significant difference was defined as P < 0.05.

Table 1. Clinical characteristics of survivors and non-survivors

Variable Total Survivors Non-survivors P-value

No. of patients 242 (100) 183 (75.6) 59 (24.4)
Age (yr) 69 (57–79) 67 (59–78) 68 (60–77) 0.484
Male sex 149 (61.6) 112 (61.2) 37 (62.7) 0.849
Body mass index (kg/m2) 22.7 (19.1–23.9) 22.9 (20.3–24.2) 20.8 (19.2–24.0) 0.538
Septic shock 82 (33.9) 34 (18.6) 48 (74.6) <0.001
Norepinephrine therapy 52 (21.5) 13 (7.1) 39 (66.1) <0.001
Surgical site 0.732
    Small bowel 77 (31.8) 59 (30.6) 18 (30.5)
    Colon 71 (29.3) 57 (31.1) 14 (23.7)
    Gastroduodenal tract 33 (13.60) 24 (13.1) 9 (15.3)
    Biliary tract 34 (15.0) 24 (14.2) 10 (16.9)
    Others 18 (14.0) 11 (6.0) 7 (11.9)
    Appendix 9 (3.7) 8 (4.4) 1 (1.7)
Reoperation 25 (10.3) 13 (7.1) 12 (20.3) <0.010
Operation time (min) 145.0 (108–190) 148.2 (110–190) 150.5 (100–190) 0.945
Positive blood culture 105 (43.4) 78 (42.1) 27 (45.7) 0.131
Mechanical ventilation 169 (69.8) 114 (62.3) 55 (93.2) <0.001
Renal replacement therapy 25 (10.3) 14 (7.7) 11 (18.6) 0.019
ASA PS score 2.66 ± 0.81 2.58 ± 0.65 2.85 ± 0.93 0.016
SAPS3 66.0 (54–77) 60.9 (52–70) 83.4 (72–97) <0.001
SOFA score 6.7 (4–9) 5.5 (3–7) 10.7 (8–13) <0.001
WBC (×109/L)
    Day 1 12.2 (6.8–16.0) 12.6 (7.4–16.7) 11.0 (4.8–14.5) 0.200
    Day 2 11.0 (6.3–14.3) 11.4 (6.8–14.3) 9.7 (4.9–14.4) 0.130
    Day 3 10.5 (7.1–12.5) 10.0 (7.1–12.0) 11.8 (6.6–14.5) 0.021
Neutrophil (%)
    Day 1 80.9 (75.6–90.6) 81.4 (76.0–90.1) 79.5 (70.6–91.9) 0.830
    Day 2 83.2 (79.0–91.0) 84.0 (79.8–91.0) 80.5 (75.0–91.0) 0.070
    Day 3 82.2 (77.5–89.0) 81.9 (76.8–88.0) 83.1 (78.3–90.8) 0.390
CRP day 3 (mg/L)
    Day 1 109.8 (24.0–165.2) 107.3 (22.4–164.7) 117.5 (30.4–187.2) 0.520
    Day 2 150.3 (67.2–210.5) 152.8 (72.3–210.9) 142.5 (58.5–204.4) 0.510
    Day 3 139.5 (73.8–184.0) 135.6 (74.8–177.9) 151.5 (64.4–218.9) 0.023
DNI day 3 (%)
    Day 1 15.4 (2.6–20.0) 12.8 (2.3–16.8) 23.3 (5.4–41.5) <0.001
    Day 2 14.0 (2.2–20.1) 10.5 (1.9–11.8) 24.6 (4.6–41.9) <0.001
    Day 3 8.5 (1.2–5.5) 2.8 (1.0–3.3) 25.9 (8.2–39.8) <0.001

Values are expressed as the or number of patients (percentage).
Values are presented as number (%), mean (interquartile range), or mean ± standard deviation. 
ASA, American Society of Anesthesiologists; PS, physical status; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ 
Failure Assessment; DNI, delta neutrophil index.
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Machine learning model generation and 
comparison 
Python 3.9.7 (Jupyter Notebook) was used for data handling 

and machine-learning analysis. The dataset was randomly 
divided into training (80%) and testing (20%) datasets. Models 
included in the PyCaret version 3.0 library, such as logistic 
regression (LR), extreme gradient boost (XGB), gradient 
boosting classifier, and CatBoost, were used in this study [20]. 
We performed 10-fold cross-validation on the training set for 
all models. Through the PyCaret library, machine-learning 
algorithms were applied to determine the significant models 
and to fine tune the model hyperparameters. 

After the proper models were fitted, their predictive 
performances were compared using the testing set based on 
the accuracy, precision, F1 score, and area under the receiver 
operating characteristic curve (AUC). To calculate the metrics 
of SAPS3 and SOFA scores, including the accuracy, precision, 
F1 score, and AUC, we used Youden J statistic and found the 

optimal thresholds to be 72 and 8, respectively. Interpretation 
of the prediction model was performed using the SHapley 
Additive exPlanations  (SHAP), a unified approach adopted 
to precisely calculate the contribution and influence of each 
feature on the final predictions. The SHAP values show the 
contribution of each predictor, either positively or negatively, to 
the target variable. In addition, each observation in the dataset 
can be interpreted using the set of SHAP values [21].

RESULTS

Baseline clinical characteristics
Table 1 shows the baseline clinical characteristics of the 

study participants at enrollment. In all, 242 patients were 
enrolled in this study, including 183 survivors (75.6%) and 
59 non-survivors (24.4%). Septic shock, norepinephrine use, 
reoperation, renal replacement, mechanical ventilator therapy, 
higher ASA classifications, and higher SAPS3 and SOFA scores 
were more common among non-survivors than survivors. 

The most common cause of reoperation was wound 
dehiscence, followed by anastomosis leakage, bile leakage, 
bleeding, intestinal obstruction, and small bowel ischemia.

Mortality prediction model building and evaluation
The AUC values, accuracy, and F1 scores obtained from the 

test set are listed in Table 2. The AUC value of the CatBoost 
classifier was 0.933, which was the highest among all the AUCs 
of machine-learning models (Fig. 2). LR and XGB achieved the 
next highest AUC values, both being 0.931. Finally, the AUC 
values of the SOFA scores and SAPS3 for prediction of intensive 
care unit (ICU) mortality were 0.860 and 0.867, respectively. 
Overall, the SOFA scores and SAPS3 achieved lower AUC values, 
accuracies, and F1 scores than the machine-learning models (Fig. 
3).

Table 2. Model performances for mortality prediction in the 
test set

Variable AUC Accuracy F1 score

CatBoost classifier 0.933 0.888 0.748
Logistic regression 0.931 0.876 0.727
Extreme gradient boost 0.931 0.880 0.739
Gradient boosting classifier 0.919 0.888 0.761
Light gradient boosting machine 0.886 0.872 0.724
Random forest classifier 0.869 0.855 0.643
SAPS3 0.860 0.802 0.652
SOFA scores 0.867 0.773 0.626

AUC, area under the receiver operating characteristic curve; 
SAPS, Simplified Acute Physiology Score; SOFA, Sequential 
Organ Failure Assessment.
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Fig. 2. Receiver operating characteristic curves of the 
CatBoost classifier, logistic regression (LR), extreme gradient 
boost (XGB), and gradient boosting classifier (GBC).
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Fig. 3. Receiver operating characteristic curves of the 
Simplified Acute Physiology Score (SAPS) 3, Sequential Organ 
Failure Assessment (SOFA) scores, and CatBoost classifier.
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Explanation of CatBoost model with SHAP values
The SHAP algorithm was used to determine the significance 

of each predictor variable to the outcome predicted by the 
CatBoost model. The SHAP values represent the contribution 
of a single feature to the prediction of mortality. The variable 
importance plot lists the most significant variables in 
descending order (Fig. 4A). The DNI on day 3 had the strongest 
predictive value for all prediction horizons, followed closely 
by septic shock and norepinephrine use. For detection of risk 
factors for mortality, the positive and negative relationships 
of SHAP values. As presented in Fig. 4B, the SHAP values of all 
features for all samples were plotted. The horizontal location of 
features shows whether the effect of a value is associated with 

a stronger or weaker prediction, and the color shows whether 
that variable is high (red) or low (blue).

SHAP individual force plots
Fig. 5 shows the individual force plots of a survivor and a 

non-survivor. The force plot is another way to see the effect of 
each feature on the prediction for individual patients. In the 
plot, positive and negative SHAP values are displayed on the 
left and right sides, respectively. The left (red) side shows the 
components that increase mortality risk, while the right (blue) 
side shows those that decrease the mortality risk. The bold 
numbers are the probabilistic predicted values (f(x)). The f(x) of 
the survivors was −4.5 and that of the non-survivors was 2.6. 

Seung Hee Lim, et al: Machine learning to predict postoperative mortality in peritonitis-induced sepsis
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Fig. 4. (A) SHAP feature impor-
tance plot. The longer the bar, the 
larger the impact the feature has 
on the output. (B) SHAP summary 
plot. The visualization depicts the 
influence of a patient’s feature 
value on the prediction through 
individual dots. SHAP, SHapley 
Additive exPlanations; DNI, delta 
neutrophil index; INR, interna-
tional normalized ratio.
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Fig. 5. SHapley Additive exPlanations force plot for 2 selected patients.
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The length of the arrow of each feature indicates the degree of 
contribution. DNI on day 3, septic shock, and norepinephrine 
use demonstrated a high impact on survivability among both 
survivors and non-survivors.

DISCUSSION
Sepsis is the leading cause of death in critically ill patients, 

and its prevalence is increasing globally each year. To improve 
the treatment outcome of sepsis, early detection and treatment 
are essential. Biomarkers such as CRP level, procalcitonin 
concentration, and various cytokines are elevated in sepsis 
patients and could be useful as prognostic and diagnostic 
markers during sepsis treatment. Several scoring systems 
employing clinical and laboratory variables have been 
developed to predict the outcomes of critically ill patients, 
including the SAPS3 and SOFA scores. Siwei et al. [22] used the 
SOFA score and SAPS3 scores to extract mortality predictions 
after cardiac surgery, with AUC values of 0.809 and 0.850, 
respectively. Likewise, in a study by Basile-Filho et al. [23] and 
Pawar et al. [24], the AUC values for the SOFA scores and SAPS3 
for postoperative mortality prediction were 0.791 and 0.840, 
respectively. In several other studies, the classic scoring system 
showed a similar or lower prediction performance [9,25,26]. 
For this reason, there is a need to find suitable and specialized 
prediction modalities for sepsis.

The prediction of mortality using machine learning has 
become a new field of research. Pirracchio et al. [27] used 
a composite machine learning-based mortality prediction 
approach called the Super ICU Learner Algorithm. In this study, 
the AUC for hospital mortality prediction was 0.88 according 
to Super Learner compared to 0.71 and 0.78 for SOFA scores 
and SAPS-II, respectively. With machine learning, Kong et al. 
[13] predicted in-hospital mortality for sepsis patients in the 
ICU (AUC, 0.829), and Fransvea et al. [28] predicted mortality 
for emergency surgery in the elderly (accuracy, 94.9%). Thus, 
machine-learning algorithms have been applied to predict 
mortality in sepsis patients, but studies have not focused on 
their use for patients with sepsis caused by peritonitis. 

The present study showed that machine learning can improve 
the prediction of postoperative mortality in patients with sepsis 
caused by peritonitis. The AUC of the CatBoost classifier model, 
the optimal model in this study, was 0.933, which was superior 
to that of the current clinical scoring system. 

The advantage of this study is that explainable machine 
learning was used to establish a prediction model. Even though 
machine learning is being used more often in the medical field, 
black-box issues remain a major concern for physicians when 
making high-stakes decisions [29]. Lately, explainable AI based 
on domain knowledge and post-hoc analyses has been actively 
applied to interpret machine-learning models; this could lead to 

the resolution of black-box issues [12,15]. In this study, the SHAP 
algorithm was used to interpret the model at the feature level. 
This leads to a further advantage in that we analyzed several 
features before and after surgery. The results showed that DNI, 
INR, CRP, and neutrophil count on day 3 had a greater influence 
on mortality prediction than did preoperative results. 

The WBC and neutrophil percentage can fluctuate in both 
directions, either increasing or decreasing during sepsis. These 
bidirectional changes in baseline data can make it challenging 
to interpret the results accurately. Time series analysis studies 
on DNI and CRP are quite rare, but in the research conducted 
by Park et al. [30], they found that the peak time for CRP was 
36–50 hours and for DNI was 24 hours. The prompt response 
of DNI could potentially result in a more accurate depiction of 
post-surgical sepsis recovery.

These data demonstrate the application of a real dataset and 
explainable machine-learning approach to establish a physician-
understandable postoperative mortality prediction model for 
patients with sepsis caused by peritonitis.

Our study has several limitations. Since this was a retrospec-
tive review of medical records rather than a prospectively 
designed study, it could only compare WBC count and CRP level, 
which are measured routinely at the hospital, unlike biological 
markers such as procalcitonin, lactic acid, and disseminated 
intravascular coagulation scores. Due to the small sample size 
in this study, additional studies enrolling larger numbers of 
patients are required to confirm the best choice of machine-
learning model for predicting prognosis after peritonitis surgery 
and to establish guidelines for sepsis in surgical patients.

Our study found that machine-learning models predict 
postoperative mortality of patients with sepsis caused by 
peritonitis better than conventional scoring systems, such as 
SAPS and SOFA scores. This study indicated that machine-
learning algorithms are suitable for clinical use in mortality 
prediction. 
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