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CHFR regulates chemoresistance in triple-negative breast
cancer through destabilizing ZEB1
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Failures to treat triple-negative breast cancer (TNBC) are mainly due to chemoresistance or radioresistance. We and others
previously discovered that zinc finger E-box-binding homeobox 1 (ZEB1) is a massive driver causing these resistance. However, how
to dynamically modulate the intrinsic expression of ZEB1 during cell cycle progression is elusive. Here integrated affinity purification
combined with mass spectrometry and TCGA analysis identify a cell cycle-related E3 ubiquitin ligase, checkpoint with forkhead and
ring finger domains (CHFR), as a key negative regulator of ZEB1 in TNBC. Functional studies reveal that CHFR associates with and
decreases ZEB1 expression in a ubiquitinating-dependent manner and that CHFR represses fatty acid synthase (FASN) expression
through ZEB1, leading to significant cell death of TNBC under chemotherapy. Intriguingly, a small-molecule inhibitor of HDAC under
clinical trial, Trichostatin A (TSA), increases the expression of CHFR independent of histone acetylation, thereby destabilizes ZEB1
and sensitizes the resistant TNBC cells to conventional chemotherapy. In patients with basal-like breast cancers, CHFR levels
significantly correlates with survival. These findings suggest the therapeutic potential for targeting CHFR-ZEB1 signaling in resistant

malignant breast cancers.
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INTRODUCTION
Malignant breast cancers such as triple-negative breast cancer
(TNBC) often cause clinical drug resistance, and there is no suitable
drug targets [1, 2]. The combination of drugs has been proven to
eliminate the resistant cancer [3]. Zinc finger E-box-binding
homeobox 1 (ZEB1) protein is a key transcriptional factor that
induces epithelial-mesenchymal transition and cellular plasticity
in cancer cells [4-8]. ZEB1 has also been reported to transform
non-invasive breast cancer cells into highly malignant cancer stem
cells (CSCs) [9, 10]. Moreover, we and others recently demonstrate
that ZEB1 protein can promote the resistance of breast cancer to
radiotherapy and chemotherapy [10-14]. Together, ZEB1 is a
massive driver of breast cancers causing death, although the
regulatory mechanisms of highly expressed ZEB1 in breast cancers
remain much less understood. Previously, we found that ZEB1 is
dynamically regulated in the cell cycle progression. ZEB1 protein is
dramatically decreased from G2/M phase to G1 phase without
changing mRNA level [12]. However, the inactivating signals or
regulators that make ZEB1 protein quickly disappear remain
unclear. In this study, we conduct an integrated analysis to identify
a ZEB1-binding E3 ubiquitin ligase, checkpoint with forkhead and
ring finger domains (CHFR).

It is established that CHFR is silenced in many primary cancers
including breast cancers due to CpG methylation and histone

deacetylation [15, 16]. Consistent with its expression, CHFR plays
an important role in tumor suppression through blocking cell
cycle progression or inhibiting metastasis [17-19]. However, it is
not clear whether CHFR expression will benefit the treatment for
resistant breast cancers. Given that CHFR is highly methylated and
silenced in G2/M phase in gastric cancer [16], it is speculated that
CHFR is an E3 ubiquitin ligase for ZEB1 and exerts its tumor
suppression through destabilizing ZEB1 in TNBC.

In this work, we discovered that small-molecule inhibitor of
histone deacetylase (HDAC), Trichostatin A (TSA), significantly
enhanced the expression of CHFR protein though directly binding
to CHFR, which is independent of HDAC enzymatic activity. More
importantly, by targeting CHFR-ZEB1 signaling, these findings
define a previously unknown function of CHFR and establish a
potential therapeutic strategy through combination of TSA with
chemotherapeutic drugs such as doxorubicin (DOX), paclitaxel, or
fluorouracil (5-FU) for TNBC patients.

RESULTS

CHFR interacts and negatively correlates with ZEB1

We previously found that ZEB1 is highly expressed in breast cancers
[12] and confers basal breast cancer resistant to conventional
chemotherapy and neoadjuvant therapy (Fig. Sla-d). More
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importantly, ZEB1 protein is dynamically changed during cell cycle
progression [12], which is negatively correlated with the sensitivity
of cancer cells to chemotherapeutic treatment (Fig. S1e). As shown,
when synchronized SUM159 TNBC cells in the G2/M phase by
nocodazole treatment and released at different time points, cells in
G2/M phase (0h after nocodazole release) with higher ZEB1
expression is more resistant to doxorubicin treatment compared to
the cells in G1 phase (5 h after nocodazole release) without ZEB1
(Fig. S1e). To further investigate how ZEB1 is dynamically regulated,
we set out to identify new ZEB1-interacting proteins using a triple-
epitope (S-protein, FLAG tag, and streptavidin-binding peptide)-
tagged version of ZEB1 (SFB-ZEB1). Tandem-affinity purification
using streptavidin Sepharose beads and S-protein agarose beads
followed by mass spectrometric analysis identified several reported
ZEB1 interactors, including USP7, p53, CTBP2, CTBP1, and SIRT1
[12, 20-22], as well as a previously undescribed ZEB1 interactor,
CHFR (Fig. 1a and Supplementary Table 1). Co-immunoprecipitation
assays confirmed that CHFR could be detected in ZEB1 immuno-
precipitates (Fig. 1b) and that ZEB1 were present in CHFR
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immunoprecipitates (Fig. 1c). We further mapped the domain of
CHFR required for its interaction with ZEB1. MYC-tagged truncates
of CHFR were generated (Fig. 1d, upper panel) and co-expressed
with FLAG-ZEB1. Western blot analysis of MYC immunoprecipitates
revealed that both the forkhead-associated (FHA) domain and
carboxy-terminal cysteine-rich (CR) region of CHFR are necessary for
the interaction with ZEB1, while the RING domain is dispensable
(Fig. 1d, lower panel). Also, we transfected ZEB1 truncates described
previously [23] with wild-type CHFR into HEK293T cells and found
that only ZEB1 N-terminal zinc finger domain (NZF) interacts with
CHFR (Fig. S2a).

To determine whether ZEB1 indeed correlate with CHFR in
TNBC cells since CHFR has been reported as a cell cycle regulatory
E3 ligase with several reported substrates [24-27], we performed
immunoblotting analysis of these two proteins in human TNBC
and non-TNBC cell lines. Consistently, ZEB1 is highly expressed in
TNBC cells, while CHFR is not or lowly expressed. Interestingly, a
significant negative correlation between CHFR and ZEB1 was
observed in these breast cancer cells, in which most of the tumors
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CHFR interacts and negatively correlates with ZEB1. a Mass spectrometry identified a partial list of ZEB1 associated proteins. b, ¢

Transiently transfected SFB-ZEB1, MYC-CHFR, and MYC-GFP into HEK293T cells, followed by pulldown with Sepharose beads (s-S beads) (b) or
MYC beads (c) and immunoblotting with the antibodies indicated. d The schematic diagram of FHA, RING, and CRD domains of CHFR. Full-
length CHFR (FL), CHFRAFHA, CHFRARING, and CHFRACRD were transiently transfected into HEK293T cells, followed by pulldown with
Sepharose beads (s-S beads) or MYC beads and immunoblotting with the antibodies indicated. e Immunoblotting of ZEB1, CHFR and p-actin

in non-TNBC cell MCF7 and TNBC cells LM2, SUM159, BT549, and MDA-MB-231. f SUM159 cells were treated with 0.5 ug ml™"

nocodazole

overnight, the mitotic cells were “shaken off,” and then released into normal medium. Samples were collected at 0 and 5 h after releasing and
analyzed by western blotting with ZEB1, CHFR, and f-actin. Cell cycle distribution was marked by Cyclin A and p-H3 (S10).
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with high ZEB1 expression exhibited low CHFR expression
(Fig. 1e). We also plotted the relative CHFR expression score
versus the ZEB1 expression score for individual patients from The
Cancer Genome Atlas (TCGA) database, which revealed a highly
negative correlation (linear regression R?>=0.94, Fig. S1f). These
results indicates that downregulation of CHFR may contribute to
overexpression of ZEB1 in human TNBC patients, which may lead
to drug resistance and eventually relapse.

Moreover, when synchronized SUM159 cells in the G2/M phase
by nocodazole treatment and released the cells for 5 h, we found
that, in these synchronized cells, ZEB1 levels negatively correlated
with CHFR levels, which suggested that the dynamic regulation of
ZEB1 may be a direct effect of CHFR. Taken together, as a cell cycle
regulatory E3 ligase, CHFR may contribute to the dysregulation of
ZEB1 and the relative drug resistance of TNBC.

CHFR is a ZEB1 E3 ligase

To determine whether CHFR affect ZEB1 protein levels, we co-
transfected ZEB1 and CHFR into HEK293T cells and found that
CHFR downregulated ectopically expressed ZEB1 protein level in a
dose-dependent manner (Fig. 2a). Consistently, overexpression of
CHFR significantly inhibited endogenous ZEB1 protein level in
SUM159 cells (Fig. 2b). In addition, CHFR only inhibit the
expression of the ZEB1 mutants containing NZF domain, further
supporting that CHFR specifically associates with and regulates
ZEB1 protein (Fig. S2b). To determine whether CHFR destabilizes
ZEB1 protein, we first examined the levels of ectopically expressed
ZEB1 protein in HEK293T cells in the presence of cycloheximide
(CHX), an inhibitor of protein synthesis. As expected, over-
expression of CHFR led to a prominent decrease in the half-life
of ZEB1 protein, whereas the level and stability of co-transfected
SFB-GFP were not affected (Fig. 2¢, d). Also, compared to control
cells, in SUM159 cells that stably expressed CHFR, endogenous
ZEB1's half-life is dramatically shortened (Fig. 2e, f). Conversely,
knockdown of CHFR in LM2 TNBC cells markedly increase the ZEB1
expression level (Fig. 2g). Given that RING domain is responsible
for CHFR activity, we co-transfected ZEB1 together with wild-type
CHFR and RING domain deletion mutant (dead mutant) into
HEK293T cells. As expected, wild-type CHFR can degrade the
ectopically expressed ZEB1, while the dead mutants cannot (Fig.
2h). Consistently, the RING domain deletion mutant cannot
degrade the endogenous ZEB1 protein in SUM159 cells compared
to wild-type CHFR (Fig. 2i). We reasoned that CHFR destabilized
ZEB1 through proteasome-dependent ubiquitination. Indeed,
overexpressed wild-type CHFR substantially increase the ubiqui-
tination of ZEB1, while the dead mutant has no effect on
ubiquitination of ZEB1 (Fig. 2j). Moreover, molecular docking
analysis were performed using AutoDock Vina (Version 1.1.2) [28]
and suggested a favorable binding mode between the region of
ZEB1 and the FHA/CRD domain of CHFR (Fig. S2c). We concluded
from these experiments that ZEB1 is a substrate of CHFR and that
CHFR directly interacts with and degrades ZEB1 in the ubiquitin-
dependent manner.

CHFR regulates chemosensitivity in TNBC cells

Whereas ZEB1 has been shown to confer different types of cancer
drug resistance including in breast cancer, the function of CHFR in
chemoresistance of TNBC cells remains unclear. Since endogenous
CHFR expression in LM2 is not high, we made stably over-
expressed CHFR cell line (Fig. 3a) and analyzed the cell
proliferation. As expected, compared to control cells, CHFR
overexpression substantially sensitized LM2 cells to conventional
chemotherapeutic agents such as 5-FU (Figs. 3b and S3a),
doxorubicin (Fig. 3c), and paclitaxel (Fig. 3d). Similarly, for other
TNBC cells such as BT549 and SUM159 cells, ectopically expressed
CHFR can dramatically promote cell death under 5-FU treatment
(Fig. S3b, c). As a key lipogenic enzyme catalyzing the terminal
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steps in the de novo biogenesis of fatty acids, fatty acid synthase
(FASN) has been established to confer malignant tumor growth
and survival [29]. Recently, preclinical evaluation showed that
FASN is overexpressed in TNBC tumor samples and contributes to
doxorubicin [30] and docetaxel resistance [31]. To assess the effect
of CHFR on FASN, we stably transduced CHFR in SUM159 and LM2
cells. Clearly, we found that CHFR overexpression significantly
inhibit FASN protein level in both TNBC cells (Fig. 3e, f). Moreover,
knockdown of ZEB1 could markedly downregulate FASN expres-
sion in LM2 cells (Fig. 3g). To further assess whether the effect of
CHFR on FASN through ZEB1, we overexpressed ZEB1 to see
whether it can rescue FASN levels in CHFR-expressing cells, as
expectedly, CHFR does inhibit FASN expression though ZEB1
protein (Fig. 3h). Notably, overexpression of wild-type CHFR into
SUM159 cells could nearly abolish the endogenous FASN protein
but not the non-interactive mutants (AFHA, ACRD) and dead
mutant (Fig. 3i). Collectively, CHFR regulates FASN protein level
through interacting with and destabilizing ZEB1 and further
weakens the chemoresistance of TNBC cells.

TSA treatment downregulates ZEB1 protein level through
stabilizing CHFR

Given that CHFR is low expressed in TNBC cells, we sought to
search small molecules that could boost the endogenous CHFR
and further inhibit ZEB1 protein level. As it was reported that
combination of both TSA and 5-aza-2'-deoxycytidine (5-aza-dC)
reactivate the transcription of CHFR in RKO colorectal cancer cells
[15], we assessed the effect of those agents on CHFR mRNA level
in TNBC cells. Accordingly, we treated the 5 TNBC cell lines as
indicated with individual compound such as TSA or 5-aza-dC.
Unfortunately, none of them regulate the mRNA level of CHFR
(Fig. S4a and data not shown). However, TSA treatment markedly
enhanced the CHFR protein level in MDA-MB-231 cells (Fig. S4b),
but not 5-aza-dC (data not shown). Similarly, when co-transfected
MYC-tagged wild type and the truncates as indicated into
HEK293T cells, we found that both full-length CHFR and the other
truncates such as AFHA, ACRD, and ARING have been strongly
upregulated by TSA treatment (Fig. 4a). Since TSA is a HDAC
inhibitor, we therefore wanted to confirm whether CHFR regulated
by TSA is histone acetylation dependent. SAHA, another potent
inhibitor of HDAC [32], was used to treat the co-transfected
HEK293T cells as described in Fig. 4a. Strikingly, we found that
SAHA treatment could not change the expression level of wild-
type CHFR and the relative truncates (Fig. 4b). Moreover, we
ectopically overexpressed CHFR in HEK293T cells and pretreated
with SAHA for 6 h, after that, cells were treated with or without
TSA for additional 30h. We found that TSA still strongly
upregulates the CHFR protein level, although the activity of
HDACs was markedly blocked by SAHA (Fig. 4c). We conclude
from those experiments that, unlike Toyota’s finding [15], we
found that TSA treatment dramatically induce the CHFR protein
expression in TNBC cells, which is histone acetylation indepen-
dent. The detailed mechanisms warrants future investigation. To
further assess whether TSA treatment could downregulate ZEB1
protein level, we treated SUM159 and BT549 TNBC cells with TSA.
Consistently, TSA treatment increases the endogenous CHFR
protein level and, as expectedly, drastically decreases the
endogenous ZEB1 protein level (Fig. 4d, e). To determine whether
the effect of TSA on ZEB1 expression is mediated by CHFR, we
transduced short hairpin RNA (shRNA) for CHFR in LM2 and BT549
cells and found that knockdown of CHFR almost completely
reverses the effect of TSA as shown in scramble (Fig. 4f, g). We also
found that TSA treatment leads to a decrease of FASN protein
level in scramble compared to the sh-ZEB1 groups (Fig. 4h).
Collectively, our data suggest that TSA is a functional activator for
CHFR and an effective scavenger for ZEB1 in TNBC cells.

SPRINGER NATURE
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Fig. 2 CHFR is a ZEB1 E3 ligase. a Transiently transfected SFB-ZEB1 and different concentrations of MYC-CHFR in HEK293T cells and
immunoblotted with the MYC and FLAG antibodies. b In SUM159 cells, different concentrations of MYC-CHFR were transfected, followed by
immunoblotting with the antibodies as indicated. ¢, d SFB-ZEB1 and MYC-CHFR were transiently transfected into HEK293T cells, and 50 pg
ml~" CHX was added, and samples were collected at the indicated time points and analyzed by western blotting with FLAG and MYC
antibodies. e, f In SUM159 stably expressed mock or CHFR cells, 50 pg ml~' CHX was added, and samples were collected at the indicated time
points, followed by immunoblotting with antibodies against ZEB1, MYC, and f-actin. g LM2 was transduced by scramble or sh-CHFR cells, and
samples were collected and immunoblotted by ZEB1, CHFR, and p-actin antibodies. h Transiently transferred SFB-ZEB1, MYC-CHFR, or MYC-
CHFRARING into HEK293T cells. Immunoblotting of MYC and FLAG. i Transiently transfected MYC-CHFR or MYC-CHFRARING into SUM159 cells,
followed by immunoblotting of ZEB1, MYC, and p-actin. j HEK293T cells were transiently transfected with SFB-ZEB1, MYC-CHFR, or MYC-CHFR
ARING and added MG132 for 6 h before collecting samples, followed by pulling down with s-S protein beads and immunoblotting of MYC, HA,

and FLAG.

TSA treatments sensitizes the TNBC cells to chemotherapeutic
agents

We asked whether TSA regulates CHFR/ZEB1 protein level and
further inhibit cell viability. Consistently, treatment of MDA-MB-
231 cells with TSA increases CHFR protein level in a time-
dependent manner (Fig. 5a) and decreases ZEB1 protein in a
dosage-dependent manner (Fig. 5b). However, individually treated
with TSA has little effect on cell viability of MDA-MB-231, even at
concentration of 0.7 uM (Fig. 5¢). Interestingly, when co-treated
with 5-FU, doxorubicin, and paclitaxel chemotherapeutic drugs,
TSA could nearly eliminate the survival ability of MDA-MB-231
cells, whereas individual chemotherapy has almost no effect at
high dosage (Fig. 5d-f). Similar effects were observed in LM2 cells
(Fig. 5g-i). Taken together, these data suggest that the preclinical
potential of TSA plus conventional chemotherapeutic drugs co-

SPRINGER NATURE

treatments could be applicable to conquer the resistant TNBC
cells.

TSA suppresses chemoresistance through CHFR

We next sought to determine whether TSA treatments sensitizes
the TNBC cells to chemotherapy by mediating stimulation of CHFR
expression. We transduced shRNA for CHFR in LM2 cells and
treated with TSA. Consistently, TSA treatment significantly induces
CHFR expression in scramble cells; on the contrary, it almost does
not promote CHFR expression in sh-CHFR stable cells (Fig. 6a).
Intriguingly, the marked effect of co-treatment with TSA and 5-FU,
doxorubicin, or paclitaxel relatively on LM2 cell viability in
scramble cells is nearly completely abolished by knockdown of
CHFR (Figs. 6b, ¢ and S5a). Similarly, knockdown of CHFR in MDA-
MB-231 cells strongly restore the resistance to the co-treatment

Cell Death and Disease (2021)12:820
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stably transduced in LM2 cells and immunoblotted with the CHFR and

MYC-CHFRs

B-actin antibodies. b—-d LM2 cells stably transformed with mock or CHFR were seeded in 96-well plates and treated with 5-FU, DOX, or
paclitaxel as indicated and then fixed with 10% methanol and stained with 1:1000 crystal violet. e, f CHFR was stably transduced in SUM159
and LM2 cells and immunoblotted with the CHFR, FASN, and f-actin antibodies. g ZEB1 was stably knocked down in LM2 cells and
immunoblotted with the ZEB1, FASN, and p-actin antibodies. h CHFR and ZEB1 were transfected as indicated and immunoblotted with the
MYC, FLAG, FASN, and p-actin antibodies. i Full-length MYC-CHFR and MYC-CHFRAFHA, MYC-CHFRARING, and MYC-CHFRACRD mutants were
transiently transfected in SUM159 cells and immunoblotted with the MYC, FASN and f-actin antibodies. Significance of Mock versus CHFR is
shown. n = 3 wells per group. Data in b-d are the mean of biological replicates from a representative experiment, and error bars indicate s.e.

m. Statistical significance was determined by a two-tailed, unpaired

between TSA and 5-FU, doxorubicin, or paclitaxel (Figs. 6d, e and
S5b). To further determine whether the effect of TSA-CHFR is
mediated by the downstream functional regulator, FASN, we
restored CHFR expression in CHFR knockdown cells, and
consistently, knock down of CHFR significantly upregulates FASN
and ZEB1 protein level, which could be completely reversed by
overexpression of CHFR (Fig. 6f). Collectively, our data strongly
suggest that TSA promotes sensitizing of TNBC cells to
chemotherapy mainly through CHFR-mediated repression of
ZEB1 and FASN expression.

CHFR promotes apoptosis and correlates with good clinical
outcome in malignant breast cancer

Apoptosis has been established as a main cell death process
linked to chemotherapy; to evaluate whether CHFR induces
apoptosis, we treated LM2 cells with TSA individually or in
combination with doxorubicin. Interestingly, either TSA alone or
combined with doxorubicin could significantly downregulate
FASN as described in Fig. 3. Moreover, co-treatment with TSA
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Student’s t test. The experiments were repeated three times.

and doxorubicin drastically enhances the cleaved Caspase-3
expression level, which indicates that cells have undergone
apoptosis (Fig. 7a). Indeed, Annexin V-propidium iodide staining
by fluorescence-activated cell sorting analysis showed that co-
treatment in LM2 cells increases early apoptosis by ten-fold
compared to control group or three-fold compared to doxorubicin
alone (Fig. 7b, ¢). To determine whether co-treatment has
anticancer effects in vivo, we subcutaneously injected LM2 cells
into the mice. Seven days after tumor cell implantation, we
intraperitoneally injected doxorubicin with or without TSA into
mice. At 3 weeks, the average tumor volumes in the TSA plus
doxorubicin treatment group was 91.2 mm?>, which was approxi-
mately 70% less than those in the doxorubicin treatment only
group (321.2 mm?>) (Fig. 7d). Cancer cells with therapy resistance
including chemoresistance are likely to be a source of cancer
recurrence and metastatic relapse [33]. To determine the
correlation of CHFR expression with clinical outcome, we analyzed
a cohort of human breast cancer patients in which transcriptomic
profiling was obtained from 84 mesenchymal/basal subtype
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Fig. 4 TSA treatment downregulates ZEB1 protein level through stabilizing CHFR. a, b Full-length MYC-CHFR, MYC-CHFRAFHA, MYC-
CHFRARING, MYC-CHFRACRD, and MYC-GFP were transiently transfected into HEK293T cells and then treated with 1 uM TSA for 36 h and
immunoblotted with the MYC antibody. SE: short exposure, LE: long exposure (a); cells were also treated with 1 pM SAHA for 36 h and
immunoblotted with the MYC antibody (b). ¢ MYC-CHFR was transfected into HEK293T cells, pretreated with or without SAHA for 6 h, treated
with 1 uM TSA or SAHA as indicated for 36 h, and then immunoblotted with the MYC, Acetyl-H3, and -actin antibodies. d, e SUM159 and
BT549 cells were treated with 1 uM TSA for 36 h and immunoblotted with the CHFR, ZEB1, and p-actin antibodies. f, g LM2 and BT549 cells that
stably knocked down CHFR were treated with 1 uM TSA for 36 h and immunoblotted with the ZEB1 and f-actin antibodies. h LM2 cells that
stably knocked down ZEB1 were treated with 1 pM TSA for 36 h and immunoblotted with the FASN and p-actin antibodies.

tumor samples [34]. This analysis revealed that patients with high
CHFR expression levels (auto-select best cutoff) in their tumors
had much better distant relapse-free survival than those with low
CHFR expression levels (Fig. 7e; P =3 x 107°). In addition, analysis
of 98 basal-like 1 subtype tumor samples also showed that high
CHFR expression levels positively correlates with distant relapse-
free survival of those patients [34] (Fig. 7f; P =2 x 10~%). Moreover,
we analyzed 177 mesenchymal subtype breast cancer patients
with systematic treatment including conventional chemotherapy
and found that low expression of CHFR confers mesenchymal
breast cancers resistant to chemotherapy [34] (Fig. S6; P = 0.029).
Collectively, these data suggest that downregulation of CHFR may
contribute to overexpression of ZEB1 in human malignant breast
tumors, which may lead to chemoresistance and eventually
metastatic relapse.

DISCUSSION

TNBC (or basal-type breast cancer) remains the most challenging
subtype of breast cancer to treat. Until now, therapies targeting
specific molecular targets have rarely produced meaningful
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clinical improvements in the outcome of TNBC patients, and
conventional chemotherapy is still the standard of treatment [35].
TNBC cells are highly heterogeneous populations [36], and
different subpopulations of cells have their own characteristics,
some may be more differentiated, but others exhibit CSC-like
characteristics [37], which together contribute to the plasticity of
tumor cells. Enhanced tumor cell plasticity has been shown to be
an important driving force for tumor progression toward
malignancy and recurrence of drug resistance [38-40]. Through
this property of cellular plasticity, tumor cells constantly switch
their status to adapt to the continuously changing tumor
microenvironment and thus cause resistance to therapies. Recent
findings suggest that ZEB1 is one of the most critical factors
regulating tumor cell plasticity [5, 41]. Our previous results
demonstrate that ZEB1 plays an important role in radiotherapy
resistance in TNBC and that ZEB1 expression is dynamically
distributed in different phases of the cell cycle [12]. Moreover, we
found that cells in different cell cycle phases show different levels
of resistance to conventional chemotherapeutic agents such as
doxorubicin in this study, which is consistent with the expression
level of ZEB1. Therefore, the identified underlined mechanism by
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which ZEB1 is dynamically regulated during cancer progression
may explain why ZEB1-manipulated tumor plasticity/heterogene-
ity drive tumor cells to therapy resistance and relapse.

Although we and others found that phosphorylation, ubiquitina-
tion, and microRNAs could affect the ZEB1 protein level
[12, 13, 23, 42], the molecules that involved in the dynamic
regulation of ZEB1 stability are not known. By affinity purification
followed by mass spectrometric analysis, we found that the cell cycle-
regulated checkpoint ubiquitin E3 ligase, CHFR, may be an initiating
factor in the dynamic regulation of ZEB1. CHFR has been conclusively
shown to be an important regulator of cell cycle progression, with a
dynamic distribution in different phases of the cell cycle that is
exactly opposite to that of ZEB1. By overexpressing CHFR into cells,
we found that CHFR acts as ubiquitin ligase of ZEB1, downregulates
the protein stability of ZEB1 through the ubiquitin proteasome
pathway. Furthermore, by overexpressing CHFR or knocking down
ZEB1, we found that inhibition of the CHFR-ZEB1 signaling pathway
significantly improved the therapeutic effects of clinical chemother-
apeutic drugs such as 5-FU, paclitaxel, and doxorubicin on TNBC.
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es.

In this study, we presented a small-molecule inhibitor used to
inactivate HDACs, TSA, that could specifically upregulate endogenous
and ectopical expression of CHFR, which is histone acetylation
independent. Previous study showed that 5-aza-dC alone, but not
TSA, upregulate mRNA level of CHFR in colorectal cancer [15]; on the
contrary, we found that only TSA could upregulate CHFR protein
level in TNBC cells instead of mRNA level. The underlined mechanism
warrants future investigation. Since ZEB1 is a transcriptional factor
that is not easily druggable, indirectly inactivating ZEB1 by TSA open
a new window for resistant TNBC. Notably, instead of directly
affecting cyclinD1, CDK4/6, and BCL-XL [43], we found that co-
treatment with TSA and chemotherapeutic drugs could synergisti-
cally inhibit cell viability by inducing apoptosis, which is clearly
mediated by CHFR. In patients with breast cancer, CHFR was found to
positively correlate with poor survival (both mesenchymal and basal-
like 1 malignant breast cancer). Considering the low expression of
CHFR in TNBC cells, restoration of CHFR protein expression in TNBC
cells by TSA may provide new therapeutic strategies for the clinical
treatment of TNBC.
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experiments were repeated three times.

MATERIALS AND METHODS

Cell culture

HEK293T, MDA-MB-231, MDA-MB-436, BT549, and MCF7 cell lines were
from ATCC and cultured under conditions specified by the manufacturer.
The SUM159 cell line was from S. Ethier (Medical University of South
Carolina, USA) and cultured as described at http://www.asterand.com/
Asterand/human_tissues/159PT.htm. The LM2 cells was a gift from Dr.
Xiang Zhang (Baylor College of Medicine) and were cultured in Dulbecco’s
Modified Eagle Medium supplemented with 10% fetal bovine serum and
1% penicillin/ streptomycin at 37 °C and 5% CO,.

Plasmids including open reading frames (ORFs) and shRNAs

Human E3 ligase CHFR and the deletion mutants of CHFR were a gift from
Xiaochun Yu (Michigan University, USA). CHFR shRNA (Clone ID:
NM_018223.1-2974s1c1) construct was from Sigma. ZEB1 expression
construct were from R. A. Weinberg. The ZEB1 shRNA was from Open
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Biosystems through MD Anderson’s shRNA core facility. The ZEB1 and CHFR
ORFs were subcloned into the pBabe-SFB vector using the Gateway system
(Invitrogen). ZEB1 mutants were constructed as described previously [23].

RNA isolation and real-time PCR with reverse transcription
Total RNA was isolated using TRIzol reagent (Invitrogen) and then reverse
transcribed with an iScript cDNA Synthesis Kit (Bio-Rad). The resulting
cDNA was used for real-time PCR using the iTag Universal SYBR Green Kit
(Bio-Rad). B-Actin was used as an internal control. Real-time PCR and data
collection were performed on a CFX96 instrument (Bio-Rad). The primer
sequences for ZEB1: forward, 5-AGAAGCCAGTGGTCATGATG-3'; reverse, 5'-
CCTCAACAACCTCGTGGAAGCATAC-3, the primer sequences for f-actin:
forward, 5'-TCCCTGGAGAAGAGGCTACGA-3’; reverse, 5'-AGGAAGGAAGG
CTGGAAGAG-3/, and the primer sequences for CHFR: 5-GAGGTAAAGCGTT
TATAGCC-3'; reverse, 5-TGCCTTCTGTACTCAGGACACTGCC-3". All quantita-
tive PCR reactions were performed in triplicate.
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Fig. 7 CHFR promotes apoptosis and correlates with good clinical outcome in malignant breast cancer. a LM2 cells were treated with or
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treated as described in a and stained with propidium iodide and Annexin V-FITC and then analyzed by flow cytometry (b); ¢ showed the
percentage of early apoptotic (Annexin V+Pl—; c) cells in SUM159 cells. d Tumor growth curves of nude mice with subcutaneous injection of
LM2 cells. From day 7, mice received every 3 days intraperitoneal injections of doxorubicin with or without TSA. n =3 mice per group. e
Kaplan-Meier curves showing the distant relapse-free survival of patients with high or low expression of CHFR in the mesenchymal/basal
subtype breast tumors. f Kaplan-Meier curves showing the distant relapse-free survival of patients with high or low expression of CHFR in the
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Lentiviral transduction

The production of lentivirus and infection of target cells were performed as
described previously [12]. Lentiviral supernatant was collected at 36, 60,
and 84 h after co-transfection of psPAX2, pMD2.G, and the shRNA- or ORF-
containing vector into HEK293T cells and was added to the target cells.
Forty-eight hours later, the infected cells were selected with 1 ugml~" for
puromycin.

Immunoblotting

Western blot analysis was performed with sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) gels using standard methods.
Briefly, cultured cells were lysed in RIPA buffer containing protease inhibitors
(Roche) [12]. Proteins were separated by SDS-PAGE and blotted onto a
nitrocellulose membrane (Bio-Rad). Membranes were probed with the specific
primary antibodies, followed by secondary antibodies. The bands were
visualized by chemiluminescence (Millipore). The following antibodies were
used: antibodies against ZEB1 (1:1000, Bethyl Laboratories, A301-922A), CHFR
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(1:2000, ABclonal, A10447), FASN (1:1000, Cell Signaling Technology, 31805S),
Acetyl-Histone H3 (Lys27) (1:1000, Cell Signaling Technology, 8173S), cyclin A
(1:1000, Santa Cruz, sc-751 clone H-432), p-H3 (1:1000, S10, Cell Signaling
Technology, 9701), HA (1:2500, Santa Cruz, sc-7392, Clone F-7), FLAG (1:5000,
Sigma, F3165, clone M2), MYC (1:5000, Santa Cruz, SC-40, clone 9E10), -actin
(1:2000, Santa Cruz, SC-47778), HSP90 (1:3000, BD Transduction Laboratories,
610419, clone 68), and GAPDH (1:3000, Thermo, MA515738, clone GA1R) at
4°C overnight, followed by incubation with goat anti-rabbit IgG or goat anti-
mouse IgG (1:3000, Boster) at room temperature for 1 h. The Image J program
(http://rsbweb.nih.gov/ij/download.html) was used for densitometric analysis
of western blots, and the quantification results were normalized to the
loading control.

Immunoprecipitation and pulldown assays

Cells were lysed in NETN buffer (100 mM NaCl, T mM EDTA, 20 mM Tris-HCI
(pH 8.0), 0.5% Nonidet P-40) containing protease inhibitors (Roche). For
pulldown of SFB-tagged proteins or MYC-tagged proteins, cell extracts
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were incubated with streptavidin-Sepharose beads (Amersham Bios-
ciences) or Anti-Myc magnetic beads (Thermo Fisher, 88842) at 4°C for
2 h. The beads was washed with NETN buffer and the bound proteins were
eluted by boiling in 1x Laemmli buffer.

Chemicals

The chemicals used for treating cells are TSA (Selleckchem, $1045), SAHA
(Sigma, SML0061), MG132 (Santa Cruz Biotechnology, sc-201270), CHX
(Sigma, C7698), doxorubicin (Sigma, D1515), 5-FU (Sigma, F6627), and
paclitaxel (Sigma, T7191).

Tandem affinity purification and mass spectrometry

293T cells were transfected with SFB-tagged ZEB1. Six hours before
collection, 10 uM MG132 was added into cells. The expression of exogenous
protein was confirmed by immunoblotting. Affinity purification and mass
spectrometric analysis were performed as described previously [12].

In vivo ubiquitination assays

For the in vivo ubiquitination assay, HEK293T cells were harvested 48 h
after transfection with the indicated plasmids. For denaturing, lysates were
heated at 95 °C for 5 min in the presence of 1% SDS, followed by 10-fold
dilution with lysis buffer (to 0.1% SDS) and sonication, as described
previously [44]. The cell lysates were incubated with S-protein agarose
(Millipore) for 2 h, and then the beads were washed with lysis buffer three
times and subjected to immunoblotting analysis.

Cell viability assay

The indicated TNBC cells were seeded in 96-well plates (10,000 cells per
well) and treated with or without chemotherapeutic drugs. Cells were then
fixed at the indicated times and stained with crystal violet (0.05% w/v in
formalin). The dye from stained cells was dissolved in 10% acetic acid and
the absorbance was measured at 570 nm.

Identification of differentially expressed genes

TNBC patients was obtained from the TCGA data portal (https://tcga-data.
nci.nih.gov/tcga/), and RNA expression for TNBC was obtained using TCGA-
BRCA.GDC_phenotype (August 8, 2020). We used R studio for analysis to
get mesenchymal stem-like clinical data and removed the adjacent and
abnormal data. Differential gene expression analysis was performed to
assess the function of genes.

Molecular docking

The three-dimensional structure of the proteins were downloaded from
the RCSB protein database (www.rcsb.org). The proteins used (PDB ID:
1lgp, 2xp0, and 2e19) were opened in Autodock Tools 1.5.6. By adding all
hydrogen atoms, the Gasteiger particle size was calculated and the non-
polarity was combined. After hydrogen, we define it as a receptor and save
it as a pdbqt file. Small-molecule drugs were downloaded from the
National Library of Medicine (https://pubchem.ncbi.nlm.nih.gov/). The
drugs used (PubChem CID: 444732, 5311) were opened in Autodock Tools
1.5.6. The molecular docking simulation has been performed by Autodock
4.2 package, and the corresponding Autodock Tools 1.5.6 has been used to
prepare all necessary input files and analyze the docking results.

Mice

All mice used in this study were supplied by and housed in the Research
Animal Support Facility at Huazhong University of Science & Technology.
Six-week-old female athymic nude mice were used for subcutaneous
injection of 5 x 10° LM2 human breast cancer cells. The tumor volume was
calculated according to the equation v =length x width? x 1/2. For drug
treatment experiments, 7 days after tumor cell injection, nude mice were
treated with 4.5x 10 3mgkg™" doxorubicin (APExBio, 3966) with or
without 9x 10 >mgkg "' TSA (APExBio, A8183) through intraperitoneal
injection every 3 days until the endpoint, as indicated. All animal
experiments were performed in accordance with a protocol approved by
the Institutional Animal Care and Use Committee of Tongji Medical
College, Huazhong University of Science & Technology.

Patients’ survival curve
Kaplan-Meier plots were generated to illustrate the relationship between
patients’ disease-free survival and gene expression levels of CHFR or ZEB1.
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Data were obtained from http://kmplot.com/analysis/. Auto-select best
cutoff was used in the analysis. The probe used in Figs. 7d, e and Sé:
218803 _at; the probe used in Fig. S1a, d: 210875_at; the probe used in Fig.
S1b: 239952_at; the probe used in Fig. S1c: 212764_at. The relationship
was tested by log-rank test.

Statistics and reproducibility

Each experiment was repeated three times or more. Unless otherwise
noted, data are presented as mean £ s.e.m., and Student’s t test (unpaired,
two-tailed) was used to compare two groups of independent samples. The
data analyzed by t test meet normal distribution; we used an F-test to
compare variances, and the variances are not significantly different.
Therefore, when using an unpaired t test, we assumed equal variance, and
no data points were excluded from the analysis. P < 0.05 was considered
statistically significant.

DATA AVAILABILITY
The datasets and materials used and/or analyzed during the current study are
available from the corresponding author on reasonable request.
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