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Abstract

Inter-individual variation in patterns of DNA methylation at birth can be explained by the influence of environmental,
genetic and stochastic factors. This study investigates the genetic and non-genetic determinants of variation in DNA
methylation in human infants. Given its central role in provision of methyl groups for DNA methylation, this study focuses
on aspects of folate metabolism. Global (LUMA) and gene specific (IGF2, ZNT5, IGFBP3) DNA methylation were quantified in
430 infants by PyrosequencingH. Seven polymorphisms in 6 genes (MTHFR, MTRR, FOLH1, CbS, RFC1, SHMT) involved in
folate absorption and metabolism were analysed in DNA from both infants and mothers. Red blood cell folate and serum
vitamin B12 concentrations were measured as indices of vitamin status. Relationships between DNA methylation patterns
and several covariates viz. sex, gestation length, maternal and infant red cell folate, maternal and infant serum vitamin B12,
maternal age, smoking and genotype were tested. Length of gestation correlated positively with IGF2 methylation
(rho = 0.11, p = 0.032) and inversely with ZNT5 methylation (rho = 20.13, p = 0.017). Methylation of the IGFBP3 locus
correlated inversely with infant vitamin B12 concentration (rho = 20.16, p = 0.007), whilst global DNA methylation correlated
inversely with maternal vitamin B12 concentrations (rho = 0.18, p = 0.044). Analysis of common genetic variants in folate
pathway genes highlighted several associations including infant MTRR 66G.A genotype with DNA methylation (x2 = 8.82,
p = 0.003) and maternal MTHFR 677C.T genotype with IGF2 methylation (x2 = 2.77, p = 0.006). These data support the
hypothesis that both environmental and genetic factors involved in one-carbon metabolism influence DNA methylation in
infants. Specifically, the findings highlight the importance of vitamin B12 status, infant MTRR genotype and maternal MTHFR
genotype, all of which may influence the supply of methyl groups for DNA methylation. In addition, gestational length
appears to be an important determinant of infant DNA methylation patterns.
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Introduction

DNA methylation is an epigenetic modification that plays an

important role in regulation of gene expression [1]. It provides a

potential mechanism through which the genome can ‘capture’ the

effects of environmental exposures and perpetuate their influence

on physiological systems over long time periods [2]. Factors known

to influence methylation patterns throughout the life course

include nutrition, smoking and age [3–5]. Evidence of consider-

able inter-individual variation in DNA methylation has been

documented in adults [6–11] but the degree of inter-individual

variation in DNA methylation in humans at birth, and the factors

that influence these DNA methylation patterns, are poorly

understood. Emerging evidence suggests that ethnicity, parental

age, maternal pregestational BMI and being born small for

gestational age can influence DNA methylation [12–15] but it is

likely that many more factors modulate the infant methylome

including both environmental and genetic components [16,17].

Factors that modulate one-carbon metabolism and so influence

the provision of methyl groups via S-adenosyl methionine (SAM)

for DNA methylation may be particularly important [18]. For

example, status with respect to folate and the other micronutrient

co-factors required for SAM synthesis via one-carbon metabolism

may influence DNA methylation. In intervention studies in adult

women, restricted folate intake resulted in reduced genome-wide

DNA methylation [19,20]. In addition, genome-wide DNA

methylation in cord blood DNA correlated inversely with maternal

plasma homocysteine concentration [21] and more recent data

from the same group revealed an association between methylation

of 289 CpG sites from fetal cord blood DNA with plasma

homocysteine [22]. Finally, reduced methylation at the IGF2

differentially methylated region, H19 DMR, in cord blood DNA
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has been associated with increased folic acid intake during

pregnancy [23], and maternal peripheral blood DNA methylation

at the IGF2 locus was associated with maternal serum vitamin B12

levels [24]. The latter finding suggests a possible influence of

maternal serum vitamin B12 on cord blood DNA methylation [24].

The influence of maternal one-carbon metabolism on methylation

status in the offspring has been well documented in animal models

[25–32] but as yet there are few studies demonstrating the effect of

this maternal factor on infant DNA methylation in humans [33].

Recent studies of the heritability of DNA methylation patterns

support the postulate that genetic factors are important determi-

nants [7,11,34,35]. In a study of adults examined at two time

points more than a decade apart, some individuals lost but others

gained DNA methylation [34] and patterns of change clustered in

families, suggesting that genetic variation can influence methyla-

tion patterns [34]. Variants in genes encoding components of the

one carbon metabolic cycle are likely to be important in

influencing DNA methylation because of their potential influence

on the methyl donor pool. Indeed, there is evidence that a

common variant of the methylenetetrahydrofolate reductase

(MTHFR) gene is associated with perturbed DNA methylation in

a disease-free population [36] and in colorectal cancer [37,38], but

not, apparently, in other cancers [39]. Although one report

suggests that maternal and infant MTHFR 677C.T does not

affect cord blood methylation of the SLC6A4 gene [40], the impact

of this and other one carbon metabolism gene variants on the

establishment of DNA methylation patterns during pregnancy or

in early post-natal life in humans remains largely unknown.

Given the association between DNA methylation patterns and

gene expression, it is plausible that aberrant methylation patterns

at birth may predispose individuals to higher disease risk later in

life via developmental programming [41]. The relationship

between aberrant DNA methylation and cancer is well docu-

mented [42] and provides a paradigm for hypotheses which

propose that epigenetic mechanisms mediate the link between

environmental exposures and health outcomes in later life [2]. A

recent study suggests that DNA methylation patterns at birth are

associated with risk of childhood obesity [43], which has the

potential to increase the likelihood of a wide range of metabolic

and other diseases. As such, there is a need to establish the

determinants of variation in DNA methylation at birth as a basis

for both avoiding the establishment of aberrant methylation

during development and the prediction and prevention of diseases

later in life.

In summary, there is substantial inter-individual variation in

DNA methylation patterns [6–11] that is likely to be explained by

a combination of genetic and environmental exposures and by

stochastic events. To date, little is known about the factors that

determine variation in DNA methylation patterns at birth. The

aims of this study were to investigate genetic and non-genetic

determinants of variation in DNA methylation patterns in new-

born infants and to assess the contribution of maternal factors,

including folate and vitamin B12 concentrations and the genotype

of enzymes involved in the one-carbon metabolism pathway.

Materials and Methods

Study population
Ethical approval to undertake this study was obtained from the

Newcastle and North Tyneside Local Research Ethics Committee

(07/Q0906/5). Written informed consent was obtained from all

participating mothers recruited during pregnancy. Consent was

obtained for use of their own biological samples and those of their

child (including DNA) for epidemiological studies.

A nested cohort study was undertaken within the North

Cumbria Community Genetics Project [44] and included 430

cord blood DNA samples (mean (6 SD) gestation = 39.5 (1.4)

weeks) for methylation and genotype analysis. Of these, peripheral

blood DNA samples for genotype analysis were available from 201

mothers. Samples and data from this prospective, unselected,

population-based cohort were collected between 1996 and 2003 at

a single maternity unit in West Cumbria, UK. Mothers were

recruited at their first antenatal appointment when they completed

a health and lifestyle questionnaire and DNA was extracted from

routine antenatal blood samples (mean (SD) gestation = 10.6 (4.3)

weeks). Cord blood was collected and delivery details, birth weight,

sex, gestational age, maternal smoking habits and maternal age

were recorded. Maternal and infant red blood cell folate (RCF)

and serum vitamin B12 analyses were conducted on whole blood

prior to DNA extraction. Summary statistics are provided in

Table 1.

Genotype analysis
Seven polymorphisms in 6 genes involved in folate transport

and in one carbon metabolism (MTHFR 677C.T (rs1801133),

MTHFR 1298A.C (rs1801131), MTRR 66G.A (rs1801394),

FOLH1 1561C.T (rs202676), CbS 644 bp ins, RFC1 80G.A

(rs1051266) and SHMT 1420C.T (rs1979277)) were determined

using standard RFLP methods as described elsewhere [45].

Polymorphisms with genotyping success rates less than 90%, with

minor allele frequencies (MAF) less than 5% were removed prior

to analysis. All variants were assessed for Hardy Weinberg

Equilibrium (HWE). Allele and genotype frequencies are shown

in Table S1.

LUMA assay to determine global DNA methylation
The luminometric methylation assay (LUMA) protocol has been

described in detail previously [46]. Briefly, 200 ng of genomic

DNA was digested with EcoRI+MspI or EcoRI+HpaII in two

separate 20 ml volume reactions containing 5 units of each enzyme

(New England Biolabs) with 2 ml Tango buffer (Fermentas) for 4 h

at 37uC. Digests were carried out in triplicate for each sample.

20 ml PyrosequencingH annealing buffer (Qiagen) was then added

to each reaction and the samples were analysed by Pyrosequen-

cingH on a PyromarkTM MD system. The instrument was

programmed to add dNTPs in the following steps; dATP, a

mixture of dGTP+dCTP, dTTP and finally a mixture of

dGTP+dCTP. Peak heights were calculated using the Pyro-

Table 1. Baseline characteristics of the study population.

Characteristic N Median 25%, 75%

Males, number (%) 222/424 (52%) - -

Gestation, weeks 423 40.0 39.0, 40.0

Infants red cell folate, ngml 430 491.5 399.0, 602.0

Infants B12, pgml 413 323.0 232.0, 445.0

Mothers age at birth, years 326 28.6 23.5, 32.7

Smoked during pregnancy,
number (%)

47/206 (23%) - -

Mothers red cell folate, ngml{ 197 379.0 298.0, 512.0

Mothers B12, pgml{ 158 283.0 226.0, 389.0

{Mothers’ red cell folate and B12 concentrations were measured from routine
antenatal blood samples (mean (SD) gestation = 10.6 (4.3) weeks).
doi:10.1371/journal.pone.0033290.t001
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MarkTM 1.0 software. The HpaII/EcoRI and MspI/EcoRI ratios

were calculated as (dGTP+dCTP)/dATP for the respective

reactions. The HpaII/MspI, or methylation ratio was defined as

(HpaII/EcoRI)/(MspI/EcoRI). A higher methylation ratio is

indicative of less methylated DNA.

Bisulfite PyrosequencingH for loci-specific DNA
methylation analysis

Bisulfite conversion of DNA was performed using EZ DNA

Methylation GoldTM kit (Zymo Research) following the manufac-

turer’s protocol. Briefly, 2 mg of genomic DNA was incubated with

CT conversion reagent and incubated at the following tempera-

tures; 98uC for 10 min, 64uC for 2.5 hr, held at 4uC. DNA was

then transferred to a spin column, washed, desulphonated and

purified, finally eluting in a 10 ml volume.

Quantitative bisulfite PyrosequencingH was used to determine

the percentage methylation at individual CpG sites within the

differentially methylated region 0 (DMR0) of IGF2 (NG_008849.1;

6098–6375) and promoters of IGFBP3 (NT_007819.17;

45951336–45951104) and ZNT5 (NT_006713.15; 18983340–

18983714). Briefly, 0.2 mg of bisulfite treated DNA was added as

a template in a PCR reaction using 12.5 ml Hot Star Taq

mastermix (Qiagen), total volume 25 ml. For ZNT5, a nested PCR

was carried out using 4 ml of a larger amplified region of ZNT5. All

primer sequences and PCR conditions are shown in Table S2.

Biotin-labelled PCR products were captured with streptavidin

sepharose beads (GE Healthcare), and made single stranded using

sodium hydroxide denaturation and a PyrosequencingH Vacuum

Prep Tool (Qiagen). Sequencing primers were annealed to the

single stranded PCR product by heating to 80uC, followed by slow

cooling. PyrosequencingH was then carried out on a PyromarkTM

MD system. Cytosine methylation was quantified using proprie-

tary PyroQ CpG 1.0.6 software. All PCR and PyrosequencingH
reactions were carried out in duplicate.

For each assay, 0% and 100% methylated controls were

prepared by carrying out a flanking PCR reaction for each gene of

interest on genomic DNA to generate an unmethylated control,

followed by in vitro methylation (SssI treatment) of an aliquot of the

PCR product to generate a methylated control (please see Table

S3 for primers and PCR conditions). These controls were used to

rule out any amplification bias of primers for methylated DNA

and to assess assay reproducibility using methods described

previously [47]. All primer sets were found to be unbiased and

assays were reproducible. Zero and 100% methylated controls

were run routinely alongside samples as internal controls. CpG

sites with poor success rates or extreme low/high methylation

measures (mean methylation = 0%/100%) across the study

population were removed before analysis.

Vitamin status measurement
Maternal and infant RCF levels and serum vitamin B12 levels

were measured as detailed elsewhere using an Abbott IMx ion

capture assay for RCF and an immunoassay for serum vitamin B12

(Abbott GmBH, Germany) [45,48].

Data analysis
Correlation was assessed across the locus-specific CpG sites

using non-parametric Spearman’s rank correlation and where

correlation between methylation at the CpG sites analysed within

a single gene was at least modest (rho.0.6) mean percentage

methylation values were also included in the analysis. Non-

parametric Kruskal-Wallis and Spearman’s rank correlation were

used to assess associations between methylation levels and

categorical (namely; infant sex, smoking status during pregnancy

and genotype) and continuous exposure variables (namely;

gestation, infant and maternal vitamin B12, infant and maternal

RCF, and mothers age)respectively. For genetic analyses, meth-

ylation levels were initially compared across all three genotypes

(i.e. applying no model). Subsequently, those variants demonstrat-

ing association were investigated further by applying specific

genetic models (i.e. dominant, recessive and additive). Rare

variants (Minor Allele Frequency (MAF) ,15%) were analysed

under a dominant model, in respect of the minor allele, only.

Univariate and multiple linear regression analyses were subse-

quently performed to further examine the significant associations

(e.g. check for confounding, assess relative and combined effect

sizes). In addition to ordinary least squares (OLS) regression,

robust regression was performed due to its ability to withstand

violations of normality, heteroskedasticity and outliers given the

non-parametric nature of methylation distributions and the

moderate sample size available. All analyses were performed in

STATA version 10 (Statacorp, College Station, TX).

Results

Correlation between methylation at CpG sites within the
same gene

Methylation at three CpG sites was measured in the DMR of

IGF2, at 5 CpG sites in the IGFBP3 promoter and at 5 CpG sites in

the ZNT5 promoter. Methylation of individual CpG sites within

each of the IGF2 and IGFBP3 loci were correlated (rho.0.60, data

not shown) therefore mean methylation levels within each of these

two loci were calculated and used for further analysis. ZNT5 CpG

site 1 was not reliably detected in the assay used and CpG site 4

was highly methylated (i.e. median methylation = 100%) and

showed little inter-individual variation, so neither were included in

further statistical analysis. Methylation of sites 2, 3 and 5 in the

ZNT5 promoter were not correlated, so these data were included

in the analysis only as separate measures, and not used to calculate

a mean value.

Non-genetic determinants of methylation status
We investigated the impact of maternal and infant non-genetic

factors on infant methylation patterns (Table 2 and Table 3).

Females showed more methylation than males at IGF2 site 2, and

a longer period of gestation was correlated with increased

methylation across the IGF2 region. Conversely, methylation at

site 3 of the ZNT5 locus was negatively correlated with length of

gestation. Infant B12 status was associated inversely with

methylation across the IGFBP3 locus and especially so at site 4,

whereas maternal B12 concentration correlated inversely with

infant global DNA methylation.

Genetic determinants of methylation status
We investigated the impact of maternal and infant genotype on

infant methylation status (Table 3 and Table 4). Those infants

heterozygous for the MTRR 66A variant had increased global

methylation and decreased IGF2 site 2 methylation compared with

both homozygous groups. Of note, however, this SNP did not

conform to HWE across the infant subgroup (S Table 1). Infants

carrying the minor RFC1 80A variant had increased methylation,

following a dominant trend, at both IGFBP3 site 4 and ZNT5 site

2. Infant CbS 644ins had a low MAF so data were tested under a

dominant model only and we found that carriers of the rare

insertion had increased methylation at IGF2 site 2.

Maternal genotype also influenced infant DNA methylation.

The maternal minor MTHFR 677T variant was associated with

Determinants of Infant DNA Methylation
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increased infant methylation at the IGF2 locus (site 1, site 2 and

mean) following an additive model; methylation of the ZNT5 site 3

locus was increased in infants of mothers carrying one or more

copies of the minor MTHFR 1298C allele; infants of mothers

homozygous for the minor MTRR 66A variant had decreased

methylation at the IGFBP3 locus (sites 1, 3 and 5 and mean

methylation at this locus) compared with infants of mothers

carrying the major MTRR 66G allele; the same recessive pattern

was also observed at the ZNT5 site 5 locus. The maternal GCPII/

FOLHI 1561C.T SNP had a low MAF so data were tested under

a dominant model and we observed that the major homozygous

maternal genotype was associated with lower infant methylation at

the IGFBP3 site 2 locus compared with heterozygous and minor

homozygous maternal genotypes.

Individually, genetic and non-genetic predictor variables

contributed ,0.3 to 8% of the variability in infant methylation

levels, as shown by linear regression r2 values (Table 3). In

addition, effect sizes on methylation were similar for both genetic

and non-genetic factors. Furthermore, none of these univariate

associations were confounded by or demonstrated evidence of

interaction with sex and/or gestational length. Overall, the

combination of genetic and non-genetic predictors accounted for

,8 to 16% of the total variation in infant methylation levels. It

should be noted that, these regression analyses are likely to be

underpowered for a number of reasons (e.g. limited maternal

genotype data, use of mean methylation as the outcome measure,

and non-parametric nature of methylation data), so that the

apparent lack of significance in some models should be treated

with caution.

Discussion

The determinants of DNA methylation patterns, including the

involvement of folate and other micronutrient co-factors involved

in one-carbon metabolism, are the focus of considerable research

interest [4,49]. This may be expected given the central role of

these micronutrients in the generation of SAM - the methyl donor

for DNA methylation. In addition, evidence is emerging that

ageing and a wide range of environmental exposures including

nutrition and smoking [3,10,19,50–57] as well as heritable

components [7,11,34,35] may modulate DNA methylation

patterns throughout the life-course. However, the impact of these

factors, singly and in combination, on inter-individual variation in

DNA methylation patterns at birth is largely unknown.

In this study we examined global and gene specific methylation

patterns in infants in relation to both non-genetic and genetic

factors involved in one carbon metabolism. For this purpose, we

chose 3 genes with contrasting degrees of methylation; IGF2, an

imprinted locus with mean methylation ,50%, IGFBP3, consti-

tutively methylated at low levels (,5%), and ZNT5, constitutively

methylated at high levels (,90%). We chose to investigate the

IGF2 gene as it is one of the more frequently investigated loci for

DNA methylation demonstrating altered methylation in response

to environmental influences [11,15,23,33]. Furthermore, both

IGF2 and IGFBP3 are members of the IGF system, which is

important for intrauterine growth [58], hence the investigation of

DNA methylation at the IGFBP3 locus. Finally we selected the

ZNT5 gene for analysis as we had previously observed inter-

individual variation in methylation at this locus in DNA from

human colonic mucosal biopsies (Coneyworth, Mathers & Ford,

unpublished data). We observed that both non-genetic and genetic

factors explained between 0.3 and 8% of the inter-individual

variation in both global and gene specific DNA methylation in

infants, with the combination of both factors accounting for up to

16%. We report that increased maternal serum vitamin B12 was

indicative of lower infant global DNA methylation, and that

higher infant serum vitamin B12 concentration was associated with

reduced methylation at IGFBP3 site 4, and across the IGFBP3

locus. Since vitamin B12 is a rate-limiting co-factor for methionine

synthase reductase (MTRR) in the conversion of homocysteine to

methionine, an integral step in methyl group donation, altered

vitamin B12 supply may influence DNA methylation through SAM

availability. Higher vitamin B12 status may result in increased

SAM which would increase the SAM:S-adenosylhomocysteine

(SAM:SAH) ratio and alter the kinetics of methyl group donation.

Moreover, in the current study, variation in both maternal and

infant genotype at the MTRR locus resulted in changes in infant

methylation, providing further evidence that aberrations at this

point of one carbon metabolism might affect the capacity to

methylate DNA (although it is pertinent to state that larger studies

will be required to definitively assess effect the relationship

between the MTRR 66A.G variant and DNA methylation

patterns, given that this SNP was not in Hardy-Weinberg

equilibrium in this study). Although Wettergren et al (2010) [59]

Table 2. Associations between methylation and non-genetic predictors.

Association/Correlation{

Non-Genetic Variable Methylation Locus N Test Statistic P-Value

Infant Infant

Sex, Males/Females IGF2 Site 2 194/180 4.80 0.029

Gestation IGF2 Mean 392 0.11 0.032

Infants’ B12 IGFBP3 Site 4 292 20.16 0.007

Infants’ B12 IGFBP3 Mean 294 20.12 0.048

Gestation ZNT5 Site 3 311 20.13 0.017

Maternal Infant

Mothers’ B12 Global* 121 0.18* 0.044

{Non-parametric Kruskal-Wallis test for association was performed between methylation and categorical predictor variables. Spearman’s rank correlation was assessed
between methylation and continuous predictor variables.
*A higher methylation ratio is indicative of less methylated DNA therefore the positive correlation reported shows that a higher maternal serum B12 level is associated
with lower genomic DNA methylation.
doi:10.1371/journal.pone.0033290.t002
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Table 3. Univariate and multiple linear regression analysis.

Standard regression analysis
Robust
regression analysis Standardised

Model Outcome Predictor N Coef.
Standard
error P-value R2

Standard
error P-value beta coef.

Univariate Global Infant MTRR
66 G.A*

307 20.035 0.014 0.009 0.022 0.013 0.007 20.148

Univariate Global Maternal B12 121 1.99461024 1.04961024 0.060 0.030 1.10561024 0.074 0.172

Multipleł Global Infant MTRR
66 G.A*

117 20.033 0.015 0.026 0.083 0.014 0.018 20.206

Maternal B12 7.62061025 7.09061025 0.285 6.28061025 0.228 0.097

Sex{ 20.023 0.014 0.111 0.014 0.108 20.146

Gestation 0.002 0.006 0.761 0.007 0.784 0.028

Univariate IGF2 Site 2 Sex 374 0.517 0.481 0.283 0.003 0.483 0.284 0.056

Univariate IGF2 Mean Gestation 392 0.294 0.175 0.093 0.007 0.182 0.106 0.085

Univariate IGF2 Site 3 Infant MTRR
66 G.A*

382 20.706 0.498 0.157 0.005 0.497 0.156 20.076

Univariate IGF2 Site 2 Infant CbS 644ins* 377 1.404 0.643 0.030 0.013 0.623 0.025 0.112

Univariate IGF2 Site 1 Maternal MTHFR
677 C.T{

154 2.081 0.694 0.003 0.056 0.651 0.002 0.236

Multipleł IGF2 Mean Sex{ 153 0.828 0.636 0.195 0.080 0.661 0.212 0.105

Gestation 0.422 0.272 0.122 0.288 0.144 0.124

Infant MTRR 66 G.A* 20.251 0.636 0.694 0.654 0.702 20.032

Infant CbS 644ins* 20.977 0.890 0.274 1.004 0.332 20.089

Maternal MTHFR
677 C.T{

1.286 0.478 0.008 0.460 0.006 0.214

Univariate IGFBP3 Site 4 Infant B12 292 20.002 0.001 0.031 0.016 0.001 0.007 20.126

Univariate IGFBP3 Site 4 Infant RFC1 80G.A* 302 0.676 0.380 0.076 0.011 0.319 0.035 0.102

Univariate IGFBP3 Site 2 Maternal GCPII
1561C.T*

121 0.889 0.353 0.013 0.051 0.378 0.020 0.225

Univariate IGFBP3 Site 3 Maternal MTRR 66
G.AW

117 20.810 0.497 0.106 0.023 0.207 2.00061024 20.150

Univariate IGFBP3 Mean Maternal MTRR 66
G.AW

117 20.655 0.570 0.253 0.011 0.283 0.022 20.106

Multipleł IGFBP3 Mean Infant B12 104 20.003 0.001 4.00061024 0.159 0.001 0.001 20.348

Infant RFC1 80G.A* 0.273 0.268 0.311 0.274 0.321 0.099

Maternal GCPII
1561C.T*

0.247 0.272 0.366 0.300 0.411 0.090

Maternal MTRR 66
G.AW

20.432 0.422 0.309 0.336 0.202 20.096

Sex{ 20.256 0.242 0.292 0.249 0.306 20.101

Gestation 20.027 0.107 0.801 0.112 0.810 20.024

Univariate ZNT5 Site 3 Gestation 311 21.374 0.635 0.031 0.015 0.635 0.031 20.122

Univariate ZNT5 Site 2 Infant RFC1 80G.A* 314 3.469 1.396 0.014 0.019 1.481 0.020 0.139

Univariate ZNT5 Site 3 Maternal MTHFR
1298A.C*

132 8.290 2.579 0.002 0.074 2.682 0.002 0.271

Univariate ZNT5 Site 5 Maternal MTRR 66
G.AW

104 218.714 6.105 0.003 0.084 3.410 2.97161027 20.290

*Dominant models were applied for these SNPs, hence coefficients reflect the difference in methylation level for carriers of the minor allele compared to major allele
homozgyotes (reference group).
{Females were compared to males (reference group).
{Additive models were applied for these SNPs, hence coefficients reflect the difference in methylation level for each additional copy of the minor allele compared to
major allele homozygotes (reference group).
WRecessive models were applied for these SNPs, hence coefficients reflect the difference in methylation level for minor allele homozygotes compared to carriers of the
major allele (reference group).
łReduced numbers in multiple regression models are due to limited maternal genotype data and removal of outliers, consequently, these reduced numbers may in part
account for the lack of significance seen with some predictor variables. Note also that mean methylation levels were utilized for multiple regression modelling despite
not always demonstrating the strongest effect size with individual predictors. Standardised beta coefficients are obtained by first standardizing all variables to have a
mean of 0 and a standard deviation of 1, they denote the increase in methylation for a standard deviation increase in the predictor variables. Multiple regression analysis
was not performed for ZNT5 associations as mean methylation was not considered across this locus.
doi:10.1371/journal.pone.0033290.t003

Determinants of Infant DNA Methylation

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e33290



T
a

b
le

4
.

A
ss

o
ci

at
io

n
s

b
e

tw
e

e
n

m
e

th
yl

at
io

n
an

d
g

e
n

e
ti

c
p

re
d

ic
to

rs
.

A
A

A
a

a
a

G
e

n
o

ty
p

ic
M

o
d

e
l{

A
d

d
it

io
n

a
l

M
o

d
e

l{

G
e

n
e

ti
c

V
a

ri
a

n
t

M
e

th
y

la
ti

o
n

L
o

cu
s

N
M

e
d

ia
n

2
5

%
,

5
0

%
N

M
e

d
ia

n
2

5
%

,
5

0
%

N
M

e
d

ia
n

2
5

%
,

5
0

%
C

h
i2

P
-V

a
lu

e
M

o
d

e
l

T
e

st
S

ta
ti

st
ic

In
fa

n
t

In
fa

n
t

M
TR

R
6

6
G

.
A

G
lo

b
al

*
1

7
9

0
.3

7
*

0
.3

2
,

0
.4

4
1

1
7

0
.3

5
*

0
.3

0
,

0
.3

9
1

1
0

.3
8

*
0

.3
5

,
0

.4
0

1
0

.2
6

0
.0

0
6

D
o

m
in

an
t

8
.8

2

M
TR

R
6

6
G

.
A

IG
F2

Si
te

3
1

9
8

5
0

.8
8

4
7

.6
9

,
5

3
.2

4
1

7
1

4
9

.5
9

4
7

.1
4

,
5

1
.6

6
1

3
5

0
.2

8
4

6
.4

0
,

5
5

.1
5

7
.5

1
0

.0
2

3
D

o
m

in
an

t
6

.9
0

C
b

S
6

4
4

in
s

IG
F2

Si
te

2
3

1
7

5
1

.8
4

4
9

.5
5

,
5

4
.4

4
5

7
5

2
.8

3
5

0
.5

3
,

5
5

.4
9

3
5

0
.6

4
4

9
.8

6
,

5
4

.7
3

-
-

D
o

m
in

an
t

4
.2

6
W

R
FC

1
8

0
G

.
A

IG
FB

P
3

Si
te

4
9

4
6

.9
8

6
.3

3
,

8
.0

1
1

5
8

7
.5

0
6

.7
1

,
8

.4
1

5
0

7
.5

6
6

.4
8

,
8

.3
0

6
.5

5
0

.0
3

8
D

o
m

in
an

t
6

.5
2

R
FC

1
8

0
G

.
A

Z
N

T5
Si

te
2

1
1

1
9

2
.5

0
8

4
.5

0
,

9
7

.0
0

1
5

1
9

5
.0

0
9

0
.0

0
,

9
7

.5
0

5
2

9
6

.0
0

8
9

.7
5

,
9

7
.5

0
8

.2
1

0
.0

1
7

D
o

m
in

an
t

7
.7

6

M
a

te
rn

a
l

In
fa

n
t

M
TH

FR
6

7
7

C
.

T
IG

F2
Si

te
1

4
9

4
3

.1
0

4
0

.3
7

,
4

6
.4

5
8

3
4

5
.4

0
4

1
.6

9
,

4
8

.2
5

2
2

4
6

.5
2

4
5

.3
5

,
4

8
.4

7
9

.1
3

0
.0

1
0

A
d

d
it

iv
e

3
.0

2

M
TH

FR
6

7
7

C
.

T
IG

F2
Si

te
2

5
1

5
0

.4
6

4
8

.3
7

,
5

3
.9

1
8

0
5

1
.7

4
4

9
.5

2
,

5
4

.3
8

2
2

5
4

.1
1

5
1

.5
3

,
5

5
.7

7
9

.1
9

0
.0

1
0

A
d

d
it

iv
e

2
.9

3

M
TH

FR
6

7
7

C
.

T
IG

F2
M

e
an

5
2

4
7

.6
7

4
5

.2
3

,
5

1
.0

0
8

6
4

9
.2

8
4

6
.5

7
,

5
1

.4
6

2
2

5
0

.1
4

4
8

.3
1

,
5

3
.4

4
8

.1
0

0
.0

1
7

A
d

d
it

iv
e

2
.7

7

M
TH

FR
1

2
9

8
A

.
C

Z
N

T5
Si

te
3

6
0

9
2

.2
5

7
5

.0
0

,
9

7
.5

0
5

5
9

7
.0

0
8

9
.5

0
,

9
9

.0
0

1
7

9
6

.0
0

9
1

.5
0

,
9

8
.5

0
8

.8
5

0
.0

1
2

D
o

m
in

an
t

8
.8

5

G
C

P
II/

FO
LH

I
1

5
6

1
C

.
T

IG
FB

P
3

Si
te

2
8

3
5

.7
1

5
.2

4
,

6
.5

1
3

5
6

.0
0

5
.4

9
,

7
.5

2
3

6
.1

5
5

.9
8

,
1

0
.6

0
-

-
D

o
m

in
an

t
4

.7
0

W

M
TR

R
6

6
G

.
A

IG
FB

P
3

Si
te

1
4

7
4

.8
2

3
.3

9
,

5
.7

8
5

9
5

.0
4

4
.4

9
,

6
.1

2
9

3
.7

0
2

.9
1

,
4

.6
1

7
.3

8
0

.0
2

5
R

e
ce

ss
iv

e
5

.3
2

M
TR

R
6

6
G

.
A

IG
FB

P
3

Si
te

3
4

7
4

.4
6

4
.0

6
,

4
.9

4
6

0
4

.5
3

4
.1

3
,

5
.7

1
1

0
4

.0
0

3
.7

3
,

4
.2

6
7

.2
1

0
.0

2
7

R
e

ce
ss

iv
e

5
.9

7

M
TR

R
6

6
G

.
A

IG
FB

P
3

Si
te

5
4

5
6

.1
6

5
.4

6
,

6
.8

3
5

8
6

.9
3

5
.9

9
,

8
.3

9
1

0
6

.3
1

5
.6

2
,

7
.0

5
7

.6
5

0
.0

2
2

D
o

m
in

an
t

6
.5

3

M
TR

R
6

6
G

.
A

IG
FB

P
3

M
e

an
4

7
5

.5
8

5
.1

3
,

6
.5

8
6

0
5

.8
9

5
.4

5
,

7
.0

9
1

0
5

.3
6

5
.1

9
,

5
.4

8
8

.0
9

0
.0

1
8

R
e

ce
ss

iv
e

3
.8

2

M
TR

R
6

6
G

.
A

Z
N

T5
Si

te
5

4
5

8
5

.0
0

6
6

.5
0

,
9

3
.5

0
5

1
7

6
.0

0
6

6
.0

0
,

9
3

.5
0

8
5

8
.5

0
5

0
.7

5
,

6
3

.2
5

1
0

.5
7

0
.0

0
5

R
e

ce
ss

iv
e

1
0

.1
5

{A
ss

o
ci

at
io

n
s

b
e

tw
e

e
n

m
e

th
yl

at
io

n
an

d
SN

P
g

e
n

o
ty

p
e

s
w

e
re

te
st

e
d

in
it

ia
lly

u
n

d
e

r
a

g
e

n
o

ty
p

ic
m

o
d

e
l

u
si

n
g

a
n

o
n

-p
ar

am
e

tr
ic

K
ru

sk
al

-W
al

lis
T

e
st

,
u

n
le

ss
o

th
e

rw
is

e
st

at
e

d
.

T
h

o
se

sh
o

w
in

g
as

so
ci

at
io

n
w

e
re

te
st

e
d

fu
rt

h
e

r
u

n
d

e
r

d
o

m
in

an
t/

re
ce

ss
iv

e
an

d
ad

d
it

iv
e

m
o

d
e

ls
u

si
n

g
K

ru
sk

al
-W

al
lis

an
d

T
re

n
d

te
st

s,
re

sp
e

ct
iv

e
ly

.
{T

e
st

st
at

is
ti

cs
an

d
p

-v
al

u
e

s
fr

o
m

th
e

m
o

st
ap

p
ro

p
ri

at
e

m
o

d
e

l
ar

e
p

re
se

n
te

d
.

W
SN

P
G

C
P

II/
FO

LH
I

1
5

6
1

C
.

T
an

d
C

b
S

6
4

4
in

s
w

e
re

te
st

e
d

u
n

d
e

r
a

d
o

m
in

an
t

m
o

d
e

l
(w

it
h

re
sp

e
ct

to
th

e
m

in
o

r
al

le
le

)
o

n
ly

d
u

e
to

th
e

ir
lo

w
M

A
F

(i
.e

.
5

–
1

5
%

).
*A

h
ig

h
e

r
m

e
th

yl
at

io
n

ra
ti

o
is

in
d

ic
at

iv
e

o
f

le
ss

m
e

th
yl

at
e

d
D

N
A

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

3
3

2
9

0
.t

0
0

4

Determinants of Infant DNA Methylation

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e33290



reported no effects of the MTRR 66G.A variant on p16INK4A

hypermethylation in the mucosa of colorectal cancer patients, de

Vogel et al (2009) observed that MLH1 hypermethylation among

female colorectal cancer cases was inversely associated with

carriage of the MTRR 66G.A variant [60]. In the present study,

both vitamin B12 concentrations and variation in the gene involved

in vitamin B12 metabolism were associated with altered DNA

methylation. This observation suggests that further investigation of

the effects of both vitamin B12 and the MTRR 66G.A genotype

on one-carbon metabolism are warranted to understand the effects

of both the vitamin and SNP on DNA methylation. Both

experimentally-based and mathematical modelling-based ap-

proaches could be applied to advance understanding in this area

[61,62] to account for the influence of complex interactions at

multiple nodes within the one - carbon metabolic pathway on the

phenotype of DNA methylation.

As noted above, folate is an important contributor of methyl

groups to one-carbon metabolism and hence a major determinant

of the quantity of SAM available for the methylation of DNA.

Human intervention studies have shown that moderate restrictions

in folate intake reduced genome-wide DNA methylation [19–20].

More recently an observational study found that higher genome-

wide methylation in DNA from colonic mucosa was associated

with higher serum and erythrocyte folate concentrations [53]. We

hypothesised that RCF concentration would correlate positively

with infant genome-wide DNA methylation but we found no

support for this hypothesis in the present study. Previously, Fryer et

al (2009) [21] reported no association between cord serum folate or

maternal folic acid intake and infant LINE-1 DNA methylation

(an index of non-coding genome-wide methylation), but observed

an inverse correlation between LINE-1 methylation and homo-

cysteine concentration in cord blood. Furthermore, methylation

patterns of 289 CpG sites from fetal cord blood DNA were found

to be significantly associated with plasma homocysteine, but not

serum folate concentrations [22], suggesting that homocysteine, a

functional indicator of availability of one-carbon supply for DNA

methylation which is influenced by several micronutrients may be

a better biomarker in this context than folate per se. It is therefore

plausible that, despite the lack of an association between measures

of folate status and DNA methylation in this study, other

micronutrient co-factors in one-carbon metabolism may influence

methyl group donation which is consistent with our observations

relating to vitamin B12.

Genetic variation in the maternal MTHFR gene was associated

with methylation levels at the IGF2 and ZNT5 loci and

demonstrated some of the largest individual effect sizes (,6–

7%). The MTHFR 677C.T and 1298A.C variant were selected

for investigation because they result in elevation of total plasma

homocysteine and lower circulating concentrations of folate [63]

and as such can be used as unconfounded proxies for high

homocysteine/low folate using a Mendelian randomization

approach [64]. Using this approach there was evidence for an

association between maternal homocysteine/folate levels and

DNA methylation in infants in the present study, inconsistent

with the null relationship observed between the blood based

metabolites themselves and DNA methylation. However, the

present study is limited by a modest sample size which may explain

these inconsistencies. The current study was limited to the analysis

of seven polymorphisms and a more comprehensive appraisal of

genetic variation in one-carbon metabolic pathway may uncover

further associations with DNA methylation pattens.

In this study, maternal smoking did not have any discernable

effect on infant DNA methylation. Previously, Breton et al (2009)

[54] reported lower methylation at AluYb8, but not LINE-1

elements, in buccal cell DNA of children exposed to tobacco

smoke prenatally as well as increases in methylation in two genes -

AXL and PTPRO - out of eight loci studied. Furthermore, cord

serum global DNA methylation had an inverse relationship with

serum cotinine levels, indicating genomic hypomethylation in the

infants exposed to smoking in utero [65]. Conversely, Launay et al.

recently reported increased DNA methyltransferase activity,

decreased DNA methylation and increased gene expression of

the monoamine oxidase (MOA-B) gene in smokers, suggesting

bidirectional gene specific effects of smoking on DNA methylation

[66]. The lack of an association between infant DNA methylation

and maternal smoking during pregnancy observed in this study

may be due to a) use of a different measure of global methylation

compared with previous studies and b) the specific target genes

chosen in this study compared with other loci whereas methylation

of other loci may be plastic in response to smoking.

We observed that DNA methylation patterns were influenced

by length of gestation in a gene specific manner; IGF2 methylation

was positively correlated with gestation length whereas this

correlated negatively with ZNT5 methylation. Previous work has

shown that global DNA methylation in the baboon fetus follows a

tissue-specific trajectory during the second half of gestation with

decreased global DNA methylation in the frontal cortex and no

change in the heart during the later stages of pregnancy [67].

Furthermore, it was reported recently that prematurely born

infants had lower global DNA methylation (measured as LINE-1

methylation) in cord blood compared with term infants, suggesting

that changes in fetal DNA methylation are ongoing during late

pregnancy [68]. In a study of effects of maternal characteristics on

methylation of selected genes in umbilical cord genomic DNA,

maternal BMI correlated positively (r = 0.41) with methylation of

the peroxisome proliferator-activated receptor-c co-activator 1a
gene (PPARGC1A) but there was no significant relationship

between methylation of this gene and gestational age [14]. To

the best of our knowledge, ours is the first study demonstrating

effects of gestational age on gene-specific DNA methylation in

infant cord blood DNA, offering additional evidence for a role of

gestation length in the determination of DNA methylation patterns

at birth.

In conclusion, the findings of this study are consistent with the

hypothesis that modulation of one-carbon metabolism influences

DNA methylation in the newborn human infant. As this area of

research is still in its infancy, much remains unknown about how

an individual’s DNA methylation profile is established during

development, what factors might influence the fidelity of these

profiles during the life course and, ultimately the consequences of

these altered profiles for long term health and wellbeing. This

study provided an opportunity to appraise the relationship

between maternal genotype and some environmental exposures

on DNA methylation in infants. By measuring both global and site

specific DNA methylation in 3 genes, we have contributed to the

limited existing data concerning infant methylation in response to

genetic and environmental factors. Although a more comprehen-

sive investigation of methylation at other loci throughout the

genome would provide deeper insights into the determinants of

DNA methylation patterns at birth, the findings from this study

underscore the complexity of the relationship between environ-

mental and genetic determinants and DNA methylation status. We

provide evidence that variation in one-carbon metabolism by

environmental and genetic factors, specifically vitamin B12 the

MTRR 66G.A SNP and MTHFR variants can influence infant

methylation. In addition, gestational length appears to be an

important determinant of infant DNA methylation patterns.
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