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Key Points

• Integrated clonotype
and mRNA expression
levels in 6 patients,
identifying common
and divergent
transcriptional states.

• Characterization of
transcriptional changes
with progression on
photopheresis and
vorinostat.
Cutaneous T-cell lymphomas (CTCLs) are a spectrum of diseases with varied clinical courses

caused by malignant clonal proliferation of skin-tropic T cells. Most patients have an

indolent disease course managed with skin-directed therapies. In contrast, others,

especially in advanced stages of disease or with specific forms, have aggressive progression

and poor median survival. Sézary syndrome (SS), a leukemic variant of CTCL, lacks highly

consistent phenotypic and genetic markers that may be leveraged to prevent the delay

in diagnosis experienced by most patients with CTCL and could be useful for optimal

treatment selection. Using single-cell mRNA and T-cell receptor sequencing of peripheral

blood immune cells in SS, we extensively mapped the transcriptomic variations of nearly

50 000 T cells of both malignant and nonmalignant origins. We identified potential

diverging SS cell populations, including quiescent and proliferative populations shared

across multiple patients. In particular, the expression of AIRE was the most highly

upregulated gene in our analysis, and AIRE protein expression could be observed over a

variety of CTCLs. Furthermore, within a single patient, we were able to characterize

differences in cell populations by comparing malignant T cells over the course of treatment

with histone deacetylase inhibition and photopheresis. New cellular clusters after

progression of the therapy notably exhibited increased expression of the transcriptional

factor FOXP3, a master regulator of regulatory T-cell function, raising the potential

implication of an evolving mechanism of immune evasion.
Introduction

Cutaneous T-cell lymphomas (CTCLs) are a group of heterogeneous malignancies of T-cell origin that
traffic to the skin. Mycosis fungoides (MFs) and Sézary syndrome (SS) are CTCLs comprised of skin-
tropic CD4+ T cells with varying degrees of blood involvement.1,2 Despite the clonal nature of both MF
and SS, the course of the diseases can be highly variable, with a subset possessing a relatively indolent
disease course, whereas other patients manifest widespread disease burden beyond the skin; in
particular, patients with SS exhibit prominent blood involvement and carry a poor prognosis. Advanced
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stages of CTCL have a 5-year survival as low as 24%,1 with
patients often cycling through therapies that do not offer long-term
durable responses. Thus, a deeper understanding of the CTCL
disease process and determinants of tumor behavior are critical
unmet knowledge gaps that could assist in determining optimal
therapeutic regimens for patients with SS and MF.

Although CTCL represents a clonal proliferation of malignant T cells,
we and others have previously demonstrated single-cell transcrip-
tional heterogeneity of the circulating malignant T-cell population of
patients with SS.3,4 This heterogeneity has also been reported
from single-cell sequencing of CTCL skin lesions, demonstrating
marked intertumoral and intratumoral transcriptional heterogeneity.5

One theory for the differential presentation and course of CTCL for
patients is the varied composition of distinct subsets of malignant T
cells.2 Single-cell sequencing enables the investigation of distinct
subset analysis for the leukemic SS, which may shed light on niche
development and potential vulnerabilities to specific treatments.

The transcriptional heterogeneity of CTCL may explain the extensive
treadmilling of therapeutic response and recurrence. Histone deace-
tylase inhibitors (HDACi) are a mainstay of CTCL treatment and are
thought to alter key genetic programs involved in tumor development
and progression.6 However, the trials for which the approval of HDACi
was based found only 30% to 35% of patients with CTCL respond to
HDACi, with a median duration of response of 13.7-15 months.7,8

Interestingly, an in-depth analysis of HDACi in patients with SS
found highly individualized responses in not only T-cell number but
variable genomic and mRNA expression changes.9,10 Brentuximab
vedotin (BV), another therapy for CTCL, consists of a chimeric anti-
body directed against CD30, a cell marker variably found in MF/SS,
conjugated to monomethyl auristatin E, an inhibitor of microtubule
polymerization and hydrolysis. Studies examining the efficacy of BV in
advanced-stage CTCL have indicated that there is no correlation
between tumoral CD30 expression and time to response, duration of
response, progression-free survival, and event-free survival11,12 sup-
porting that other patients or tumor-specific features play a role. These
data underscore the need for a greater understanding of the mainte-
nance of the malignant potential of CTCL and the need for better
predictive biomarkers in patients with CTCL undergoing treatment.

We used single-cell mRNA and T-cell receptor (TCR) sequencing
across isolated CD45+ immune cells in the peripheral blood of
6 patients with SS. With over 50 000 single cells, our studies
revealed extensive common and differential gene expression markers
and cellular pathway alterations within malignant SS T cells. In addi-
tion to this analysis, our study uncovered alterations at the single-cell
level of a patient with SS during treatment with HDACi and photo-
pheresis through therapeutic failure and disease progression, offering
a novel insight into resistance mechanisms for combinatorial therapy.
Therefore, these data indicate that determinations of tumor hetero-
geneity and composition by transcriptionally distinct malignant cell
subpopulations may hold predictive value in treatment response and
utility in clinical decision-making and therapeutic choice.

Methods

Patient recruitment

The current studywas approved by theUniversity of Iowa and theMayo
Clinic Institutional Review Board and conducted under the Declaration
of Helsinki Principles. The patients were recruited from the Department
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of Dermatology Cutaneous Lymphoma Clinic at the University of Iowa
and the Cutaneous Lymphoma Clinic at the Mayo Clinic in Scottsdale,
Arizona. Samples from the Mayo Clinic were shipped overnight at 4◦C
to the University of Iowa. Informed written consent was received from
the participant before inclusion in the study.

Flow cytometry

Blood draws were performed, and peripheral blood mononuclear
cells were isolated using a Ficoll gradient. Cells were labeled for
CD45 and flow-sorted to isolate immune cells on a Becton Dick-
inson Aria II. The Patient 1 sample isolation involved flow-sorted
peripheral blood CD4+ T cells only, and the baseline data were
previously described.3

Single-cell RNA sequencing

Sequencing for 5′ gene expression and T-cell receptor was per-
formed using the Chromium (10x Genomics, Pleasanton, CA) and
Illumina (San Diego, CA) sequencing technologies. Amplified cDNA
was used to construct both 5′ expression and TCR enrichment
libraries. Libraries were pooled and run on separate lanes on an Illu-
mina HiSeq 4000. Each lane consisted of 150 bp paired-end reads.
Basecalls were converted into FASTQs using the Illumina bcl2fastq.
FASTQ files were aligned to the human genome (GRCh38) using the
CellRanger v3.0.1 pipeline as described by the manufacturer. The
TCR V(D)J sequences were aligned to the vdj_GRCh38_alts_en-
sembl genome build provided by the manufacturer.

Single-cell data processing and analysis

Initial processing of immune cells from peripheral blood of 6
patients used the Seurat R package (v3.0.2). Single cells used in
subsequent analysis were comprised of CTCL1 (n = 7828),
CTCL2 (n = 32 592), CTCL3 (n = 2250), CTCL4 (n = 1479),
CTCL5 (n = 1090), and CTCL6 (n = 2677). CTCL1 sequencing
data were derived from the previous publication3 and included as
part of the baseline/integrated data. For this sample, we sequenced a
second time point after progression on vorinostat (n = 7127) which
has not been previously published. Samples were combined into a
single Seurat object using canonical correlational analysis and mutual
nearest neighbors.13,14 Dimensional reduction to form the Uniform
Manifold Approximation and Projection (UMAP) plots used the top 40
calculated dimensions and a resolution of 0.5. Cluster markers and
differential gene expression analyses were performed using the Wil-
coxon rank-sum testwith an unsupervised approach involving no gene
filtering. FOXP3+ cells were defined as individual cells with FOXP3
counts ≥1. Percent expression graphs were created using the schex
R package (v1.1.5, development version), setting nbins = 80 and in
the make_hexbin() call. Cell trajectories were created using the
monocle (v2.10.1) R package15 using the top 4750 genes for
ordering and the DDRtree dimensional reduction strategy. In addition,
the individual time points were used as the residual model string
during the reduction of dimensions to eliminate differences based on
the batch effect. Cell cycle scoring was performed on single cells
using the previously described gene set16 and the CellCycleScoring
function in the Seurat package.

Single-cell immune phenotyping used the SingleR (v1.0.1) R
package17; the cell-type based correlations and single-cell
expression values were compared with transcriptional profiles
from pure cell populations in Human Primary Cell Atlas.18 Single-
sample gene set enrichment analysis (ssGSEA) used the escape
14 FEBRUARY 2023 • VOLUME 7, NUMBER 3
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Figure 1. Single-cell map of peripheral blood across 6 patients with Sézary syndrome. (A) UMAP projection of the flow-sorted CD45+ immune cells (n = 54 994)

across 6 patients: T cells/CTCL cells (Cluster 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, and 15), myeloid cells (Cluster 5, 11, and 14), and B cells (Cluster 13). (B) Percent of cells expressing

selected lineage markers for T cells (CD2 and CD3G), myeloid cells (ITGAM [CD11b] and ITGAX [CD11c]), and B cells (CD19 and CD79A). (C) Normalized correlation values

across rows ranging from 0 to 1 for predicted immune cell phenotypes from the Human Primary Cell Atlas18 based on the SingleR R package17 for each cluster. (D) Percentage

of total cells for each patient by cell type. (E) Cell distribution by patient sample both as contour graphs and summarized in the accompanying bar chart by patient and cluster.

Clusters representing >15% of total patient cells are labeled.
R package.19 Individual gene sets were derived from the GSEA
Hallmark library,20 Kyoto Encyclopedia of Genes and Genome,21

and Biocarta. Expression data were visualized using the ggplot2
(v3.2.1) and pheatmap (v1.0.12) R packages. TCR sequencing
results were processed using the scRepertoire (v1.0.0).22 Malig-
nant clones were defined as clones with immune repertoire
occupancy >0.1. Genes upregulated at time point 2 (n = 1428)
underwent GSEA using the Enrichr software23 using the same
libraries as above. Results with adjusted P value < .25 are pre-
sented in supplemental Table 6. Processed data are available in the
GEO accession: GSE124899 and GSE146586.

Bulk-sequencing analysis

Raw expression data for GSE11311324 were downloaded from
the National Center for Biotechnology Information Sequence Read
Archive and converted to FASTQ files using the SRA toolkit.
Samples were aligned with the kallisto pseudoalignment25 and
14 FEBRUARY 2023 • VOLUME 7, NUMBER 3
GRCh38 build for the human genome, aggregating the estimated
counts for transcripts into gene-level quantifications based on
Human Genome Organization Gene Nomenclature Committee
gene symbol. Sample expression values were processed using the
Sleuth R Package (v0.30.0). ssGSEA for the bulk samples was
performed using the GSVA (v1.30.0) R package using the Poisson
function for cumulative distribution. Immune receptor quantification
for bulk RNA sequencing was performed using MiXCR using the
default pipeline.26 Recovered immune receptor reads were then
filtered for the dominant T-cell receptor V gene, corresponding to
either ɑβ or γδ T cells, and normalized by the entire recovered
immune receptor repertoire.

Immunohistochemistry

Immunohistochemistry was performed on a Dako Autostainer Link
48 after deparaffinization, rehydration, and heat-induced epitope
retrieval on a Dako PT Link. All antibodies were retrieved in Dako
SINGLE CELL RNA/TCR SEQUENCING OF SÉZARY SYNDROME 323
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Target Retrieval Solution, HpH (EDTA-based). All primary antibody
incubations were of a 30-minute duration. The polymer-based
Dako EnVision FLEX kit was used for detection; all detections
were 30 minutes. Diaminobenzidine was used as the chromogen.
Slides were subsequently lightly counterstained with Harris
hematoxylin, dehydrated, and coverslipped for pathologist review.
The primary antibodies used in this study included CD3 (Dako;
polyclonal; 1:800), CD4 (Novocastra; clone 4B12; 1:100), and
autoimmune regulator (AIRE; Invitrogen; clone 5H12; 1:50). A
multitissue block, including tonsil, was used as the positive tissue
control for CD3 and CD4, while thymus was used for AIRE.
Nuclear AIRE staining was quantified as mean positive cells
across a minimum of 5 high-power fields.

Statistical analysis

Statistical analyses were performed in R (v3.6.1). Two-sample
significance testing used Welch’s t test, with significance testing
for >3 samples using one-way analysis of variance (ANOVA) with
Tukey honest significance determination for correcting multiple
comparisons. Unless otherwise noted in the figure legend, signifi-
cance for gene expression is based on the cutoff of log-fold
change (LFC) ≥1 or ≤−1 and an adjusted P value < .05. Single-
cell relative percentages by categorical variables used the total
number of cells in the indicated sequencing run as a denominator
for normalization. Analysis of the distribution of cells across multiple
categorical variables used the χ2 test.

Results

Sequencing results of the peripheral blood of

6 patients with SS

A total of 54 994 cells were sequenced and passed, filtering from
the peripheral blood of 6 separate patients with SS (Figure 1A).
Patient information and a summary of the sequencing results
are available in supplemental Table 1. Based on mRNA expression,
we observed 16 distinct clusters. Using both the percent of
cells expressing lineage markers (Figure 1B) and correlations
(Figure 1C) based on the human primary cell atlas, we identified 11
T-cell clusters (C1, C2, C3, C6, C7, C8, C9, C10, C12, and C15),
1 B-cell cluster (13C), and 3 myeloid-cell clusters (C5, 11C, and
C14). The majority of the sequenced peripheral cells were T cells,
with a mean percent of T cells per patient equal to 76.9 ± 15.2%
(Figure 1D). Myeloid and B cells comprised a mean percentage of
19.2 ± 12.7% and 3.9 ± 3.9%, respectively. Each patient sample
varied in the distribution of cell types (Figure 1E). Notably, the
Patient 2 sample consisted of a relatively high number of T cells in
the C2, C3, and C6 T-cell clusters (Figure 1E), while Patient 5 and
6 samples had a wide distribution of cells across all 3 cell types
(Figure 1E).
Figure 2. Differentiating malignant and nonmalignant T cells. (A) UMAP projection o

CTCL across the UMAP projection. (C) UMAP projection with proportion of total reads p

hyperexpanded (0.1 < X ≤ 1), large (0.01 < X ≤ 0.1), medium (0.001 < X ≤ 0.01), small (1e

with the percentage of cells in each clonotype category in the lower bar chart. Malignant

hyperexpanded clonotypes. (D) Percent difference (Δ percent) between malignant and non

< .05) upregulated genes by both percentages and fold change labeled. (E) Violin plot of

between malignant (M) and nonmalignant (NM) T cells. (F) Significantly upregulated genes in

log-fold change in overlapping comparison and unique to the SC cohort. (G) Representative

and data summary (bar graph) of 35 patients with MF, SS, or T-cell NHL. Black arrows ind
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Defining malignant T cells in the peripheral blood of

patients with SS

Across the 11 T-cell clusters (Figure 2A), we next explored the
expression patterns of common T-cell and CTCL markers
(Figure 2B). Although all clusters expressed CD3D and CD5, pan-
T–cell genes, there was delineation in the expression of CD4 (high
clusters: C1, C2, C3, and C6) and CD8A (high clusters C8;
moderate clusters C4, C7, C9, C10). A general absence of CD7, a
common feature in CTCL, was observed in clusters C1-3 and C6
(Figure 2B). These clusters possessed prominent expression of
CCR4, CXCL13, and PD-1 (PDCD1) (Figure 2B), genes previ-
ously associated with SS.3,5,27,28 Accompanying the mRNA clas-
sification of malignant and nonmalignant T cells, we also used the
V(D)J single-cell sequencing results for the TCR, recovering the
sequences for 43 074 T cells (89.9%). Using the scRepertoire22

R package, we defined clonotypes as both the sequence of
genes and the nucleotide sequence of both the TCR A and B
chains (supplemental Figure 1A); a variety of unique clonotypes
were isolated across the 6 samples (supplemental Figure 1B). The
number of unique clonotypes sequenced did not predict the clonal
homeostasis or occupied repertoire space for each sample, with
95.2% of Patient 2 T cells formed from the dominant clonotype for
that sample despite having 1254 unique clonotypes (supplemental
Figure 1C,D).

T-cell clonal frequency was then placed into categories by copies
within the patient sample. TCR clonal categories were organized by
proportion of total productive TCR reads per patient with hyper-
expanded (0.1 < X ≤ 1), large (0.01 < X ≤ 0.1), medium (0.001 < X
≤ 0.01), small (1e−4 < X ≤ 0.001) and rare clonotypes (0 < X ≤
1e−4). The C1, C2, C3, C10, C12, and C15 clusters possessed T
cells with >90% hyperexpanded clonotypes, so-called malignant
clusters (Figure 2C), with each sample having a single, dominant
clone. Notably, nonmalignant clusters were C4, C7, C8, and C9. To
investigate potential novel markers or therapeutic targets of the
peripheral SS T cells, we next performed differential gene expression
analysis across T cells with a hyperexpanded clonotype compared
with T cells with single, small, medium, or large clonotypes. Unlike bulk
sequencing approaches, SC mRNA sequencing allows for the
comparison of differential genes in the context of the percent of cells
expressing the gene or genes of interest. This allows for not only the
difference in terms of LFC but also in terms of the difference in the
percent of malignant vs nonmalignant T cells expressing the gene(s)
(Δ percent). Non-TCR genes with the highest LFC and greatest
discrimination between malignant vs nonmalignant T cells were
AIRE (LFC = 2.42; Δ = 49.2%), NEDD4L (LFC = 2.39; Δ = 28%),
IGFBP4 (LFC = 2.28; Δ = 22.4%), TUSC3 (LFC = 2.24; Δ =
16.7%), and PDLIM1 (LFC = 2.20; Δ 28.1%) (Figure 2D,E).
Conversely, CD2 (LFC = −0.66; Δ = 35.2%), CD7 (LFC = −2.21;
f CD3+ T-cell clusters. (B) Percent of cells expressing selected common markers for

er sample of TCR V(D)J-based clonotype attached into the following grouping:
−4 < X ≤ 0.001), and rare copies (0 < X ≤ 1e−4) using the scRepertoire R package22

T-cell clusters (C1, C2, C3, C6, C10, C12, and C15) had >50% of cells with

malignant T cells vs log2-fold change with the top 10 significant (Bonferroni P value

relative mRNA expression of the top 12 significant genes by Δ percent difference

the single-cell (SC) cohort and a secondary SS cohort29 with the top 10 genes by a

immunohistochemistry images for SS at 400× magnification. Representative images

icate nuclear staining of AIRE, and the images displayed are at 200× magnification.
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Δ = 58.3%), and CD49f (ITGA4, LFC = 3.14; Δ = 30.3%) were
among the most downregulated genes in the malignant SS T
cells (supplemental Figure 2). The complete results for the dif-
ferential expression analysis are available in supplemental
Table 2.

We also compared our list of differentially upregulated genes
(n = 284) to previously identified upregulated genes in peripheral
blood of SS (n= 53).29 The comparison yielded an overlap coefficient
of 49.1% and 26 common genes shared between the analyses
(Figure 2F). Using a 50-patient bulk RNA cohort of normal skin, MF,
and SS biopsies,24 we first established the relationship of clonality
and diversity in the samples (supplemental Figure3A,B). In this cohort,
328 BORCHERDING et al
237 of the 284 genes were expressed, and we found 72 of the 237
genes significantly and directly correlated with the proportion of
dominant V-gene recovered, a marker of clonality (supplemental
Figure 3C). Of the genes with nonsignificant increased expression in
the single-cell cohort and expressed in the bulk sequencing data
(n = 2594), 532 genes were positively correlated with dominant
V-gene proportion. Contingency comparison by Fischer’s exact test
showed a strong association between the single-cell differentially-
expressed genes and correlations (P = 6.47e−4). We also found
that 48 of the 284 genes inversely correlated with the diversity of
the immune repertoire (supplemental Figure 3C). Top genes, ranked
by LFC in both comparisons (Figure 2F, left list) and by LFC in our
cohort (Figure 2F, right list), are displayed. Half of these top 20 genes
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Figure 5 (continued)
were significantly correlated with clonality (directly) or diversity
(inversely) in the secondary bulk RNA cohort (supplemental
Figure 3D,E). We chose to survey skin biopsies of MF (n = 17), SS
(n = 5), and T-cell non-Hodgkin’s lymphoma (NHL; n = 13) patients
using IHC for one of these novel markers AIRE (Figure 2G). Nuclear
staining of AIRE ranged across the patients, and we found AIRE in 11
of 17 MF and 5 of 6 SS samples (Figure 2H). Although the mean
density of AIRE+ SS was varied, a comparison between CTCL
staining (MF + SS) and NHL produced a P value of .005321.
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Transcriptional heterogeneity within malignant

and nonmalignant T cells

We next wanted to understand the differences in the gene expres-
sion that produced the different T-cell clusters. Although the malig-
nant clusters C1, C2, and C3 shared a number of common gene
markers described above (Figure 3A), other malignant clusters
expressed unique markers. For example, C12 had high levels of
expression of TOP2A and MKI67, markers of cell-cycle activation,
14 FEBRUARY 2023 • VOLUME 7, NUMBER 3



compared with any other T-cell cluster (Figure 3A). The nonmalig-
nant cluster, C8, had high granzyme and perforin expression levels,
consistent with cytotoxic functions (Figure 3A) and its high expres-
sion of CD8A. To better understand the possible implications of the
differential gene expression across the T-cell clusters, we performed
principal component analysis (PCA) on scaled mRNA levels of
genes involved in T-cell development and differentiation (Figure 3B),
with the full list of genes available in supplemental Table 3. In the
malignant C1, C3, and C12 clusters, the PCA-identified expression
consisted of GATA3, CCR7, and TOX expression (Figure 3B). The
nonmalignant C8 cluster was also unique in the high expression of
cytotoxic markers, such as GZMA, GZMB, and PRF1, while
detectable, albeit low levels of expression of these mRNA species
were only seen in the malignant C12 cluster (Figure 3A). We also
examined selected canonical gene markers of CTCL transcriptional
profiles. Among the skin trafficking markers, C12 and C15 had the
highest expression of SELPLG (CLA precursor) and the fucosyl-
transferase, FUT7,30 although they possessed lower chemokine
receptor levels, CCR4 (Figure 3C). Memory phenotypes have also
previously been described in CTCL31,32; high expression of CCR7
across malignant T cells compared with nonmalignant T cells is
consistent with prior reports of SS cells either emerging from, or at
the least possessing, central memory T–cell-like characteristics.33

Although we have previously described both clonal central mem-
ory and FOXP3+ regulatory T-cell (Treg) clusters examining a single
patient with SS,3 the aggregated single-cell analysis failed to reveal a
representative cluster for Treg or Treg-like cells (Figure 3C), possibly
due to the increased number of cells, the inclusion of additional
immune cell types, or drop-out effect of single-cell sequencing. With
the exception of CTCL3 and CTCL6 samples, FOXP3+ T cells were
clustered across C1, C3, and C4, forming a range of 2.7% to 38.9%
of the cells in the clusters by patient ID.

We also looked at intra and interpatient diversity using the gene
expression count matrices and found the richness of malignant
gene expression in malignant T cells to generally be higher than
nonmalignant T cells and varied within and across patients (sup-
plemental Figure 4). Beyond gene expression and representative-
ness, we also investigated potential functional differences in terms
of cell cycle and signaling pathway enrichments as well as cell
subset-specific signatures. Cell-cycle regression demonstrated key
differences in cell-cycle assignment (P < 2.2e−16, χ2 test). C12
was highly proliferative, with 89.3% of cells in S or G2M phases
(Figure 3D). In contrast, C10 was more quiescent in terms of cell
cycle, with 20.6% of cells in S or G2M phases. The remaining
malignant clusters have more intermediate distributions within our
cell-cycle analysis (Figure 3D).

To ensure our malignant clustering was representative of CTCL T
cells, we isolated highly expressed genes for each cluster to
perform gene set enrichment on previously published bulk CTCL
RNA-seq results (Figure 3E).24 With the normal controls, we
demonstrated that C3, C6, and C12 signatures had the highest
level of separation (Figure 3E). Conversely, the C10 signature had
the opposite trend with lower enrichment in the SS/MF compared
with normal control skin. Using the percent of dominant V-gene
recovered, a surrogate marker for clonality, in the cohort, we found
enrichment for C1, C2, C3, and C6 signature enrichment directly
and significantly correlated with clonality (Figure 3F). Both C12
and C15 had insignificant correlations, with C12 trending toward
direct correlation (Figure 3F); this may be a result of the 2 clusters
14 FEBRUARY 2023 • VOLUME 7, NUMBER 3
representing more rare populations in CTCL. Similarly, nonmalig-
nant T-cell clusters, C4, C7, and C8, were insignificantly correlated
with the dominant V gene (supplemental Figure 5). Only C10 gene
set enrichment negatively correlated with clonality (Figure 3F).

The C10 cluster was aberrant not only in global position on UMAP
compared with other CTCL clusters but also lacked consistent
markers of CTCL (Figure 3C). Closer examination found that of the
hyperexpanded cells in C10, 63.6% of the cells in this cluster were
derived from CTCL4. Next, we performed gene set enrichment
across several diverse cellular processes to compare potentially
functional differences between CTCL clusters and nonmalignant
peripheral blood T cells (supplemental Table 4). Gene set enrich-
ment results with column clustering based on the Manhattan dis-
tance found 3 distinct enrichment patterns. The C2-C6-C10
patterns had enrichment in Fos signaling and complement activa-
tion (Figure 3G). C10 also displayed unique enrichment in amino
acid and nitrogen metabolism (Figure 3G). Nonmalignant and C1
clusters had unremarkable enrichment across pathways. The C3-
C12-C15 pattern consisted of elevated enrichment of down-
stream signaling from cytokines (Figure 3G). For example, C15 had
unique enrichment of ALK, eicosanoid, and cytokine signaling,
while C12 had unique enrichment for DNA replication, epithelial-to-
mesenchymal transition, and resistance to histone–deacetylase
(HDAC) inhibition (Figure 3G). The latter is particularly interesting
as HDAC inhibition (HDACi) represents a major treatment para-
digm for CTCL.

High-resolution mRNA expression changes from

HDAC inhibitor therapy

At a single-cell resolution, we have previously characterized the T-cell
expression heterogeneity within a 61-year old male patient with stage
IV (T4N1M0B2) SS under treatment with photopheresis and vorino-
stat, an HDACi. The previously published work looked at flow-sorted
peripheral blood malignant (CD3+CD4+CD5brightSSChi) and
nonmalignant (CD3+CD4+CD5intSSCint) T cells at an initial time point
during combined HDACi and photopheresis (n = 7954) therapy.
Adding to the previous data, we sequenced the same populations
of peripheral blood 9 months later following disease progression
(n = 7127) and integrated the single-cell sequencing runs into a
single UMAP projection (Figure 4A). The result was 11 distinct
clusters (Figure 4A) with malignant/nonmalignant flow-based
phenotypic classifications (Figure 4B, upper panel) and distinct
time points (Figure 4B, lower panel). Most clusters represented
mixes of baseline (T1) and progressed (T2) time points
(Figure 4B, lower panel); however, Clusters 6 and 9 were solely
comprised of T cells from the T2 time point. TCR sequencing also
enabled the assignment of clonotype grouping similar to the
previous cohort analysis (Figure 4C). Malignant clusters 0, 3, 6, 8,
9, and 10 were defined as possessing >50% of T cells with
hyperexpanded clonotypes (Figure 4C).

We also examined the expression distribution of common CTCL
markers (Figure 4D), finding a subset of both nonmalignant and
malignant T cells with expression of CD5, a feature of our patient
previously described both at the mRNA level and protein level.3

Comparing the T cells with hyperexpanded clonotypes from T2 to
T1, we found a total of 278 genes with significantly altered expres-
sion of adjusted P value < .05 and −1 > LFC < 1 (Figure 4E). The
secondary time point had pronounced decreases across JUN/FOS
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genes, previously implicated in response to HDACi9 (Figure 4E).
Genes that were upregulated after progression on the combined
therapy were diverse and included immune mediators and tran-
scription factors (ie, ITGA4,CXCR1, FOXP3, and TIGIT), chromatin
modifiers (KLF10, MCRS1, and SMARCB1), and mitochondrial
transporters (SLC25A26) (Figure 4F). A complete list of differen-
tially regulated genes is available in supplemental Table 4. When
ssGSEA was performed comparing pathway enrichment for T1 and
T2, we found an overall increase inmetabolic gene sets, such as fatty
acid oxidation, glycolysis, and oxidative phosphorylation (Figure 4G).
Conversely, we found decreased levels in gene set enrichment
associated with immune ligands, such as CCR5, IL-6, and inter-
ferons (supplemental Table 5).

Defining altered expression dynamics in SS pre- and

post-HDACi therapy using single cells

Focusing on the malignant SS cells, we defined the clusters by time
point predominance, with clusters 6 and 9 new to T2 and cluster
0 (67.3% T1) and cluster 8 (72.1% T1) enriched at T1 (Figure 5A).
We next attempted to characterize the gene expression differences
between the clusters, finding a high degree of gene expression
overlap between clusters (Figure 5B). Within Cluster 0, increased
JUN and LAIR2, recently associated with HDACi resistanceField 10,
were observed. With our previous characterization, we noted a
single isolated cluster of FOXP3-high malignant T cells3 corre-
sponding to Cluster 3 in our new analysis. T2 had the emergence of
2 additional clusters, 6 and 9, with moderate levels of FOXP3
expression, and cluster 10, with low levels of expression (Figure 5B).
Cluster 8, the only T1-predominant cluster, had high cysteine diox-
ygenase type I (CDO1) gene levels. In addition to gene expression
analysis, we also performed ssGSEA and examined the distribution
of the malignant SS T cells and principal component analysis.
Notably, the T2-predominant clusters 6 and 9 had greater repre-
sentation in the lower right quadrant associated with the metabolic
pathway enrichment previously mentioned (Figure 5C). In contrast,
Cluster 8 had preferential enrichment in growth factor and cytokine
signaling (Figure 5C).

In order to better understand the transition of the malignant SS T
cells at baseline and following progression on HDACi therapy, we
used reverse-graph embedding15 to construct a cellular trajectory
manifold that can identify distinct cellular fates or transcriptional
states (Figure 5D). Defining each branch of the manifold as tran-
scriptional states, we found 4 distinct states with a clear separation
in relative percent of cells by time point. The T1 states were defined
as State 2 and State 4, while State 1 and State 3 were formed from
the majority of T2 malignant SS cells (Figure 5D). Differences were
also noted in the placement of time point cells along the manifold
with T2 cells of the State 3 and State 4 branches at the distal por-
tions compared with the more proximal T1 cells. We performed
differential gene expression analysis for each transcriptional state,
comparing the state to the rest of the cells (Figure 5E). Most inter-
estingly, State 1, comprised of the FOXP3+ clusters 3, 6, and 9, was
a T2-predominant transcriptional state with multiple clusters with
FOXP3, potentially implicating a therapy-induced genetic program.
We next wanted to understand how the branches of the manifold
contribute to the resistance to therapy. Using recent gene expres-
sion results for patients sensitive and resistant to HDACi,10 we
compared differential gene expression between all 4 states and
found a total of 33 genes previously reported (Figure 5F). Of the
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1395 genes that were altered that were not previously reported, the
preponderance of the most significant genes was increased in
the State 1 cells (Figure 5G). It should be noted that these genes
may represent new mechanisms of resistance, underlying genetic
changes induced by HDACi, or a combination of the two. Toward
understanding the functional import of these genes, we performed
gene set enrichment analysis (supplemental Figure 6). Among the
most significantly enriched gene sets were amino and fatty acid
metabolism, DNA repair pathways, and cytokine signaling.
Discussion

Despite being a clonal T-cell neoplasm, we and others have
reported that a degree of epigenomic, transcriptional, and protein
heterogeneity exists in both SS and MF.3-5,34,35 Unlike previous
single-cell quantifications of CTCL, we integrated our tran-
scriptomic data across patients, allowing for the quantification of
CTCL heterogeneity across patients. Indeed, leveraging the single-
cell mRNA and TCR sequencing of circulating nonmalignant and
SS cells for assessment of clonality, we find a high degree of inter
and intrapatient heterogeneity (Figures 2 and 3) across over
50 000 cells. This variability may contribute to the discordance in
the clinical or histopathological definition of CTCL, prolonged
median time to diagnosis of 3 years, and therapeutic treadmilling
observed in patient management.36,37 A new report has even
shown distinct transcriptional signatures of skin-derived and blood-
derived MF cells at the level of single patients.38 Despite this het-
erogeneity, we found common SS markers that may warrant further
investigation, including several previously identified, such as
NEDD4L,29,39 PLS3,40 and TOX.41,42 Notably, the AIRE gene was
expressed across samples in 58% of malignant cells vs 8.7% of
nonmalignant cells. The largest difference for non-TCR–related
genes and only recently AIRE expression was incidentally reported
in circulating mycosis fungoides cells.43 The autoimmune regulator,
AIRE, functions in central tolerance during T-cell maturation and is
expressed by thymic epithelial and dendritic cells.44 Loss of AIRE
leads to autoimmune polyendocrinopathy-candidiasis-ectodermal
dystrophy, a pleiotropic genetic immune dysfunction character-
ized by the loss of thymus-generated Tregs.45 The role of AIRE in
the ectopic expression of peripheral antigens raises the possibility
that its expression by CTCL cells may function to recruit and
stimulate a wider array of Tregs, potentially as a mechanism to
avoid immune responses.

Within the CTCL literature, there is a lack of consensus regarding
the existence of a FOXP3+ regulatory or regulatory-like phenotype
of malignant T cells.46-49 This variation in the literature may be a
result of the regulation of FOXP3 expression by environmental fac-
tors, such as bacterial toxin50 or therapeutic regimens. In terms of
the latter, the use of HDACi led to the development of FOXP3-
moderate–expressing clusters (labeled 6 and 9 in Figure 5F). This is
underscored by previous findings from a single-cell Assay
for Transposase-Accessible Chromatin (ATAC)-seq study, which
reported differential accessibility of FOXP3 in clonal SS cells.35

Upregulation of HDAC9 has been previously reported in
CTCL,9,51 which along with HDAC6, has been shown to regulate
the expression of FOXP3 in Tregs.52 A subset of HDACi-responsive
patients with CTCL had an opening of the chromatin associatedwith
the FOXP3 enhancers, suggesting an increase in FOXP3 expres-
sion may be a surrogate marker of response to HDAC inhibition.9
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We previously showed that FOXP3 was the single strongest
predictor of early-stage disease in a cohort of 152 patients with
CTCL.3,53,54 With transcriptional State 1, a post-HDACi–predomi-
nant state consisting of multiple populations of FOXP3+ malignant
SS cells, further research is warranted to distinguish whether ther-
apy selects for diverging populations of FOXP3+ or pushes the
transcriptional state to that of earlier-stage disease. The latter has
been suggested as HDACi increases chromatin access to the
FOXP3 loci.9 However, 2 major caveats to this concept include (1)
the shift in the transcriptional state may depend on the specific
HDACi agent, and (2) further work is needed to understand if this is
truly a transcriptional state vs epigenomic shift. To the former, vor-
inostat inhibits HDAC class I, II (to include HDAC9), and IV, while the
potent bicyclic romidepsin is more specific for HDAC class I mole-
cules. Key differences in HDACi agent-specific effects on genome
accessibility, with romidepsin preferentially altering promoters and
active enhancer regions compared with vorinostat, likely alters gene
expression.9 This differential effect of HDACi on heterogeneity via
flow cytometry has been previously reportedwith ex vivo treatment of
SS with vorinostat and romidepsin.4
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