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Abstract: A notable shift in understanding the human microbiome’s influence on cardiovascular
disease (CVD) is underway, although the causal association remains elusive. A systematic review
and meta-analysis were conducted to synthesise current knowledge on microbial taxonomy and
metabolite variations between healthy controls (HCs) and those with CVD. An extensive search
encompassing three databases identified 67 relevant studies (2012–2023) covering CVD pathologies
from 4707 reports. Metagenomic and metabolomic data, both qualitative and quantitative, were
obtained. Analysis revealed substantial variability in microbial alpha and beta diversities. More-
over, specific changes in bacterial populations were shown, including increased Streptococcus and
Proteobacteria and decreased Faecalibacterium in patients with CVD compared with HC. Additionally,
elevated trimethylamine N-oxide levels were reported in CVD cases. Biochemical parameter analysis
indicated increased fasting glucose and triglycerides and decreased total cholesterol and low- and
high-density lipoprotein cholesterol levels in diseased individuals. This study revealed a significant
relationship between certain bacterial species and CVD. Additionally, it has become clear that there
are substantial inconsistencies in the methodologies employed and the reporting standards adhered
to in various studies. Undoubtedly, standardising research methodologies and developing extensive
guidelines for microbiome studies are crucial for advancing the field.

Keywords: microbiota; microbiome; dysbiosis; metabolites; cardiovascular disease; trimethylamine
N-oxide; systematic review; meta-analysis

1. Introduction

The human gut harbours a diverse collection of microorganisms, including bacteria,
archaea, viruses, and fungi, collectively called microbiota. Together with their genomes,
microbial structures, metabolites, and environment, they form the gut microbiome. The
prevalence of bacteria, particularly those belonging to the Firmicutes and Bacteroidetes phyla,
is noteworthy in the context of the microbiome. The ratio of these two phyla (F/B) has been
identified as a useful indicator of the microbiome’s status and has been associated with a
range of diseases [1]. The classification system for microbiome enterotypes is based on the
composition of microorganisms and has been shown to offer clinical advantages. Moreover,
analysing the structure of microbiota through measurements of alpha diversity, which
expresses the microbial richness in a single sample, and beta diversity, which measures
differences in the microbial composition between samples, offers valuable insights [2].

The gut microbiome plays a fundamental role in digestion, epithelial barrier formation,
protection against pathogens, and immune system regulation. These functions involve
direct interactions with host cells or key microbe-produced metabolites, suggesting that the
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gut microbiome acts as an endocrine organ [3]. Metabolomic research has uncovered and
examined several gut microbiota-derived metabolites. These metabolites can be classified
based on their source and synthesis mode to comprehensively understand their character-
istics and functions. The gut microbiota plays a crucial role in the production of various
metabolites, including short-chain fatty acids (SCFAs), which are formed as a result of the
fermentation of undigested carbohydrates. Additionally, trimethylamine (TMA), which is
derived from food components such as carnitine and choline, is enzymatically converted to
trimethylamine-N-oxide (TMAO) in the liver. Furthermore, host metabolites, such as bile
acids (BAs), undergo modification by gut bacteria. Lastly, gut bacteria also synthesise de
novo metabolites, including branched-chain amino acids, vitamins, and polyamines [4].

The emergence of dysbiosis, a state of microbial community imbalance, is primarily
attributed to factors such as a poor diet, elevated stress levels, inadequate physical activity,
and the use of antibiotics. This imbalance arises when microorganisms cannot maintain
the equilibrium necessary for optimal functioning [5]. Over the past few decades, studies
have indicated the potential involvement of dysbiosis in various illnesses and disorders,
including cardiovascular disease (CVD) [6]. CVD, which encompasses a range of condi-
tions affecting the cardiovascular system, continues to be a major contributor to global
mortality and disability rates despite sustained efforts to mitigate its impact. Hypertension
(HTN), diabetes, smoking, genetics, and lifestyle are risk factors, and atherosclerosis (AS)
is a major underlying cause of certain CVD [7]. Although the causal association between
the gut microbiome and CVD remains unknown, meaningful progress has been made,
mainly through animal studies. The gut microbiome contributes to CVD pathophysiol-
ogy, particularly atherogenesis, by modulating inflammatory and metabolic pathways.
Dysbiosis-induced intestinal permeability increases lipopolysaccharide (LPS) translocation,
triggering inflammation through the induction of pro-inflammatory cytokines [8]. In ad-
dition, LPS and TMAO contribute to oxidative stress, leading to endothelial dysfunction.
At the same time, TMAO and BAs impact blood lipid composition, contributing to AS
progression and elevating the risk of adverse cardiovascular events [9].

Modulation of the gut microbiome through dietary modifications and pre-and pro-
biotic supplementation has the potential to influence CVD [10]. These interventions can
manipulate the microbial composition and activity, decrease harmful metabolites, improve
lipid profiles, and reduce inflammation. Despite their potential benefits, addressing chal-
lenges such as the complexity and inter-individual variability of the microbiome, as well as
a limited understanding of microbial functions, is essential [11]. Moreover, drugs can also
influence the composition and function of gut microbes, including oral cardiac drugs. How-
ever, the interaction between the gut microbiome and drugs is bidirectional, as bacteria can
metabolise medications, altering their mechanisms of action and affecting side effects [12].

This review comprehensively synthesises scientific insights into the implications of
the gut microbiome for CVD. By conducting a systematic review and meta-analysis of
67 published studies, including cross-sectional and case-control studies with a total sample
size of 4855 controls and 6090 patients, we aimed to reveal differences in microbial taxonomy
and metabolite levels between patients with CVD and healthy individuals. This study
contributes to the understanding of the functional role of the gut microbiome in CVD
pathophysiology, thereby facilitating the development of innovative therapeutic strategies
and advancements in prevention and early detection techniques.

2. Materials and Methods
2.1. Search Strategy and Study Selection

This meta-analysis was registered on the Open Science Framework (OSF) [13]. Ad-
ditionally, this study followed the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [14]. The compliance checklists for PRISMA can be
found in Tables S1 and S2. Our primary aim was to investigate the relationship between
the gut microbiome and various CVDs compared with healthy controls (HCs).



Biomolecules 2024, 14, 731 3 of 19

The literature search was conducted using three electronic databases, PubMed, Scopus,
and Web of Science, from inception until 20 March 2023. To extract all relevant articles
from the databases, the search strategy was based on the following query: “cardiovas-
cular disease” AND “microbiota” AND “metabolites” combined with Medical Subject
Headings (MeSH). Moreover, our search strategy incorporated a filter for the “humans”
keyword to ensure the inclusion of studies addressing human subjects. Exclusion filters
were applied to restrict the results to research articles by excluding certain types of publica-
tions, namely “comment”, “editorial”, “letter”, “meta-analysis”, “review,” and “systematic
review.” Table S1 provides a detailed overview of the search process.

The reviewers used Rayyan’s free web tool [15] to screen the retrieved records. After
eliminating duplicates, three reviewers (A.A., D.M. and S.D.) independently screened the
titles and abstracts of the papers. Five reviewers, A.A., A.F., C.S., D.M. and S.D., screened
the full-text records for eligible studies. They included studies that referred to metagenomic
and metabolomic analysis. Any discrepancies were resolved through discussions among
the reviewers.

2.2. Data Extraction

Information regarding the study characteristics was extracted using a self-developed
data extraction table. The table records the authors’ names, publication year, country,
diagnostic type, sample size, cohort variables (e.g., age, sex, and body mass index [BMI]),
and a brief description of the included patients with CVD and HC (Table S2). We also
compiled data on laboratory parameters from healthy and diseased subjects from studies
that provided this information (Table S3).

For studies that included metagenomic analysis, we retrieved information regarding
the DNA extraction kit employed, the applied microbial profiling method, the correspond-
ing analysed sequencing region, and the approach used for sequence clustering (Table S4).
Regarding the studies that included metabolomic analysis, we registered information about
the sample type, analytical technique used, and identified metabolite types (Table S5).

The review involved qualitative and quantitative synthesis of metagenomic data,
including alpha and beta diversities; the relative abundance of each bacterium; and
metabolomic data, including metabolite measurements. Only the reported statistically
significant differences were employed for analysis. Additionally, we extracted values in
the form of mean/standard deviation and median/interquartile range for quantitative
synthesis. These values were obtained from the articles, Supplementary Materials, and the
freely available WebPlotDigitizer V4 tool [16], which facilitated data extraction from images.
We contacted the corresponding author to request data sharing if data were unavailable.
The median/interquartile range values were estimated as mean/standard deviation to
standardise the data for further analysis [17]. Five researchers (A.F., B.B., C.S., D.M. and
S.D.) independently extracted data with subsequent comparisons to guarantee accuracy.

2.3. Data Analysis

In this meta-analysis, we used data from at least three studies. Bacteria and metabo-
lites that lacked sufficient quantitative information for the analysis were excluded. Meta-
analyses and their respective forest plots were elaborated using Review Manager Web
software [18], using the random-effects model with inverse variance to calculate the stan-
dardised mean differences (SMD) and 95% confidence intervals. A random-effects model
was also employed to estimate the pooled effect size owing to the expected heterogeneity
among the studies. Heterogeneity was assessed using the Tau2, Chi2, and I2 statistics, with
statistical significance at p < 0.05. The Z-test estimated the overall effect size.

2.4. Quality Assessment

The internal validity and potential bias of the included studies were assessed using
the National Health, Lung, and Blood Institute (NHLBI) study quality assessment tool for
Observational Cohort and Cross-Sectional Studies and Case-Control Studies, as shown in
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Tables S6 and S7, respectively [19]. Four reviewers (A.F., C.S., D.M. and S.D.) independently
assessed the studies’ quality and addressed discrepancies through discussion.

3. Results
3.1. Study Selection and Characteristics

A total of 4707 articles were initially identified using a prespecified query. After
removing 1322 duplicates, 3385 records underwent title and abstract screening. Exclusions
included 32 non-English articles, 2742 unrelated to this work’s purposes, 238 non-original
studies, 189 with different designs, and 102 without human subjects. The remaining
83 studies were further assessed, leading to exclusion for reasons such as inaccessibility,
non-pre-specified study design, unavailable data, and lack of comparable data. Ultimately,
67 reports [20–86] met the eligibility criteria and were included in this study. The study
selection process is illustrated in Figure 1.
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 Figure 1. Study selection process for systematic review and meta-analysis. This PRISMA flow chart
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Of the 67 eligible studies from 2012 to 2023, the analysis encompassed cross-sectional
(n = 17) and case-control (n = 50) studies. Quality assessment revealed studies rated as
“Good” (n = 27), “Fair” (n = 39), and “Poor” (n = 1). The majority of the studies centred
on Asia (n = 55), mainly focusing on China (n = 47), while the remaining studies were con-
ducted in Europe (n = 10), Australia (n = 6), and the United States (n = 1). Categorised
by CVD type, the studies included acute coronary syndrome (ACS) (n = 9), AS (n = 4),
atrial fibrillation (AF) (n = 5), coronary artery disease (CAD) (n = 16), heart failure (HF)
(n = 9), HTN (n = 6), and stroke (n = 18). The analysis included 6090 patients with a mean
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of 62.3 (±12.6) years, 67% males, and a mean BMI of 25.5 (±3.7). The HC group included
4855 individuals with a mean age of 59.6 (±10.4), 57% males, and a mean BMI of 24.6 (±3.1).

Patients were included based on their disease history and clinical examinations, such
as electrocardiography, coronary angiography, computed tomography, and magnetic reso-
nance imaging. Specific inclusion criteria were applied for certain cardiovascular conditions,
such as cardiac troponin levels for ACS and blood pressure thresholds for HTN. Some
studies required the participants to provide written informed consent. The control group
comprised individuals without specific medical conditions, with negative cardiac exami-
nation results, normal biomarker levels, and age- and sex-matched individuals, some of
whom were enrolled voluntarily. The exclusion criteria included prior gastrointestinal
surgery, active infections, inflammatory bowel disease, autoimmune diseases, malignancy,
history of stroke, renal failure, hepatic disorders, digestive diseases, smoking, alcohol use,
and antibiotic or probiotic intake within a specified timeframe before sample collection.
Table S2 provides a comprehensive overview of the characteristics of the included studies.

3.2. Methods of Metagenomic and Metabolomic Analysis

Among the 67 eligible studies, 24 conducted comprehensive microbiota analyses, nine
focused on metabolic analysis, and 34 performed both microbiota and metabolite analyses.
Microbiota-focused studies used DNA extraction kits primarily from QIAGEN (Hilden, NRW,
Germany) (n = 20) and TIANGEN (Beijing, China) (n = 9). Techniques included 16S rRNA
gene sequencing (n = 40) and shotgun metagenomic sequencing (n = 16), with the V3–V4
hypervariable region of the bacterial 16S rRNA gene being the most analysed (n = 29). SILVA
(n = 19) was the predominant mapping database used. In contrast, 43 studies concentrated
on microbial-derived metabolite measurements using various chromatographic techniques
coupled with mass spectrometry, with liquid chromatography-mass spectrometry (LC-MS)
being the most employed (n = 32). Blood samples (serum and plasma) were predominant
(n = 27), and TMAO emerged as a widely investigated metabolite, as assessed in multiple
studies (n = 22). Tables S4 and S5 provide the detailed characteristics of the studies performing
microbiota and metabolic analyses, respectively.

3.3. Qualitative Synthesis

Significant variability was noted among 58 microbiota analysis studies; however,
most reported a statistically significant relationship between CVD and gut microbiota
composition (Figure 2). Shannon–Wiener diversity (n = 45) and Simpson diversity (n = 24)
were the primary metrics for alpha-diversity assessment, often in conjunction with Chao-1
richness (n = 35). Of 53 studies comparing gut microbiota between HC and CVD patients,
eight reported higher alpha diversity in CVD patients, 11 indicated lower alpha diversity,
22 found no statistically significant differences, 11 showed contradictory results between
tests, and one did not report results. Beta diversity, mainly assessed by Bray–Curtis dissim-
ilarity (n = 28) and UniFrac distances (n = 39), was reported in 50 studies. Among these,
37 found significant differences in the gut microbiota between patients with CVD and HC,
while 12 did not show significant differences, and one did not report results.

In 58 studies, significant differences in the relative abundance between patients with
CVD and HC were observed (Figure 3). Notably, Actinobacteria demonstrated an increased
relative abundance in CVD patients compared to HC in six out of seven studies where it
was analysed (6/7). Similarly, Proteobacteria (9/10) showed increased relative abundances
in the CVD group at the phylum level. However, findings regarding the Firmicutes and
Bacteroidetes phyla were inconsistent. Due to study heterogeneity, the ratio between these
phyla (F/B), which serves as a marker for microbial imbalance, is of uncertain reliability.
At the genus level, all studies involving patients with CVD have identified a consistent
decrease in Faecalibacterium (13/13). Enrichment of Lactococcus (4/4) and Streptococcus
(15/15) was noted, indicating a significant association with CVD. The abundance of the
Lactobacillaceae family (6/7) and its Lactobacillus genus (9/13), along with the Clostridiaceae
family (3/3) and its Clostridium genus (4/6), increased in patients with CVD. As well as the
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rise of the Enterobacteriaceae family in the CVD group (6/6), its genera Klebsiella (6/8) and
Escherichia (5/5) also displayed positive associations, while the genus Enterobacter (4/5)
showed negative association. Genera such as Bifidobacterium (5/5), Butyricimonas (4/4),
Desulfovibrio (4/4), Enterococcus (7/8), Megasphaera (4/4), Parabacteroides (6/8), Ruminococcus
(5/7), and Veillonella (4/4) were enriched in patients with CVD, whereas Bacteroides (8/10),
Blautia (4/6), Butyricicoccus (4/4), Oscillibacter (4/6), Roseburia (9/11), and Subdoligranulum
(6/7) were reduced in diseased individuals. Variations were observed among different
CVD pathologies, with distinct increases in the genera Roseburia, Prevotella, and Oscillibacter
observed exclusively in AF, CAD, and stroke.
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Figure 2. Qualitative analysis of microbial diversity data across different cardiovascular disease (CVD)
types [20,22–28,31–53,55–57,59,60,62–64,66,67,69–76,78–86]. Green indicates significant differences
in diversity between CVD patients and healthy controls (HC), red signifies no significant differ-
ences, yellow represents unreported results, and white denotes unmeasured metrics. The upward
arrow (↑) indicates increased diversity, and the downward arrow (↓) indicates decreased diversity.
Abbreviations: ACE = Abundance-based Coverage Estimator, ACS = acute coronary syndrome,
AF = atrial fibrillation, AS = atherosclerosis, CAD = coronary artery disease, HF = heart failure,
HTN = hypertension, ICE = Incidence-based Coverage Estimator, PD = Phylogenetic Diversity,
SOBS = number of observed species.
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Figure 3. Qualitative analysis of bacterial relative abundance data. Qualitative analysis of bacte-
rial relative abundance data [20,22–28,31–53,55–57,59,60,62–64,66,67,69–76,78–86]. Rows represent
bacteria taxa from phylum to species, while columns correspond to studies concerning different
types of cardiovascular disease (CVD). Green indicates significantly higher relative abundance in
CVD patients, red denotes significantly lower relative abundance, and white flags unquantified
taxa. Abbreviations: ACS = acute coronary syndrome, AF = atrial fibrillation, AS = atherosclerosis,
CAD = coronary artery disease, HF = heart failure, HTN = hypertension.
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Of the 67 included studies, 43 conducted metabolomic analyses, with only 22 analysing
microbial-derived metabolites in individuals with CVD and HC. This analysis focused on
TMAO levels, considering three or more studies for each pathology. Among these 22 studies,
16 reported significantly increased TMAO levels in patients with CVD [ACS (n = 3), CAD
(n = 2), HF (n = 4), HTN (n = 1), and stroke (n = 7)]. Three studies showed significantly lower
TMAO levels [ACS (n = 1), AF (n = 1), and CAD (n = 1)]. Two studies found no significant
differences [ACS (n = 2)]. Overall, patients with CVD tended to have higher TMAO levels
compared to HC. When analysing different pathologies separately, only ACS, HF, and stroke
had a sufficient number of studies (≥3), with elevated TMAO concentrations notably detected
in patients with HF (4/4) and stroke (7/7) (Figure 4A). Such analyses were impossible for
HTN (1 study) and AS (zero studies) due to insufficient studies.
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Figure 4. Trimethylamine N-Oxide (TMAO) levels vary across different types of cardiovascular
disease (CVD). (A) Qualitative analysis. Green bars indicate studies with a significant increase in
TMAO levels in patients with CVD compared to healthy controls (HC), red bars signify a significant
decrease, and yellow bars represent studies reporting no significant differences. (B) Quantitative
analysis. For each group (CVD and HC), the mean relative abundance (Mean), standard deviation
(SD), and sample size (Total) are provided [20,21,24,30–32,35,49,54,56,58,60,65,72,74,77]. The green
square markers denote TMAO levels in studies comparing individuals with and without CVD. The
horizontal black lines represent the 95% confidence intervals of the study result. The diamond-shaped
data marker reflects the pooled estimate (standard mean difference = 0.42), emphasising higher
TMAO levels in individuals with CVD than those without.
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3.4. Quantitative Synthesis

Quantitative analyses were conducted by considering taxonomic levels only when
a minimum of three independent relative abundances were available. Figure 5 presents
the compiled results of individual meta-analyses for each bacterium across different CVD
types. At the phylum level, Proteobacteria exhibited a significantly higher prevalence in ACS
(p = 0.002, standardised mean difference [SMD] = 0.55) and HF (p = 0.0002, SMD = 0.75,
no heterogeneity). In contrast, CAD showed a higher prevalence of Proteobacteria (p = 0.03,
SMD = 0.37, 70% heterogeneity). Fusobacteria increased in the HF group (p = 0.02, SMD = 0.56,
33% heterogeneity), while Bacteroidetes decreased in the AF group (p = 0.006, SMD = −0.56,
67% heterogeneity). At the family level, stroke patients exhibited an increase in Enterobacteri-
aceae (p < 0.00001, SMD = 0.49, no heterogeneity) and Lactobacillaceae (p = 0.006, SMD = 0.29,
no heterogeneity). At the genus level, HF displayed an increase in Streptococcus (p = 0.002,
SMD = 0.60, no heterogeneity) and Alistipes (p = 0.01, SMD = 0.48, no heterogeneity). AF
showed an increase in Megamonas (p = 0.03, SMD = 2.18, 97% heterogeneity), whereas CAD
showed an increase in Lactobacillus (p = 0.04, SMD = 0.62, 79% heterogeneity). Conversely,
Prevotella decreased in HF (p = 0.04, SMD = −0.40, no heterogeneity), Lachnospira decreased
in CAD (p = 0.003, SMD = −0.35, no heterogeneity), and Roseburia decreased in stroke
(p = 0.0002, SMD = −0.35, no heterogeneity). Likewise, Faecalibacterium was decreased in
stroke patients (p = 0.009, SMD = −0.33, 37% heterogeneity). Across all pathologies, patients
with CVD demonstrated elevated levels of Streptococcus (p < 0.0001, SMD = 0.53, no heterogene-
ity) and Proteobacteria (p = 0.0008, SMD = 0.69, 93% heterogeneity), along with a reduction in
Faecalibacterium (p = 0.0006, SMD = −0.29, 40% heterogeneity). Note that the latter two associa-
tions excluded an outlier study from the analysis. Figure 6 provides a visual representation of
the findings.

Furthermore, TMAO was the only microbial-derived metabolite subjected to quan-
titative analysis, as no other metabolite had reported values in at least three studies.
The meta-analysis (Figure 4B), which included 22 studies comparing CVD and HC in-
dividuals, revealed increased TMAO levels in the CVD group (p = 0.0007; SMD = 0.42,
94% heterogeneity).

In our analysis of 67 studies, 47 provided biochemical data characterising the study
cohorts. Meta-analyses conducted on parameters with at least three reported results
revealed significant differences (Figure S1). Elevated fasting glucose (FG) levels were
observed in patients with ACS (p = 0.001, SMD = 1.01, 88% heterogeneity) and CAD
(p = 0.02, SMD = 0.42, 82% heterogeneity), as well as those with HTN (p = 0.02, SMD = 0.25,
no hete-rogeneity). Individuals with CAD (p = 0.01, SMD = 0.67, 93% heterogeneity) and
HTN (p = 0.004; SMD = 0.34; no heterogeneity) consistently exhibited elevated triglyceride
(TG) levels. Conversely, decreased total cholesterol (TC) levels were associated with certain
cardiovascular conditions, including AF (p < 0.00001, SMD = −0.83, no heterogeneity),
HF (p = 0.05, SMD = −0.93, 90% heterogeneity), and AS (p < 0.00001, SMD = −1.10,
no heterogeneity). Additionally, patients with AS exhibited a significant decrease in low-
density lipoprotein cholesterol (LDL-C) levels (p = 0.0001, SMD = −1.21, 68% heterogeneity),
while high-density lipoprotein cholesterol (HDL-C) levels were reduced in patients with
stroke (p < 0.0001, SMD = −1.20, 98% heterogeneity) and CAD (p < 0.0001, SMD = −0.54,
73% heterogeneity). Furthermore, creatinine levels were increased in patients with ACS
(p = 0.0009, SMD = 0.32, no heterogeneity), with an excluded outlier to address the observed
heterogeneity.
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with CVD and healthy controls (HC). The size of each circle corresponds to the cohort size, reflecting
study participant numbers. Horizontal lines represent 95% confidence intervals for individual study
results. The heterogeneity level is indicated by colour-coding: I2 values of less than 25% (low, green),
25–50% (intermediate, blue), and over 50% (high, red).
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Figure 6. Forest plots of bacteria genus relative abundance. Quantitative analysis compared the
abundance of bacterial genera in individuals with and without cardiovascular disease (CVD). For each
group, healthy control (HC) and CVD, the mean relative abundance (Mean), standard deviation (SD),
and sample size (Total) are provided. The green square markers represent the relative abundance of
bacteria, with horizontal black lines indicating the 95% confidence intervals of the study results. The
diamond-shaped data markers show higher Streptococcus (A) and Proteobacteria (C) levels (SMD = 0.53
and 0.33, respectively) in the CVD group. Conversely, Faecalibacterium (B) decreased (SMD = −0.29)
in the CVD group compared with HC [20,22,34–37,39,42,43,49,57,62–64,69–71,73,76,80,82–84,86–89].
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4. Discussion

This study analysed human studies that evaluated gut microbiome alterations in
patients with CVD. As the prevalence of CVD continues to increase, posing a significant
burden on public health systems worldwide, understanding its underlying mechanisms
is crucial. Several studies have revealed a consistent connection between the human gut
microbiome and CVD pathophysiology, with microorganisms playing a role in metabolising
dietary components and generating metabolites that exacerbate or mitigate CVD risk factors.
Hence, exploring the intricate roles of microbiota and metabolites provides a promising
avenue for devising novel preventive and therapeutic strategies to reduce the escalating
CVD epidemic and enhance public health.

This meta-analysis and systematic review of 67 studies explored the differences in
faecal microbiota and metabolites between HCs and patients with CVD. These comprehen-
sive findings offer the latest insights into the connection between cardiovascular health
and the gut microbiome. Despite the variations in the study parameters, we present a
comprehensive synthesis of microbial taxonomy and metabolite measurements.

Our analysis included various alpha and beta diversity metrics to compare the gut
microbiota datasets between the CVD and HC groups. Notably, variations in metric
choices impacted the results. We observed significant variability in microbial diversity,
with over 40% of studies reporting no significant differences in alpha diversity between
CVD patients and HC. However, beta diversity analysis revealed significant distinctions in
over 70% of studies, posing challenges for drawing definitive conclusions. Additionally,
the application of varying significance thresholds impeded direct comparisons between
studies. Nonetheless, the overall analysis of microbial diversity revealed differences in the
gut microbiota composition between HC and individuals with CVD.

Elevated levels of the phylum Proteobacteria, linked to dysbiosis and disease state, are
notably present in individuals with cardiac events [89]. Moreover, Proteobacteria transloca-
tion from the gut to the bloodstream, with its outer membrane composed of LPS, leads to
endotoxemia, immune system activation, and inflammation, which are crucial factors in car-
diovascular conditions [8]. Furthermore, overabundance of Proteobacteria is associated with
epithelial dysfunction, a CVD condition [9]. These bacteria influence cardiovascular health
through genes involved in TMAO formation, thereby affecting cholesterol metabolism,
blood pressure regulation, and vascular function [20].

Despite these variations, this review across different CVDs consistently found higher
levels of Streptococcus and Streptococcaceae, along with a decrease in Faecalibacterium and
its species Faecalibacterium prausnitzii, in patients with CVD than in HCs. This consistent
pattern suggests that a significant microbial shift is associated with CVD.

Streptococcus, typically beneficial, can become harmful when the immune system
weakens, triggering inflammation and potentially exacerbating CVDs. Studies have indi-
cated associations between elevated Streptococcus levels and the development, progression,
and poor prognosis of CVDs [90]. Its association with AS, a prominent contributor to
CVD, is well established. For instance, Streptococcus species found in both the gut and
atherosclerotic plaques suggest their involvement in AS development [91]. Moreover,
Atarashi et al. (2017) observed increased gut colonisation by Streptococcus in patients with
CAD [92]. This opportunistic pathogen is linked to HTN severity and produces neurotrans-
mitters that affect vascular tone, thereby contributing to HTN [93]. In patients with AF,
Streptococcus overgrowth, along with reduced Faecalibacterium, may contribute to microbial
imbalance [94]. Nevertheless, Streptococcus is associated with SCFAs and TMA synthesis,
which are crucial in cardiovascular physiological processes [95]. Additionally, Streptococcus
showed a positive correlation with FG and a negative correlation with TC, consistent with
the observed high FG and low TC levels in patients with CVD in our study [96].

The reduced abundance of Faecalibacterium in patients with CAD suggests a lower
concentration of SCFAs, which hinders the energy supply for intestinal cells and com-
promises the gut barrier by impairing Toll-like receptor 2 in tight junction formation [83].
Li et al. (2021) observed that secondary BAs promote the development of this genus,
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suggesting their involvement in bile acid metabolism [97]. Although our findings do not
align with the existing literature owing to limited metabolite data, a consistent trend was
observed for TMAO. Several studies have highlighted a negative correlation between
F. prausnitzii and TMAO production [28]. Our analysis supports this finding, revealing
decreased Faecalibacterium levels and elevated TMAO levels in patients with CVD.

Research on F. prausnitzii-treated mice indicates cardiovascular benefits such as en-
hanced cardiac function, lower plasma lipid levels, reduced atherosclerotic plaque forma-
tion, and relief from post-stroke neurological deficits and inflammation [88].

Likewise, human studies associate higher Faecalibacterium levels with lower arterial
stiffness [98]. Additionally, Faecalibacterium negatively correlates with CVD risk factors,
including inflammatory markers such as high-sensitivity C-reactive protein and interleukin-
6, and positively correlates with tumour necrosis factor-α [99]. Concerning lipid-related
markers, Faecalibacterium was negatively associated with LDL-C, TC, and TG and positively
associated with HDL-C [100]. However, our findings differ from those in the literature,
showing a decrease in HDL-C levels and an increase in TG levels. F. prausnitzii also
negatively correlates with insulin resistance markers, but our results indicate elevated FG
levels in patients with CVD [101]. Insulin resistance, reflected in increased FG, is a hallmark
of pre-diabetes and type 2 diabetes, both of which are risk factors for CVD. This bacterium
is also negatively correlated with uric acid levels [24], and our findings revealed elevated
creatinine levels, suggesting kidney dysfunction, which is closely linked to CVD risk.

The gut microbiota impacts the overall metabolic balance and regulates serum lipid
and glucose levels [102]. In this meta-analysis examining various biochemical parameters
related to CVD, patients showed increased levels of FG and TG compared to HCs. Con-
versely, TC LDL-C and HDL-C levels were reduced. Notably, the acid-lactic-producing
bacterium Streptococcus exhibits a strong positive correlation with CVD risk factors, in-
cluding blood glucose, HDL-C, and ApoAI (a significant HDL component); however, it
is negatively correlated with TC [96]. No direct associations were found between this
opportunistic bacterium and LDL-C and TG [103].

The well-established link between gut microbiota and CVD involves the TMAO
metabolite pathway, although the exact mechanism is not fully understood. Our meta-
analysis and systematic review confirmed elevated plasma TMAO levels in patients with
CVD compared to HC, particularly in individuals with ACS, CAD, HF, and stroke, where
poor outcomes are directly associated with increased TMAO levels [104]. In the multistep
process of TMAO production, specific intestinal bacteria, particularly within the phyla
Firmicutes and Proteobacteria, play a crucial role in converting dietary precursors into TMA.
Certain families, such as Clostridiaceae, Lachnospiraceae, and Veillonellaceae from Firmicutes,
and Enterobacteriaceae from Proteobacteria, were associated with high TMAO levels. Con-
versely, families like Bacteroidaceae and Prevotellaceae from Bacteroidetes are related to low
TMAO levels [87]. At the genus level, TMA producers include Clostridia, Shigella, Proteus,
and Aerobacter, while Escherichia and Klebsiella significantly reduce TMAO to TMA [105].
Moreover, enterotype characterisation studies show that enterotype 2 with Prevotella is
associated with high TMAO levels, while enterotype 1, predominantly Bacteroides, is re-
lated to low TMAO levels [106]. At the species level, Escherichia coli contributes to TMA
production, whereas Enterobacter aerogenes reduces plasma TMAO levels [107]. Addition-
ally, TMAO and TMA are correlated with anthropometric parameters and cardiovascular
health markers, including TC, LDL-C, apolipoprotein B, and tumour necrosis factor-alpha
levels [40]. However, different gut microbial compositions resulted in varying amounts of
TMAO. Our findings highlight that the genus Streptococcus contributes to elevated plasma
TMAO levels, suppresses reverse cholesterol transport, and leads to atherosclerotic plaque
formation. The data from Hoyles et al. (2018) support our observations, demonstrating that
TMAO influences the growth of lactic acid bacteria, including Streptococcus [108].

This study highlights the complex interplay between human gut microbiota, its
metabolic by-products, and CVD. The microbial diversity and specific bacterial taxa identi-
fied in this comprehensive review provide valuable insights into CVD’s potential contribu-
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tors to and modulators of CVD. Moreover, the observed associations between microbial
alterations, metabolite production, and cardiovascular risk factors indicate the multifaceted
nature of the development and progression of CVD.

5. Strengths and Limitations

This research conducted an extensive investigation into the relationship between the
gut microbiome and various CVDs, employing a comprehensive review of three databases.
Notably, it incorporates a statistical component, which is a distinctive feature, due to the
scarcity of microbiota-focused meta-analyses in the scientific literature.

However, several limitations must be considered. Discrepancies in metagenomic
and metabolomic analysis methods, including various technical approaches, clustering
methods, and mapping databases, create challenges regarding standardisation. Addition-
ally, differences in population characteristics, limited causality in case-control studies, and
geographical biases exacerbate the heterogeneity of the data.

In metabolomic studies, the correlation of metabolites beyond TMAO was challenging
due to the requirement of data from at least three articles, and the diverse sources of
metabolites (blood and faeces) complicated aggregation. Furthermore, the use of general
keywords in the research strategy limited the inclusion of additional metabolites, suggesting
that a more targeted approach would be beneficial.

Several factors, including the scarcity of eligible articles, reliance on aggregated data,
and unavailability of raw data, have significantly hampered the meta-analysis process. The
harmonisation of original data and the challenges associated with selective reporting of
significant findings and tools used for data extraction from images further complicate the
analysis. These issues collectively hinder the drawing of reliable correlations between the
different datasets.

Despite these limitations, this study emphasises the need for further research and
standardisation to explore the complex relationships between gut microbiota and CVD.

6. Conclusions

This meta-analysis and systematic review found distinct differences in the gut micro-
biota composition of patients with CVD compared with HCs. Reduced Faecalibacterium
and increased Streptococcus and Proteobacteria were notable changes potentially linked to
CVD, alongside alterations in the TMAO metabolite. Changes in biochemical parameters,
such as increased FG and TG levels and decreased TC, LDL-C, and HDL-C levels, were
observed in patients with CVD. Despite the strong correlations between specific bacterial
taxa and CVD, further research in larger populations is needed to confirm causation. High
heterogeneity and variations in reporting specifications highlight the need for standardised
procedures in microbiome research. Continuous preclinical and clinical research is crucial
for a comprehensive understanding of the role of gut microbiota in characterising CVD.
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