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Introduction
Health care providers, whether individual physicians or health 
care centers, are increasingly being monitored or profiled on 
their quality of care.1,2 Despite its over-simplistic interpreta-
tion of quality of care, mortality is a frequently used outcome 
measure3,4 and is used in the widely implemented Hospital 
Standardized Mortality Ratio model.5 An essential step when 
profiling providers is the adjustment for case-mix, often called 
risk adjustment.1

Provider profiling using traditional regression-based risk adjust-
ment has been shown to lead to inconsistent results that are highly 
dependent on the specific statistical model chosen.6–8 In addition, 
these methods may perform poorly when low-volume providers 
are included or outcomes are rare, leading to an inability to detect 
poor performing providers in such scenarios.9,10 As high patient 
volume has been associated with better patient outcomes,11,12 it is 
especially crucial to monitor the quality of care of low-volume pro-
viders. Currently, providers that do not reach a certain volume 
threshold are often omitted from analyses and comparisons.10

An alternative to standard regression models when adjust-
ing for covariates in observational studies is propensity  

score (PS) analysis. When considering dichotomous treat-
ments, PS analysis may outperform standard multivariable 
analysis,13–15 especially when dealing with a large number of 
covariates or few events per covariate.16,17 Even though sev-
eral different PS methods have been extended for multiple 
treatment comparisons (see Linden et al18 for a comparison), 
these methods have barely been considered in a provider pro-
filing setting.19

The objective of this study was to assess the performance of 
PS methods (notably PS adjustment, PS weighting, and PS 
matching) for risk adjustment in studies of multiple providers. 
A simulation study was performed to investigate the effect of 
sample size, event rate, and provider volume on the risk adjust-
ment performance of PS methods and conventional fixed-
effects logistic regression when profiling 3 providers. 
Subsequently, the suitability of using these PS methods in a 
more realistic provider profiling setting was explored by con-
sidering scenarios with up to 20 providers. Finally, different 
risk adjustment methods were illustrated in an empirical exam-
ple from the field of cardiac surgery.

Investigating Risk Adjustment Methods for  
Health Care Provider Profiling When Observations are 
Scarce or Events Rare

Timo B Brakenhoff1, Karel GM Moons1, Jolanda Kluin2  
and Rolf HH Groenwold1

1Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, 
The Netherlands. 2Heart Center, Academic Medical Center, Amsterdam, The Netherlands.

ABSTRACT 

Background: When profiling health care providers, adjustment for case-mix is essential. However, conventional risk adjustment methods 
may perform poorly, especially when provider volumes are small or events rare. Propensity score (PS) methods, commonly used in obser-
vational studies of binary treatments, have been shown to perform well when the amount of observations and/or events are low and can be 
extended to a multiple provider setting. The objective of this study was to evaluate the performance of different risk adjustment methods 
when profiling multiple health care providers that perform highly protocolized procedures, such as coronary artery bypass grafting.

Methods: In a simulation study, provider effects estimated using PS adjustment, PS weighting, PS matching, and multivariable logistic 
regression were compared in terms of bias, coverage and mean squared error (MSE) when varying the event rate, sample size, provider vol-
umes, and number of providers. An empirical example from the field of cardiac surgery was used to demonstrate the different methods.

Results: Overall, PS adjustment, PS weighting, and logistic regression resulted in provider effects with low amounts of bias and good cov-
erage. The PS matching and PS weighting with trimming led to biased effects and high MSE across several scenarios. Moreover, PS match-
ing is not practical to implement when the number of providers surpasses three.

Conclusions: None of the PS methods clearly outperformed logistic regression, except when sample sizes were relatively small. Propen-
sity score matching performed worse than the other PS methods considered.

Keywords: Provider profiling, risk adjustment, propensity score, logistic regression, simulation

RECEIVED: January 11, 2018. ACCEPTED: May 24, 2018. 

Type: Original Research

Funding: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article:  RHH Groenwold was funded by the 
Netherlands Organization for Scientific Research (NWO-Veni project 916.13.028).

Declaration of conflicting interests: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this 
article.

CORRESPONDING AUTHOR: Timo B Brakenhoff, Julius Center for Health Sciences and 
Primary Care, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The 
Netherlands.  Email: T.B.Brakenhoff-2@umcutrecht.nl; t.brakenhoff@gmail.com

785133 HIS0010.1177/1178632918785133Health Services InsightsBrakenhoff et al
research-article2018

https://uk.sagepub.com/en-gb/journals-permissions


2	 Health Services Insights ﻿

Risk Adjustment Methods
Fixed-effects logistic regression

Traditionally, multivariable regression models have been used 
to adjust provider effects for possible case-mix variables. The 
inclusion of providers as random or fixed effects in the logistic 
regression model is largely dependent on the goal of provider 
profiling.20,21 In this article, a fixed-effects logistic regression 
model was chosen for both the data generation model and 
analysis model as the aim was to make direct comparisons 
between only a few provider effects. In addition, only patient-
level case-mix variables were included, reducing the necessity 
of a hierarchical model. Given the theoretical differences 
between fixed- and random-effects models, it was deemed 
inappropriate and unfair to analyze data generated under a 
fixed-effects model with a random-effects risk adjustment 
method.

PS models

In 1983, Rosenbaum and Rubin introduced the PS as “the con-
ditional probability of assignment to a particular treatment 
given a vector of observed covariates”22 and demonstrated that 
adjustment using these scores was sufficient to remove bias due 
to observed covariates if the assumptions of exchangeability 
and positivity hold. In health care provider profiling, the treat-
ment is not a medical intervention but the provider attended by 
the patient. When comparing 2 providers, the PS can be esti-
mated using a binary logistic regression model where the pro-
vider indicator is regressed on the observed case-mix variables. 
The fitted values of this model, the PSs, can then be used for 
stratification, covariate adjustment, inverse probability weight-
ing, or matching. PS weighting, PS matching, and to a lesser 
extent PS adjustment have been shown to lead to a better  
balance of case-mix between providers and less biased effect  
estimates when compared with PS stratification.14,23 PS strati-
fication will therefore not be considered in this article.

Generalized PS models

The PS methods can be extended to a multiple provider setting 
using the generalized PS (gPS) described by Imbens24 as the 
conditional probability of attending a particular provider given 
case-mix variables.25 The gPS of each provider can be esti-
mated using multinomial logistic regression including all rele-
vant observed case-mix variables. The application of the 
aforementioned risk adjustment methods will be described for 
a setting with 3 providers, yet naturally extends to situations 
with more than 3 providers. For gPS adjustment, the outcome 
is regressed on 2 dummy variables of the provider indicator, 2 
of the estimated gPSs, and possible interactions. This allows 
the estimation of the conditional provider effect (for further 
details, see the following implementations: Spreeuwenberg et al26; 
Feng et al27). For gPS weighting, the sample is reweighted by  

the inverse gPS of the provider actually attended. The outcome 
is then regressed on 2 dummy variables of the provider indica-
tor to estimate the marginal provider effect.27 Extreme weights 
may be trimmed to help reduce the influence of outliers and 
model misspecification in certain situations but can also 
decrease the amount of risk adjustment.28 For gPS matching, 
the average provider effect of the matched set can be estimated 
after selecting individuals from each provider based on the 
overlap of the gPSs, also known as the common support 
region.29 Although gPS matching will not necessarily use the 
same target population as the above-mentioned methods to 
estimate the provider effect, the estimated average provider 
effects are comparable if interaction effects are absent (ie, the 
average provider effect is then equal to the average provider 
effect on those attending the provider). For the remainder of 
this article, the standard multivariable logistic regression 
method will be referred to as LR, gPS adjustment as PSC, gPS 
weighting as PSW, gPS weighting with trimming as PSWT, and 
gPS matching as PSM. The performance of all these methods 
was assessed using a simulation study.

Simulation Study
A Monte Carlo simulation study was performed using R 
(v3.1.2)30 to assess the influence of sample size, event rate, pro-
vider volume, and number of providers on the performance of 
the PS methods and LR. The first 3 factors were varied in a 
limited provider profiling setting with only 3 providers. Even 
though such a situation is rarely encountered in practice, it is 
analogous to the 3 treatment settings for which the studied 
methods have been extended previously and allow for a detailed 
assessment of performance. Subsequently, the suitability and 
performance of the studied methods in settings with up to 20 
providers was explored. Using a simulation study, estimated 
provider effects of each method could be compared with their 
true (marginal or conditional) effects. The simulation study 
was conducted in a controlled setting with properly specified 
regression models, no interaction terms, and equal coefficients 
for all included case-mix variables. This ensured comparability 
of the causal effects estimated by each method.

Data generation

The data generation procedure described in this section was 
written for a 3-provider setting, yet naturally extends to situa-
tions with more than 3 providers.

Ten case-mix variables (Z1, . . . , Z10) were generated from a 
multivariate standard normal distribution with correlations 
either all equal to 0 or 0.1. These variables were then included 
as covariates in a multinomial logistic regression model to 
assign each patient to 1 of 3 centers (A, B, or C) within pro-
vider indicator X, where center B acted as the reference cate-
gory. The coefficients of the case-mix variables for center A 
and C, βj1, . . . , βj10, were set equal to 1/10, where k = {A,C}, j ∈ 
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k. The following formula was used to generate probabilities for 
categories A and C of the provider indicator X:
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Given that center B was the reference category, 
π π πB A C= − +1 ( ). As the total sample size (N) was fixed, the 
intercepts of the multinomial model (αA and αC) shown in 
equation (1) could be manipulated to determine the size of 
each provider (Nj). A fixed-effects logistic regression model 
was used to generate the dichotomous outcome variable (Y). 
Providers A and C (provider B acted as reference) were included 
in the model as dummy variables (XA and XC) with relative 
coefficients (βA and βC) of −0.5 and 0.5, respectively. Thus, irre-
spective of patient characteristics, the estimated odds of mor-
tality for a patient attending provider A or C were e−0.5 = 0.61 
and e0.5 = 1.65 times the estimated odds for a patient attending 
provider B. In scenarios with more than 3 providers, provider A 
acted as reference with the remaining providers having relative 
coefficients between −1 and 1 assigned at equidistant intervals 
based on the number of providers. Z1, . . . , Z10 were included 
with βZ1, . . . , βZ10 = 1/10:
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Due to this data-generating model, the case-mix variables 
acted as confounders of the provider-outcome relation. No 
interaction terms were included in the model. The provider 
effects were therefore assumed constant over the different lev-
els of the case-mix variables. On average, the unadjusted esti-
mates of βA and βC were found to be −0.40 and 0.60, respectively, 
across simulations.

A total of 16 scenarios were investigated in which the num-
ber of providers, the total sample size over all providers, pro-
vider volumes, and the event rate were separately manipulated 
(see Table 1). Varying the total event rate was achieved by 
manipulating the intercept (α) of the logistic model (equation 
(2)), whereas the intercepts of the multinomial model (αA and 
αC in equation (1)) were manipulated to determine the distri-
bution of the sample size over the providers. Each scenario was 
simulated 2000 times. Scenarios 1 through 12 were repeated 
with a correlation of 0.1 between all case-mix variables. This 
correlation coefficient is frequently encountered between base-
line variables in observational studies.31

Methods

This section describes how the methods, which were described 
above, were applied in the 3-provider setting (scenarios 1-12). 
For scenarios 13 to 16, PSM was not applied due to both logisti-
cal and computational challenges that arise when trying to find 

Table 1.  For each scenario, the number of providers, total sample size over all providers (N), sample size distribution and total event rate was fixed.

Scenario No. of 
providers

N Sample size 
distribution

Total event 
rate, %

1 3 500 NA = NB = NC 10

2 3 1000 NA = NB = NC 10

3 3 2000 NA = NB = NC 10

4 3 5000 NA = NB = NC 10

5 3 10 000 NA = NB = NC 10

6 3 10 000 NA = NB = NC 28

7 3 10 000 NA = NB = NC 13

8 3 10 000 NA = NB = NC 02

9 3 10 000 NA = NB = NC 01

10 3 10 000 NA = NC = 800 10

11 3 10 000 NA = NC = 2500 10

12 3 10 000 NA = NC = 4600 10

13 5 15 000 NA = . . . = NE 10

14 10 30 000 NA = . . . = NJ 10

15 15 45 000 NA = . . . = NO 10

16 20 60 000 NA = . . . = NT 10
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suitable matches for more than 3 groups. For LR, Y was 
regressed on 2 dummy variables for X (XA and XC) and all 10 
case-mix variables (Z1, . . . , Z10) just as in equation (2). The 
svyglm function of the survey package (v3.30)32 was used to 
estimate the model coefficients and the corresponding stand-
ard errors (using Taylor series linearization). For all methods 
except PSW, the weight of each individual was set to 1. To alle-
viate potential problems with separation in the most extreme 
scenarios of scenarios 1 to 12, results of LR were compared 
with Firth’s bias reduced logistic regression33 (applied using the 
logistf package [v1.21]34).

For the PS methods, gPSs were first estimated from the 
data by fitting a multinomial regression model using the func-
tion multinom of the nnet package (v7.3)35 and extracting each 
patients’ fitted values for all categories of X. For PSC, a logistic 
regression model was fitted with 2 dummy variables for X (XA 
and XC) and 2 gPSs (gPSA and gPSB). For PSW, the gPSs were 
first used to calculate a weight for each patient. A patient’s 
weight was equal to the inverse of the gPS of the provider actu-
ally attended. A weighted logistic regression analysis was per-
formed as in LR, except with only the 2 dummy variables 
representing X. For PSWT, the highest 2% of weights were 
trimmed to the 98th percentile.28 The determination of the 
optimal trimming threshold was beyond the scope of this study. 
For PSM, a 1:1:1 matching without replacement strategy was 
used where the gPSA and gPSB values of all individuals were 
divided into equal-sized bins. The bin width was equal to 0.2 
times the pooled standard deviation of the logit of the gPSA 
and gPSB values, based on the caliper width advised by Wang 
et al.36 A matched set consisted of one random individual from 
each category of X that fell within the same bin. The amount 
of individuals in the matched set was therefore always smaller 
than the original sample and depended on the overlap of the 
PS distributions in the 3 groups. The data set containing all 
matched sets was then analyzed using marginal logistic regres-
sion with only the 2 dummy variables of X included in the 
model. All models used in each method were properly specified 
as all case-mix variables used to generate the data were also 
included in the analysis. Investigations into the consequences 
of model misspecification are discussed elsewhere.37,38

Reference values

When determining the reference values to compare the pro-
vider effect estimates (Bj) with, it is important to consider the 
different types of effects each method estimates. LR and PSC 
both estimate a provider effect conditional on either the 
observed case-mix variables or a summary in the form of gPSs. 
The reference provider effects (βj) were therefore set equal to 
the conditional effects used in the data-generating model. 
Thus, for a 3-provider setting, βA = −0.5 and βC = 0.5, whereas 
for a 5-provider setting, βA = −1, βC = −0.33, βD = 0.33, and βE = 1. 
PSW and PSWT both estimate a marginal provider effect. As this 
effect is influenced by the event rate, different reference values 
were used for scenarios 5 through 9. The reference values were 

determined by taking the mean over 100 samples of 106 patients 
generated for each event rate with βj1, . . . , βj10 = 0. The effect of 
the case-mix variables on X was thus removed and a marginal 
logistic regression model was fit using XA and XC. A similar 
procedure was used to determine the marginal reference values 
for scenarios 13 through 16. For PSM, the analysis did not take 
into account the matched nature of the data set as suggested by 
Sjölander and Greenland.39

Performance measures

For each scenario, the bias, coverage, and mean squared error 
(MSE) of the estimated provider effects were assessed over 
2000 simulations. The bias is equal to the difference between 
the average estimated provider effect over all simulations and 
the reference value. The coverage is equal to the proportion of 
times that the reference value falls within the 95% confidence 
interval (CI) constructed around the estimated provider effect 
over all simulations. To provide a measure of the uncertainty in 
the results of the simulations, note that in case the true cover-
age is 95%, the coverage based on 2000 simulation runs is 
expected to lie between 94% and 96% in 95% of the simula-
tions. To confirm that the standard errors of the provider effects 
were being properly estimated for each method in each sce-
nario, the ratio of the average standard error of Bj over the 
standard deviation of the 2000 estimates of Bj was also exam-
ined. A ratio of 1 indicates that these values are identical. The 
MSE is equal to the sum of the average squared standard error 
of the provider effect over all simulations and the square of the 
bias.

Results

For scenarios 1 to 12, there were no meaningful differences in 
the performance of methods when the correlation between the 
case-mix variables was 0 or 0.1. The figures discussed in this 
section thus assumed a correlation of 0. Furthermore, Firth’s 
bias reduced logistic regression gave practically identical results 
to LR. As such, the former method is not further discussed.

Total sample size.  In Figure 1, the bias and coverage (of the 
95% CI) of BA and BC are shown for all 5 methods at different 
total sample sizes, corresponding to scenarios 1 through 5. 
When the total sample size was at least 2000, LR, PSC, and 
PSW gave unbiased estimates of BA and BC, whereas PSM and 
PSWT consistently slightly overestimated BA and BC. For lower 
sample sizes, all methods underestimated BA and overestimated 
BC, which was in the same direction as the reference value. PSM 
and LR showed the most bias when the total sample size was 
only 500, with biases of about −0.065 (13% of βA) and −0.030 
(6% of βA) for BA and 0.035 (7% of βC) and 0.030 (6% of βC) 
for BC. Coverage of the 95% CI of BC fluctuated closely about 
0.95 for all methods and sample sizes. Coverage of BA was 
more variable with LR, PSC, and PSM showing very slight over-
coverage when the sample size was 500.
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Total event rate.  In Figure 2, the bias and coverage of BA and BC 
are shown for all 5 methods at different event rates, corre-
sponding to scenarios 5 through 9. As the total sample size was 
kept constant at 10 000, the most extreme scenario (9) had an 
average of 100 total events per simulated data set. Only when 
the total amount of events decreased below 200, did all meth-
ods show slight bias, never exceeding an absolute bias of 0.03. 

Coverage probabilities of all methods fluctuated between 0.94 
and 0.96 and were similar for both BA and BC at all event rates, 
with only PSM straying beyond 0.96 when the total amount of 
events was 100.

Sample size distribution.  In Figure 3, the bias and coverage of 
BA and BC are shown for all 5 methods at different provider 

Figure 1.  Bias (top) and coverage of the 95% confidence interval (bottom) of BA and BC for different total sample sizes. The sample sizes were evenly 

distributed over providers with a fixed event rate of 10%. Different line colors represent the different risk adjustment methods used.

Figure 2.  Bias (top) and coverage of the 95% confidence interval (bottom) of BA and BC for differing total amounts of events. The total sample size was 

fixed to 10 000 and distributed evenly over the providers. Different line colors represent the different risk adjustment methods used.
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volumes, corresponding to scenarios 5, and 10 through 12. 
Note that for all scenarios, the total sample size was 10 000 and 
the volumes of providers A and B were kept equal. Provider 
volumes seemed to have no meaningful effect on the bias or 
coverage of BA and BC when using LR, PSC, or PSW. When 
using, PSM or PSWT, however, the absolute bias exceeded 0.04 
for both provider effects when provider B had only 7% of the 
total sample size. Although PSWT demonstrated good coverage 
for both provider effects, PSM showed both undercoverage and 

overcoverage for BC when the volume of provider B was low 
and high, respectively.

Number of providers.  In Figure 4, the bias and coverage of 20 
provider effects (corresponding to 16) is shown when using LR, 
PSC, PSW, or PSWT for risk adjustment. Similar figures comparing 
5, 10, or 15 providers (corresponding to scenarios 13 through 15) 
are shown in the Appendix (Supplemental Figures 1 to 3). The 
absolute bias of LR, PSC, and PSW never exceeded 0.005 for all 

Figure 3.  Bias (top) and coverage of the 95% confidence interval (bottom) of BA and BC for differing provider volumes. The total sample size was fixed to 

10 000. Different line colors represent the different risk adjustment methods used.

Figure 4.  Bias (top) and coverage of the 95% confidence interval (bottom) of 19 estimated provider effects when using different risk adjustment methods. 

All provider volumes were fixed to 3000 with a total event rate of 10%.
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estimated provider effects as the number of providers increased 
from 5 to 20. For PSWT, however, the overall bias of the provider 
effects increased as the number of providers increased, culminat-
ing in biases of about 0.04 for many provider effects when profil-
ing 20 providers. Coverage probabilities of provider effects 
fluctuated closely about 0.95 for all methods when considering 5 
providers. When profiling 20 providers, however, PSWT lead to 
undercoverage (below 0.94) for most provider effects.

Standard error estimation and MSE.  Ratios of the average esti-
mated standard errors over the standard deviation of provider 
effects fluctuated closely about 1 in almost all situations. Only 
when applying PSM with a sample size of 500, did this ratio drop 
below 0.7 for BA indicating that the average standard error was 
an underestimation of the actual variation in provider effects 
simulated. As expected, the MSE generally declined as the total 
sample size or amount of events increased. Although most 
methods had an almost identical MSE under all conditions, PSM 
consistently scored higher, especially when the total sample size 
decreased to 500. Figures for these outcome measures can be 
found in the Appendix (Supplemental Figures 4 to 10).

Empirical Example—Profiling Cardiac Surgery 
Centers
Open heart surgery is a field that has been subject to many 
developments in risk-adjusted mortality models for quality con-
trol in the past decades.40,41 Although many have disputed the 
legitimacy of mortality as a proxy for quality,42–44 mortality is 
considered appropriate when profiling procedures such as coro-
nary artery bypass grafting (CABG).40,41,45 A selection of 
anonymized data from the Adult Cardiac Surgery Database 
provided by the Netherlands Association of Cardio-Thoracic 
Surgery (NVT; www.nvtnet.nl) was used to illustrate the statisti-
cal methods evaluated above when profiling multiple centers. 
This database is similar to databases in other countries, such as 
the Society of Thoracic Surgeons Adult Cardiac Surgery 
Database (STS-ACSD) maintained in the United States which 
has also been used for recent provider profiling investigations.41

Data

The Adult Cardiac Surgery Database of the NVT contains 
patient and intervention characteristics of all cardiac surgery 
performed in 16 centers in the Netherlands as of January 1, 
2007. This data set has previously been described and used by 
Siregar et  al46,47 for benchmarking. In the current study, all 
patients, from all 16 centers, who underwent isolated CABG 
with an intervention date between January 1, 2007, and 
December 31, 2009, were included in the cohort. Case-mix vari-
ables were selected based on the EuroSCORE prediction model. 
Dichotomous case-mix variables with an overall prevalence 
below 5% were excluded from the analysis. In-hospital mortality 
was used as the dichotomous mortality indicator. As a result, the 
final data set included 8 case-mix variables (age [centered], sex, 
chronic pulmonary disease, extracardiac arteriopathy, unstable 

angina, LV dysfunction moderate, recent myocardial infarction, 
and emergency intervention), 1 mortality indicator, and 1 
anonymized center indicator (with centers labeled A through P). 
This data set contained 25 114 patients with an average center 
mortality rate of 1.4%, ranging from 0.7% to 2.3%.

Comparison of risk adjustment methods

Although the performance of the different risk adjustment 
methods could be compared in the simulation study described 
earlier, this is not possible in an empirical data set as the true 
center effects are unknown. Nevertheless, the consequences of 
using different risk adjustment methods can be illustrated by 
ranking centers based on their standardized mortality ratio 
(SMR). This ratio is calculated by dividing the observed by the 
expected mortality. Expected mortality rates were calculated 
using the case-mix variables mentioned above. After fitting the 
different risk adjustment models on the full data set, the pre-
dicted probability of mortality was extracted for the patients 
attending each center. To mimic a situation with smaller pro-
vider volumes or more frequent monitoring, the same proce-
dure was applied to a selection of the total data set only 
including information from the year 2008. Note that PSM was 
not included as a risk adjustment method due to logistical 
issues that arise when dealing with more than 3 centers.

Results

In Figure 5, the SMRs for all 16 centers are ranked for the year 
2008 as well as the years 2007 through 2009 combined. In the 
total data set, all methods showed slight differences in the 
rankings of the centers. This disagreement increased in the 
reduced data set as the uncertainty around the SMRs became 
much larger due to the smaller center volumes. The similarity 
in rankings of LR and PSC in both panes echoes the similar 
performance observed in the simulation study. The marginal 
methods (PSW and PSWT) led to quite different conclusions, 
especially in the lower ranked centers.

Discussion
Key f indings

Our simulation study, in which risk adjustment methods for 
provider profiling were compared, showed that of the 4 PS 
methods considered, PS adjustment and PS weighting per-
formed best. Both showed similar or slightly less absolute bias 
as compared with conventional logistic regression across all 
scenarios of the simulation study. The PS matching clearly per-
formed worse in terms of bias and coverage than the other 
methods when the number of observations decreased. 
Furthermore, PS matching and PS weighting with trimming 
were the only methods strongly affected by the distribution of 
volume across providers. When the number of providers to be 
profiled increased beyond 3, PS weighting was the only method 
that led to increasingly biased provider effect estimates.
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Relation to previous work

In line with Spreeuwenberg et  al,26 PS adjustment consist-
ently showed similar performance to logistic regression. Also, 
PS adjustment as well as PS weighting suffered, albeit slightly, 
in performance when sample sizes were low, which was sug-
gested before by Feng et al.27 The PS weighting with trim-
ming did not improve on the performance of untrimmed 
weighting. This may be due to the fact that only one trim-
ming threshold was investigated. However, the arduous task 
of determining the trimming threshold that has the optimal 
variance-bias trade-off was beyond the scope of this study. 
Other alternatives to enhance PS weighting include using 
stabilized weights.48

These findings contrasted those of simulation studies com-
paring PS methods with conventional regression analysis in 
settings with 2 exposure levels (eg, providers) in which obser-
vations or events were rare. In our study, none of the PS meth-
ods clearly outperformed logistic regression.13,15 Furthermore, 
PS matching performed slightly worse than all other methods, 
especially when the total sample size was very low.14 This is 
most likely due to the added complexity of applying PS meth-
ods in settings with multiple providers, as studies are yet to 
find noteworthy performance improvements of different PS 
methods over conventional regression analyses when compar-
ing multiple treatment options.25–27,29

PS matching

The performance of PS matching was likely influenced by the 
specific matching procedure applied, as earlier simulation studies 
have shown that risk adjustment performance can depend highly 
on the specific matching algorithm used.10 As the matching 

procedure was developed for quick application in a simulation 
study and ease of use, it failed to locally minimize distances 
between potential matches. This could have led to the occasion-
ally biased estimates and the consistently higher MSE, which 
were not found by Rassen et al29 when using a computationally 
more intensive matching algorithm that did implement local 
minimization.

Strengths and limitations

A strength of our simulation study is that the scenarios investi-
gated were chosen to reflect realistic situations that may be 
encountered in practice. As such, more extreme scenarios with 
smaller total sample sizes or lower event rates were deemed 
unnecessary. However, an obvious limitation of this simulation 
study was that most scenarios are still a simplification of reality, 
in which often more than 20 providers are profiled. Nevertheless, 
the studied scenarios allowed for a fair technical comparison of 
PS methods and multivariable regression in a provider profiling 
context. Scenarios 13 to 16 suggest that most PS methods can 
also be applied in settings with more providers, yet further inves-
tigation into the practical consequences (eg, in terms of outlier 
detection rates) of using these methods in settings with many 
providers or when there are unobserved case-mix differences is 
required.

Unobserved case-mix

In all simulations that were performed, all relevant case-mix 
variables were observed and appropriately included in the 
model (either the PS model or the outcome regression model). 
All methods used the same amount of case-mix information 
and all models were correctly specified. Although the 

Figure 5.  Ranking of SMRs of all 16 centers for the total data set and for 2008 separately. A rank of 1 is given to the center with the lowest SMR. SMR 

indicates standardized mortality ratio.
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performance of the methods differs for relatively small samples, 
it may not come as a surprise that for relatively large samples 
the different methods yield similar results. However, in the 
presence of nonignorable, yet unobserved, differences in case-
mix across providers, the different methods may yield biased 
results, also in relatively large samples. The question whether 
the methods are differentially affected by unobserved case-mix 
was beyond the scope of this study.

Directions for future research

The PS methods investigated in this article are the ones most 
commonly encountered in the literature and easiest to apply. 
There are, however, alternative and more complex methods 
that may be used for risk adjustment. First of all, the gPSs can 
also be estimated using machine learning procedures such as 
generalized boosted models.49 These methods are able to esti-
mate larger numbers of gPSs with higher accuracy than con-
ventional multinomial regression models but are 
computationally more intensive and therefore not included in 
the simulation study. There are also alternative ways to use the 
estimated gPSs. One such example is marginal mean weighting 
through stratification, which computes weights based on strati-
fied PSs and has recently been suggested as a suitable risk 
adjustment method.50 To limit the scope of this study, these 
methods were not considered. Further research is required into 
these alternative gPS estimation and risk adjustment methods 
to determine whether they are better than the risk adjustment 
methods presented in this study.

Recommendations

Inherent advantages of PS methods compared with covariate 
adjustment to correct for differences in case-mix have been 
described before.14 The PS methods separate the design from 
the analysis of a study, allowing the assessment of balance and 
overlap of case-mix variables across different providers; an 
assessment that can be performed independent of the outcome 
variable. Furthermore, once balance is achieved, eg, through PS 
matching, it becomes relatively easy to study multiple out-
comes. However, due to unfamiliarity with the methods, appli-
cation of PS methods may be more prone to error compared 
with more traditional covariate adjustment through regression 
analysis. Considering the similarity in performance between 
PS methods and covariate adjustment through logistic regres-
sion that we observed in our simulations, neither of the meth-
ods can be clearly recommended instead of the others.

Conclusions
None of the PS methods clearly outperformed logistic regres-
sion, except for relatively small sample sizes. The PS matching 
performed slightly worse than all other methods, especially 
when the total sample size was very low.

Availability of Data and Material
Anonymized data was used for the empirical example with per-
mission of the NVT. The original (nonanonymized) data are 
not available to the authors or the public and cannot be pub-
lished in full form due to privacy concerns of the surgery centers 
included in the data set. The NVT has very strict terms to 
which need to be agreed for use of their data. This means that 
even the anonymized or de-identified data cannot be provided 
to third parties as the aggregated numbers can already allow 
direct identification of surgery centers. R code used for the sim-
ulation results can be found at https://github.com/timobraken-
hoff/ProviderProfiling1 and an R simulation results file can be 
found at https://figshare.com/s/35b9b9b4e450e95b9b07.
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