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Abstract

Most objects and vegetation making up the habitats of echolocating bats return a multitude

of overlapping echoes. Recent evidence suggests that the limited temporal and spatial reso-

lution of bio-sonar prevents bats from separately perceiving the objects giving rise to these

overlapping echoes. Therefore, bats often operate under conditions where their ability to

localize obstacles is severely limited. Nevertheless, bats excel at avoiding complex obsta-

cles. In this paper, we present a robotic model of bat obstacle avoidance using interaural

level differences and distance to the nearest obstacle as the minimal set of cues. In contrast

to previous robotic models of bats, the current robot does not attempt to localize obstacles.

We evaluate two obstacle avoidance strategies. First, the Fixed Head Strategy keeps the

acoustic gaze direction aligned with the direction of flight. Second, the Delayed Linear Adap-

tive Law (DLAL) Strategy uses acoustic gaze scanning, as observed in hunting bats. Acous-

tic gaze scanning has been suggested to aid the bat in hunting for prey. Here, we evaluate

its adaptive value for obstacle avoidance when obstacles can not be localized. The robot’s

obstacle avoidance performance is assessed in two environments mimicking (highly clut-

tered) experimental setups commonly used in behavioral experiments: a rectangular arena

containing multiple complex cylindrical reflecting surfaces and a corridor lined with complex

reflecting surfaces. The results indicate that distance to the nearest object and interaural

level differences allows steering the robot clear of obstacles in environments that return

non-localizable echoes. Furthermore, we found that using acoustic gaze scanning reduced

performance, suggesting that gaze scanning might not be beneficial under conditions

where the animal has limited access to angular information, which is in line with behavioral

evidence.

Author summary

The sonar system of bats provides only limited information about the location of obsta-

cles. In particular, it is unlikely that bats can localize multiple, complex obstacles that
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return a multitude of interfering echoes. Nevertheless, these animals can fly swiftly

through densely cluttered habits. To explain how bats do this, we proposed they only need

to compare the loudness of the echoes at the left and the right ear. If the echoes at the left

ear are louder than at the right ear, obstacles are probably located to the left. Therefore,

the bat should bank right (and vice versa). In this paper, we test whether such a simple

strategy would allow bats to avoid obstacles. We equipped a robot with a sonar system

resembling that of a bat, and we implemented the obstacle avoidance strategy above. We

tested this robotic bat in environments mimicking those used in experimental studies of

their sonar behavior. The robot was able to avoid most of the obstacles in both environ-

ments. Therefore, we conclude that bats could rely on a simple strategy when avoiding

obstacles in complex environments.

Introduction

Echolocating bats rely on their biosonar systems to avoid obstacles in complex environments

[1]. In previous work [2], we suggested that a strategy based on the interaural level difference

of the onset of the echo train can support obstacle avoidance. We proposed that the bat could

compare the intensity of the echo onset in the left and the right ear. If the onset of the echo

train is louder in the left (right) ear, the bat turns right (left). The turn magnitude was deter-

mined by the distance to the nearest obstacle, as conferred by the first echo. Our computer

simulations suggested that such straightforward phonotaxis can steer a bat clear from obstacles

in large simulated environments. This simple strategy does not require the bat to reconstruct

the 3D layout of the obstacles from the echoes, which is a notoriously hard problem (See [2]

for arguments and references), especially in highly cluttered environments where obstacle

avoidance is paramount. Hence, the strategy is robust as it can be used to guide flight under

conditions where little or no angular information can be extracted from echoes. It is also com-

putationally undemanding, which might reduce reaction time and make it compatible with the

requirement to respond quickly to obstacles while negotiating cluttered environments.

In our previous simulations [2], we assumed that the bat’s gaze and flight direction always

coincide. However, several studies on prey capture behavior have documented that a bat’s

acoustic gaze often deviates from its flight direction (for example, [3–5]). Ghose et al. [6] and

Falk et al. [7] found that, while hunting for prey, the bat’s flight direction is determined by its

gaze direction through a Delayed Linear Adaptive Law (DLAL). The bat’s flight direction was

found to follow its gaze direction with a delay. Interestingly, this pattern of gaze direction lead-

ing action has also been documented concerning eye movements in humans (See [8] for a

review).

More recently, we have used simulations to propose a sensorimotor model of the prey cap-

ture by echolocating bats [9]. The simulations in that paper did incorporate the DLAL. The

simulated bat was assumed to steer its gaze to keep the prey in the center of its field of view. As

in the experiments reported by Ghose et al. [6] and Falk et al. [7], the flight direction followed

the gaze direction. To assess the contribution of the DLAL to prey capture, we also ran simula-

tions in which the head and body were rigidly coupled (i.e., as in our obstacle avoidance paper,

[2]). Based on these results, we concluded that coupling the flight direction and gaze direction

through a DLAL allows bats to keep erratically moving prey in their field of view, and thereby,

increases the probability of successful prey capture. This previous work hinted at a clear func-

tional advantage of a loose coupling between flight and gaze direction through a DLAL.

Robotic model of sonar-based obstacle avoidance
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In the current work, we extend our previous model of obstacle avoidance in bats to include

the DLAL. This extension allows evaluating whether this steering mechanism is compatible

with obstacle avoidance. In particular, we investigate whether relaxing the coupling between

gaze and flight direction has a functional advantage when avoiding obstacles in densely clut-

tered and demanding conditions.

In contrast to our previous computer simulations, the current paper employs a robotic

model. Robotic models have been used before to test hypotheses about animal behavior, for

example [10, 11]. Compared to computational models, robotic models are especially helpful

when modeling the physics and dynamics of the animal’s interaction with the environment is

difficult, e.g., [12]. In this case, computational models often have to resort to simplifications,

which may limit the validity of the results (See [13] for examples).

Veracious modeling of the propagation and reflection of bat echolocation signals is compu-

tationally demanding, especially for the complex environments we set out to study in this

paper. Using a physical model, we do not have to introduce simplifying assumptions about the

physical interaction of the sonar signals with the environment. In contrast, the echoes return-

ing from the environment capture the full complexity of the echoes faced by bats.

In our earlier work [2], we simulated large artificially generated environments consisting of

point reflectors. Here, we test the obstacle avoidance strategy in two environments that mimic

highly cluttered setups commonly used in behavioral experiments. First, we evaluate our

obstacle avoidance strategy in a rectangular arena, modeling a flight cage with densely packed

obstacles. The number of obstacles has been chosen to reflect conditions that induced a signifi-

cant collision rate in hunting bats [7]. Second, we evaluate the obstacle avoidance strategies in

a narrow corridor lined with reflectors, for example, [14–16]. Importantly, recent neurophysi-

ological [14] and behavioral evidence [15, 17] confirms that the echoes from the closely spaced

reflectors lining the corridor are not separable by the bat. Instead, as stated in [14], responses

to echo cascades from the densely spaced reflectors represent a single extended stimulus event

that lasts over 40 ms. Similarly, the stochastic reflectors, i.e., egg cartons, lining our test corri-

dor, provide an environment that generates many highly overlapping echoes that cannot be

individually localized. Hence, this environment presents a good test case for an obstacle avoid-

ance strategy not relying on obstacle localization.

In summary, the goals of this paper are threefold. First, we aim at establishing that the inter-

aural level difference based steering, hitherto only tested in simulation, can be implemented in

a physical system using real echoes. Second, this paper tests interaural level difference based

steering in highly cluttered environments shown behaviourally and neurophysiologically to be

demanding and returning non-localizable echoes. Third, we wish to evaluate whether acoustic

gaze steering, observed in hunting bats, is compatible with interaural level difference based

obstacle avoidance.

Materials and methods

Robotic platform

The Amigobot (Adapt Mobilerobots) was used as a robotic platform (Fig 1). This is a differen-

tial drive robot measuring approximately 33 × 28 × 15 cm. The robot was equipped with an

onboard single board computer running Ubuntu Linux handling data acquisition and control-

ling the robot, through a serial interface. In addition, we mounted a custom-built sonar data

acquisition board (DAQ) on the robot. The DAQ featured one DAC channel (sample fre-

quency 360 kHz) and two ADC channels (sample rate 300 kHz). The DAC channel was used

to drive an ultrasonic transducer (MA40S4S Murato), producing narrowband ultrasonic sig-

nals centered around 40 kHz.

Robotic model of sonar-based obstacle avoidance
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The emitter used in this work has a smaller diameter (� 10 mm) than the broadband emit-

ters typically used on robotic models of bat echolocation, e.g., [19–23]. Therefore, the width of

its emitted beam is more comparable to that of bats. Fitting a piston model to the beam emitted

by various species of bats, Jakobsen et al. [24] found pistons with a diameter between about 5

and 10 mm to best fit the data. The obvious downside of this emitter is its limited bandwidth.

However, our previous work [2] suggests that, at least for obstacle avoidance in the horizontal

plane, broadband signals are not necessary. Indeed, the obstacle avoidance strategy we pro-

posed previously does not exploit spectral cues.

The emission and the echoes were recorded using two Knowles (FG—23742-D36) micro-

phones. These were embedded in 3D printed bat-like stylized pinnae (Fig 1). The artificial pin-

nae were printed on a Form 2 (Formlabs) printer at a resolution of 50 microns. As illustrated

by comparison with the directionality of the bat P. discolor [18], the stylized pinnae gave the

microphones a batlike HRTF with a clear IID gradient across the frontal hemisphere (Fig 1).

The housing containing the emitter and microphones was mounted on a pan-tilt system

driven by two servo motors. This allowed us to simulate the head movements observed in bats,

e.g., [3, 4, 16].

Emissions and echo processing

In cluttered environments, bats typically increase their emission rate, in part by emitting calls

in so-called strobe groups, for example, [25, 26]. Short intragroup intervals characterize

Strobe-groups. For example, Sandig et al. [26] report on the change in call interval as bats

approach an obstacle array. In their data, bats approaching a challenging array of obstacles

increased their call rate from about 20 Hz (about 2 m from the obstacles) to about 100 Hz

(right before passing the obstacles). Similar call rates have been reported by other authors, e.g.,

[7, 27–29].

Fig 1. (a) Close up of the robot showing the housing containing the emitter and two microphones in artificial pinnae. Below this, the pan-tilt

system can be seen. (b) 3D rendering of one of the artificial pinnae. (c) View of the robot in the rectangular arena. (d) View of the robot in the

corridor lined with egg cartons. (e) The gain of the ears as a function of azimuth angle. This plot depicts the output of the cochlear model for a

single cardboard tube reflector at 1 m distance from the robot showing the directionality of the robot’s sonar system. Overlaid is the

directionality of the bat P. discolor at elevation = 0˚ and 40 kHz, simulated data from Vanderelst et al. [18].

https://doi.org/10.1371/journal.pcbi.1007550.g001

Robotic model of sonar-based obstacle avoidance
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In our robotic model, the call rate sets both the rate of data acquisition and processing

thereof. It is unlikely that bats can process echoes quickly enough to update their motor behav-

ior every 10 ms. From experiments, it seems that bats require between 50 (to abort a hunting

sequence, [30]) and 20 (to exhibit a reflex, [31]) ms to respond to echoes. Hence, we modeled a

fixed interpulse interval of 50 ms.

Bats change the duration of their calls as a function of the environment or the stage of the

prey capture sequence (for example, Eptesicus fuscus, [32]). However, our robotic model oper-

ating in fixed high-clutter environments, we used a constant emission duration. We excited

the emitter for 0.3 ms. Due to the response characteristics of the emitter, the resulting emission

lasted about 1.5 ms, which is in the range of call durations used by Eptesicus fuscus under lab

conditions, e.g., [32].

After each emission, the signals recorded at both microphones were passed through a single

channel cochlear model [33] consisting of a gammatone filter with a center frequency of 40

kHz followed by half-wave rectification. The result was compressed (exponent 0.4). Finally, a

low-pass filter with a 1kHz cut-off was applied to the signals.

To detect the echoes in the output of the cochlear model, we used a peak finding method to

find local maxima in the signal. The first peak to surpass a threshold in either ear was consid-

ered as the arrival time of the first echo. The energy in the left and the right envelope was inte-

grated across 300 samples (1 ms), starting 150 samples before the arrival time of the first echo

(i.e., the peak of the first local maximum in the signal). This yielded an estimate of the loudness

of the first echo in the left and the right ear. The arrival time of the first echo for the ith call

yielded an estimate of the distance d̂i to the closest obstacle. The processing of the echoes is

illustrated in Fig 2.

Rectangular arena

The robot’s ability to avoid obstacles was tested in a 3 × 4 m rectangular arena bounded by 50

cm high corrugated cardboard panels. The obstacles consisted of 50 cm long cardboard tubes

with a diameter of 4 cm (Fig 1). This mimicked experimental conditions under which bat

echolocation behavior has been studied before. For example, Falk et al. [7] evaluated the echo-

location behavior of E. fuscus in a flight cage populated with 20 cm diameter artificial trees

made from mist net wrapped around two metallic rings creating a cylinder that hanging from

the ceiling. Petrites et al. [25], Barchi et al. [29] and Knowles et al. [15] used 4 cm wide chains

as obstacles (See [2, 34] for more early references). However, the tubes being simple human-

Fig 2. Illustration of the echo processing. (a) The signal at the left ear, containing the emission and the echoes. (b) The output of the cochlear

model [33]. The emission (shown in red) is subtracted from this result. (c) Peaks in the output of the cochlear model that surpass a given

threshold (in green) are considered as echoes. The energy in a window of 1 ms around the arrival time of the first echo in the left or the right ear

is integrated. (d-f) Same for the right ear. In this example, the first detectable echo arrives at the left ear.

https://doi.org/10.1371/journal.pcbi.1007550.g002

Robotic model of sonar-based obstacle avoidance
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made obstacles do not return the multiple echoes that are characteristic for vegetation (com-

pare, [14, 35, 36]). Therefore, we wrapped the cardboard tubes in artificial ivy vines (Fig 1).

The obstacles were pseudo-randomly distributed through space.

We used 11 cardboard tubes (i.e.,�1/m2) spaced less than a 1 meter apart to create a chal-

lenging environment for our robot. For example, Falk et al. [7] tested bats in an arena with a

lower density of obstacles (12 obstacles; arena area: 36 m2; density: 0.3/m2; Minimum spacing:

1 m). While hunting for prey in this environment, bats crashed in 20% of the trials (each of

which lasted typically 10 seconds, personal communication, Falk. 2019). Barchi et al. [29] flew

bats in arenas with a similar density to ours (18 chains; arena area: 18 m2; density: 1/m2). How-

ever, in their experiments, the obstacles were not uniformly distributed in space. The cluster-

ing of the obstacles resulted in greater distances between them than in our experiment. The

trajectory of the robot in the arena, the boundaries, and location of the obstacles were digitized

using a Vive Tracker (HTC) mounted on top of the robot.

Corridor

In addition to the rectangular arena, we also tested the robot’s ability to follow a corridor lined

with obstacles. Mimicking the experiments of, for example, Knowles et al. [15], who studied

the echolocation behavior of Eptesicus fuscus in complex cluttered corridors, we constructed a

corridor about 90 cm wide and 3 m long. The walls of the corridors consisted of the same cor-

rugated cardboard panels as used in the arena described above. In addition, we lined the walls

with egg cartons (Fig 1). The structure of the egg cartons, forming complex reflectors, resulted

in the walls returning multiple (overlapping) echoes (See Fig 3).

Control strategies

The DLAL obstacle avoidance strategy. Bats lower their flight speeds in cluttered envi-

ronments [7, 25, 26], and experience with a particular environment seems to increase the flight

speed [15]. In flight cage experiments introducing varying levels of clutter, the flight speed of

Fig 3. One example of an echo train collected in each environment (rectangular arena and corridor). These

examples illustrate that the environments return multiple (overlapping) echoes for every call. The emission has been

omitted from these plots to make the echoes more visible.

https://doi.org/10.1371/journal.pcbi.1007550.g003

Robotic model of sonar-based obstacle avoidance
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E. fuscus has been reported to vary from about 2.5 ms−1 [7, 29] to 5 ms−1 [25]. However, when

executing sharp turns, bats’ speed can be lower than 1 ms−1, even for bats with a relatively high

body mass such as E. fuscus, which are typically fast fliers [15, 37].

In our experiments, which feature a very demanding environment, we aimed to obtain an

average speed of about 2 ms−1, i.e., the lowest speed at which E. fuscus would fly continuously

in wind tunnel experiments [38]. The speed also corresponds to the lower range of the flight

speed of E. fuscus recorded in the experiments of Knowles et al. [15] and it is slightly below the

flight speed of the bats in the experiments of Falk et al. [7] (2.49 ms−1) and Knowles et al. [15]

(2-m ms−1).

We further modulated the speed of the robot based on the gaze angle ϕ, i.e., the angle

between the drive direction of the robot θ and the emission direction. The rationale for this is

that, when the gaze angle is large, the bat needs to make a sharp turn, and it will slow down

[39, 40]. We simulated a maximum speed of 3 ms−1 for ϕ = 0˚ and 1 ms−1 at ϕ = 45˚ (see

Fig 4a).

After each call, the head of the robotic bat was turned to a new orientation ϕi with respect

to the body. The angular rotation Δϕi of the sonar head was determined by the distance d̂ i and

the relative loudness in both ears. If the echo was loudest in the left ear, the head turned to the

right (Δϕi< 0). If the right ear received the loudest echo, the head turned to the left (Δϕi> 0).

The magnitude of the rotation Δϕi was determined by the distance d̂ i.

Closer echoes resulted in a larger rotational speed of the head. To obtain this, the magnitude

of change in head orientation Δϕi between pulses varied from 50˚ to 25˚ (Fig 4c). Fig 4d shows

that _� i varied from about 1000˚/s to 500˚/s.
The simulated range for the angular velocity of the head _� i (Fig 4d) matches the available

behavioral data. Seibert et al. [3] measured the differences in gaze angle as Pipistrellus pipistrel-
lus flew rapidly through different outdoor environments at an average speed of over 5ms−1.

The largest difference in gaze angle between subsequent calls was about 40˚. As the bats emit-

ted calls at a rate slightly over 10 Hz, this implies that the bats rotated their head at maximum

speeds of about 400˚/s. On the other hand, Sumiya et al. [41] report on the gaze shifts of Pipis-
trellus abramus while hunting for prey. Their data implies angular rotation velocities up to

about 3000˚/s. Therefore, the range for the angular velocity _� i used in this paper seems attain-

able by bats. The maximum angle of the head ϕi was limited to ± 90 degrees.

Ghose et al. [6] and Falk et al. [7] found that the flight path of hunting bats is linked to its

gaze direction by a DLAL. In line with the model they propose to capture this behavior, we

modeled the rotation of the robot Δθi after call i,

Dyi ¼ k � �t ð1Þ

In Eq 1, k is a gain parameter. The term ϕτ denotes the orientation of the head ϕ (with

respect to the body) at time τ before the current call i. The parameters k and τ that best

describe the behavior of the bat have been found to vary across conditions and stage of prey

capture [6, 7]. In this paper, we fix k = 10 and τ = 50 ms. These values correspond to the highest

k and the lowest τ reported and imply a tight coupling between head and body [6, 7]. The

value ϕτ was obtained by interpolating the past values for the orientation of the head ϕ.

Fixed Head Strategy. The obstacle avoidance strategy described in the previous para-

graphs was compared with a Fixed Head Strategy. Under this strategy, the gaze and the flight

direction were always aligned (i.e., the strategy we reported in ref. [2]). Including this strategy

allows us (1) to confirm that the results obtained in simulation can be replicated using real ech-

oes and in more densely cluttered environments, (2) evaluate the contribution of the DLAL to

obstacle avoidance.

Robotic model of sonar-based obstacle avoidance
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Using the Fixed Head Strategy, the rotation of the body Δθi was a function of the distance

to the nearest echo as depicted in Fig 4c. This imposed an increase in the rotational velocity _y i

with decreasing d̂i (see Fig 4d).

As the gaze ϕi was always zero under the Fixed Head Strategy, the flight speed was con-

trolled based on the distance d̂ i. Closer obstacles resulted in a reduction of the flight speed, as

shown in Fig 4b.

The flight speed of bats imposes a limitation on the curvature of their flight paths [39, 40].

Holderied et al. [42] reports the maximum curvature of the flight paths of various species.

These data indicate that bats’ rotational velocities typically result in g-forces below 4. Giuggioli

et al. [43] employed a value of 4 in their model of bat interaction. To ascertain whether the

rotational velocities of the body employed in implementing the Fixed Head Strategy (Fig 4c)

Fig 4. Curves depicting the relationship between the variables in our models. (a) The simulated velocity for the

DLAL Strategy as a function of distance d̂ i. (b) The simulated velocity for the Fixed Head Strategy as a function of

distance d̂ i. (c) The head rotation applied between calls for the DLAL Strategy as a function of the closest echo distance

d̂ i. The body rotation applied for the Fixed Head Strategy as a function of the closest echo distance d̂ i. (d) The change

in the head (DLAL Strategy) or body (Fixed Head Strategy) orientation between calls (panel a) together with the

interpulse interval modeled, implies a rotational velocity of the head (DLAL Strategy) or body (Fixed Head Strategy).

This panel plots the implied velocities. This panel also shows the maximum body rotational velocity as observed across

bat species flying at different speeds by Holderied et al. [42]. In generating this curve, the velocity as a function of

distance d̂ i for the Fixed Head Strategy is used (panel b).

https://doi.org/10.1371/journal.pcbi.1007550.g004

Robotic model of sonar-based obstacle avoidance
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were attainable by bats, we calculated the maximum rotation velocity as given by Holderied

et al. [42]. Following Holderied et al. [42], the maximum rotation velocity of the body Oi as a

function of velocity vi at call i is given by,

Oi ¼
G � 9:81

vi
ð2Þ

with G = 4. Because, under the the Fixed Head Strategy, velocity vi is determined by the dis-

tance d̂i (Fig 4b), we can express Oi as a function distance d̂i. This curve given Eq 2 is plotted

in Fig 4d, allowing it to be compared with the rotational velocity _y i. This shows that the rota-

tional velocities of the bat body used in implementing the Fixed Head Strategy fell within the

range observed by Holderied et al. [42].

Random Walk. We included a random walk condition to establish a baseline for the

number of collisions that can be expected in our environment without an obstacle avoidance

strategy in place. This condition is an empirical approach to determining the a priori collision

probability for a given environment, which is typically approximated analytically in behavioral

experiments, e.g., [1, 44]. Under this condition, the simulated speed and interpulse interval

(IPI) were fixed at 2ms−1 and 50 ms, respectively. During each IPI, the robot rotated over an

angle sampled uniformly from the interval [25˚, 50˚], i.e., the range of body rotations used

under the DLAL Strategy and Fixed Head Strategy.

Collision detection

The width of our robotic platform is about the same as the average wingspan of E. fuscus. For

example, Petrites et al. [25] report 30 cm as the maximum wingspan while our robot measured

28 × 33 cm. Therefore, we used the robot’s built-in collision detection. Whenever the robot

hits an obstacle (a pole or wall), the robot produces a warning sound. If this happens, we

would pause the experiment (stop the robot) and record a collision. We would then turn the

robot away from the obstacle and resume the experimental run. In the corridor environment,

we terminated the trial upon collision. If the robot turned around and started making its way

back to the beginning of the corridor, the trial was also terminated.

Results

Rectangular arena

We ran ten trials of about 600 calls each for the Fixed Head Strategy, the DLAL Strategy, and

the Random Walk. This corresponds to about 30 seconds of simulated flight (δti = 50 ms) for

each trial. The robot was initiated at a different randomly chosen position and orientation for

each trial.

Linear and rotational velocity. Fig 5 depicts the descriptive statistics concerning the

paths of the robot in the rectangular arena for the Fixed Head Strategy, the DLAL Strategy and

the Random Walk. The average velocity was about 2 ms−1 across strategies (Fig 5a). There was

a small but statistically significant difference in velocity between the two non-random strate-

gies (DLAL Strategy: 1.92 ms−1, Fixed Head Strategy: 2.07 ms−1, Kruskal-Wallis H-test,

H = 755, p< 0.01). The variation in velocity was larger in the DLAL Strategy (Levene test,

W = 3186, p< 0.01). This indicates that in the DLAL Strategy, the robot was somewhat slower,

and its speed varied more.

The median angular velocity of the robot was about the same in both strategies (DLAL

Strategy: 347˚/s, Fixed Head Strategy: 341˚/s, Kruskal-Wallis H-test, H = 0, p = 0.51, Fig 5b).

Robotic model of sonar-based obstacle avoidance
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However, as can be seen in the graph, the Fixed Head Strategy, unlike the DLAL Strategy,

resulted in a bimodal distribution of the rotational velocity of the body.

Obstacle distance. The distance to the nearest reflector, as determined by the sonar read-

ings, was typically considerably smaller than 1 m (Fig 5c). The median detected distance d̂ i

was smaller for the Fixed Head Strategy than for the DLAL Strategy (DLAL Strategy: 0.62 m,

Fixed Head Strategy: 0.53 m, Kruskal-Wallis H-test, H = 442, p< 0.01). This is partly because

the DLAL Strategy causes the head to be rotated away from obstacles, thereby increasing the

average detected reflector distance. Inspecting the physical distances between the robot and

the closest obstacle, as observed using the tracking system, we found that these were similar

across conditions (medians. DLAL Strategy: 0.42 m, Fixed Head Strategy: 0.43 m, Kruskal-

Wallis H-test, H = 59, p< 0.01). However, the distribution of physical distances for the DLAL

Strategy showed a longer tail for smaller values (Fig 5d). Both the distances as detected by the

sonar system and the distances as given by the tracking system confirmed that the robot oper-

ated in a very cluttered environment: in about 50% of the time, the closest obstacle was less

than 50 cm away.

Obstacle avoidance. Fig 6 depicts the relative obstacle avoidance performance of the

various strategies, expressed as collisions per second and as collisions per meter. Compared

to the Random Walk, the DLAL Strategy resulted in an >80% reduction in collisions. The

Fig 5. Descriptive statistics of the behavior of the robot in the arena, for the three strategies (Fixed Head Strategy, DLAL Strategy and

Random Walk). (a) Violin plots of the velocity of the robot, (b) Violin plots of the rotational velocity, (c) violin plots of the distance to the

nearest obstacle (as determined by the sonar), (d) distribution of the distance to the nearest obstacle (as determined by the Vive tracking

system).

https://doi.org/10.1371/journal.pcbi.1007550.g005
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Fixed Head Strategy resulted in a further reduction of >80% in the number of collisions.

Hence, both the Fixed Head Strategy and the DLAL Strategy significantly reduced the

number of collisions. However, the Fixed Head Strategy outperformed the DLAL Strategy

(97% reduction of collisions compared to the Random Walk, Kruskal-Wallis H-test, H = 14,

p< 0.01).

Trajectories. Fig 7a and 7b shows two example trajectories of the robot through the rect-

angular arena using the DLAL Strategy and the Fixed Head Strategy. Qualitatively, it can be

seen that both strategies lead to different behavior. The Fixed Head Strategy steers well away

from obstacles. In contrast, the DLAL Strategy steers the robot much closer to obstacles.

Fig 7c also reveals that both strategies fail in different locations. The DLAL Strategy collided

with obstacles at positions throughout the arena. The Fixed Head Strategy failed in corners.

Right corners are challenging for an algorithm that uses interaural differences for steering. The

left and the right edge of the corner form a corridor. The interaural difference based Fixed

Head Strategy leads the robot down this corridor, eventually colliding where the walls meet. In

Fig 6. The number of collisions in the arena, for each of the three different strategies. Performance in expressed either as the

number of collisions per second (a) or the number of collisions per meter driven by the robot (b). Lines indicate the 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1007550.g006

Fig 7. Example trajectories for the robot controlled by (a) the DLAL Strategy and (b) the Fixed Head Strategy. The arena and obstacles are

depicted in black. The trajectory of the robot is drawn as a blue line. The head orientation of the robot is shown as short red lines. A green star

indicates collisions with obstacles. (c) Locations of the collisions recorded for both strategies across all trials.

https://doi.org/10.1371/journal.pcbi.1007550.g007
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open-ended corridors, this behavior allows the robot to follow the corridor (see next section).

However, in the case of corners, the behavior is maladaptive. The DLAL Strategy seemed to be

better at avoiding being led down this trap. It avoided the corners.

Corridor

We ran 20 trials for both the Fixed Head Strategy and the DLAL Strategy in the corridor. Fig 8

depicts the results obtained in the corridor. The Fixed Head Strategy always steered the robot

successfully to the end of the corridor. In contrast, the DLAL Strategy failed to do so in 70 per-

cent of the trials (Chi-square test for proportions, χ2 = 18, p< 0.01). Both strategies resulted in

about the same velocity (DLAL Strategy: 2.22 ms−1, Fixed Head Strategy: 2.17 ms−1, Kruskal-

Wallis H-test, H = 5, p = 0.03). However, the DLAL Strategy resulted in a larger variance in

speed (Levene test, W = 706, p< 0.01). The trajectories of the Fixed Head Strategy were

straighter than the trajectories obtained using the DLAL Strategy. This can be seen in the dis-

tribution of body orientation (Fig 8c). On average, the angle between the driving direction of

the robot and the axis of the corridor was larger when using the DLAL Strategy (DLAL Strat-

egy: 30˚, Fixed Head Strategy: 16˚, Kruskal-Wallis H-test, H = 86.38, p< 0.01).

Discussion

Avoidance of non-localized obstacles

In contrast to the visual system, the echolocation system has no direct access to spatial infor-

mation. Angular information needs to be computed from spectral and temporal cues [45].

While bats can locate the origin of single reflectors with high precision, inferring the azimuth

and elevation of a reflector is not a trivial computation [46]. Moreover, when the bat receives a

cascade of overlapping echoes with limited signal-to-noise ratio, localization might be not fea-

sible at all [2, 17, 36, 46]. Therefore, bats might be assumed to often operate under conditions

where they have limited access to angular information. For example, vegetation returns a sta-

tistical ensemble of echoes rather than individual and separated echoes [35, 36, 47]. Both

recent neurophysiological [14] and behavioral [15] evidence from bats flying through corri-

dors lined with obstacles support the view that, when multiple echoes return within a window

Fig 8. Performance of the robot in the corridor environment. (a) Proportion of trials in which the robot successfully reached the end of the

corridor for the Fixed Head Strategy and DLAL Strategy. Lines indicate the 95% confidence intervals. (b, c) violin plots of the velocity and the

body orientation for both strategies with respect to the corridor (0˚ is aligned with the corridor).

https://doi.org/10.1371/journal.pcbi.1007550.g008
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of about 2 ms, bats are not capable of perceiving the echoes as separate reflectors. Moreover,

to the best of our knowledge, no biologically plausible mechanism has been proposed that can

infer the spatial layout of vegetation (or other complex reflectors) from the cascade of echoes it

returns. Finally, Geberl et al. [17] recently presented evidence suggesting that the spatial reso-

lution of bat sonar (� 80˚ in azimuth) is much worse than previously assumed.

The arena and corridor used here mimic standard experimental setups and represent highly

cluttered circumstances with inter-obstacle distances that are considerably smaller than in our

previous simulation study [36]. Using a robot model, as opposed to numerical simulations,

allowed us to model the echoes in dense environments veraciously. Moreover, just as natural

reflectors [35, 36], both our arena (poles wrapped in ivy) and the corridor (walls covered with

egg cartons) return a multitude of echoes with every call (see Fig 3).

Previous work on robot models of bat obstacle behavior has assumed that the bat can

(approximately) localize obstacles. Both Yamada et al. [48] and Eliakim et al. [49] presented

robot-based models in which obstacle location is used as input to an obstacle avoidance algo-

rithm. Both studies estimated the azimuth location of obstacles using interaural time differ-

ences, a cue that might not be available to bats to localize individual reflectors [50, 51].

In contrast to the work of Yamada et al. [48] and Eliakim et al. [49], our approach does not

assume that obstacles can be localized. Therefore it is of particular interest that the environ-

ments in which Yamada et al. [48] evaluated their robot were similar to the rectangular arena

used in this paper. They used poles with a diameter of 12 centimeters, and, in some trials, the

robot also had to avoid the walls circumscribing the experimental arena. The spacing between

the poles was about 1 m. Our reflectors, which were wrapped in artificial ivy leaves resulted in

complex echoes (Figs 3 and 2). These can be expected to result in less accurate interaural time

differences, and therefore, less accurate azimuth estimates.

The maximum speed of their robot (driving 4-30 cm between calls) was higher than in the

current study (driving 5-15 cm between calls). However, they do no report the average speed

across trials. Despite the similarity between the arena of Yamada et al. [48] and our arenas,

our robot completed the obstacle avoidance task without a need to localize obstacles. Unfortu-

nately, it is difficult to compare the performance of both systems as Yamada et al. [48] seem to

have used different numbers of poles across trials (but less than 11) scattered across different

areas (but larger than our arena). Nevertheless, as a rough comparison, they note that the aver-

age duration driven without collision was 20 seconds (for their system that did not use beam

scanning). In our arenas, the average time between collisions was about 30 seconds for the

Fixed Head Strategy.

The results presented in this paper confirm that the robust interaural difference based

obstacle avoidance strategy, previously proposed in simulation [2], steers the robot away from

obstacles, even under very demanding conditions. This simple strategy manages to avoid over

90% of the obstacles that would be hit by driving randomly through the arena. The algorithm

also guided the robot through a corridor lined with stochastic reflectors. These results confirm

that an interaural difference based obstacle avoidance strategy is robust under circumstances

where obstacle localization is jeopardized, which are the circumstances under which a robust

obstacle avoidance strategy would be most beneficial. Further work could aim at exploring

additional robust cues for obstacle avoidance. Even simpler, monaural strategies can be imag-

ined to be part of this stack (See [52] for an example).

The Delayed Linear Adaptive Law (DLAL) Strategy and Fixed Head Strategy

Gaze scanning in bats has been likened to saccadic eye movements in mammals [3, 4, 53]. In

humans, eye scan paths seem mostly determined by top-down control in function of the
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current task demands (See [8] for an example). In various tasks, eye scan paths have been

shown to lead action. For example, objects are fixated before they are picked up. Moreover,

scan paths are different when participants are asked to answer different questions about a

scene. In addition to this top-down control, limited effects of low-level image saliency have

been observed [8, 54].

Irrespective of whether top-down or bottom-up control steers eye movements, planning

saccades requires the availability of angular information. If the visual system would have no

access to the azimuth/elevation location of visual features, task-relevant objects or salient

regions, it could not plan a path to the region of interest. In the visual system, angular informa-

tion is directly available through the layout of the sensor surface (retina) of the eye.

In the echolocation system, both interaural level differences and interaural time differences

provide angular information. Given the small size of the bat’s head and time-intensity trading

occurring in the neural responses to received echoes, it has been argued that the most robust

source of angular information available to bats is the interaural level difference [51]. On the

other hand, when confronted with complex echo signals, bats possess neural populations that

code for interaural time differences of the envelopes of these complex echoes [50]. The acoustic

attention scheme proposed by Simmons et al. [55] describes how time and intensity cues can

be consistently combined, whereby level differences amplify, through time-intensity trading,

the physically occurring time differences. However, in our simple controller, implementing

the same time-intensity trading mechanism would result in the smaller interaural time differ-

ence cues being dominated by the interaural level difference cues. Hence, as both cues are

highly correlated, we have chosen to make use only of the relative loudness of echoes in the left

and the right ear as a robust (although, not perfect) indicator about whether the reflectors are

more likely to be located left or right from the midline. Furthermore, this cue would be avail-

able even under very cluttered conditions. Therefore, the current implementation of the DLAL

Strategy can be seen as a model of gaze direction control in echolocating bats requiring mini-

mal (but robust) spatial information.

While using the interaural differences to guide the gaze might be the only option available

to bats when clutter degrades spatial information, our results suggest gaze scanning might not

be a good option. We found the Fixed Head Strategy outperformed the DLAL Strategy. This

indicates that, if the complexity of the environment prevents the bat from inferring the spatial

layout of the environment, gaze scanning is disadvantageous. Indeed, the limited spatial infor-

mation provided by the interaural differences might not be sufficient to guide the gaze to infor-

mative directions. In particular, under these conditions, the cost of not looking where you are

going might outweigh the limited benefit of looking around.

Behavioral evidence seems to support the hypothesis that, as angular information degrades,

the benefit of active beam scanning decreases. Indeed, the idea that bats’ gaze direction strategy

might depend on the complexity of the environment, and therefore on their ability to infer its

spatial layout, was also proposed by Knowles et al. [15]. Flying bats in corridors of chains, they

found that the bats did not exhibit the gaze scanning observed in other experiments, e.g., [3–

5]. Knowles et al. [15] hypothesized that the bats did not perceive the dense array of chains as

individual objects but as a ‘clutter field’ (See Warnecke et al. [14] for neurophysiological evi-

dence supporting this). The data of Knowles et al. [15] indicates that under conditions where

the bats do not (or are not able to) reconstruct the spatial layout of the environment, they fix

their gaze in the flight direction and abandon gaze scanning.

Our experiments included a proxy of the setup used by Knowles et al. [15]. We ran the

robot through a 90 cm wide corridor, either using the Fixed Head Strategy or DLAL Strategy.

The corridor was lined with textured reflectors that return multiple overlapping echoes. We

found that the Fixed Head Strategy managed to follow the corridor to end consistently. In
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contrast, the DLAL Strategy mostly failed either by colliding with the walls or by turning

around in the corridor and driving back to the start. In addition, the Fixed Head Strategy was

also found to result in a somewhat faster and more straight motion.

The behavioral data reported by Knowles et al. [15] and our results indicate that the Fixed

Head Strategy is a robust approach to obstacle avoidance. We conclude that the DLAL is com-

patible with a simple obstacle avoidance algorithm that uses minimal spatial information to

direct the gaze. However, the advantage of the Fixed Head Strategy leads us to conclude that

gaze movements might reduce obstacle avoidance performance in highly cluttered environ-

ments. This could explain why Knowles et al. [15] did not observe gaze scanning behavior in

their experiments.

When bats can extract angular information, this could be used to support a beam scanning

strategy benefiting obstacle avoidance. Indeed, this was demonstrated by Yamada et al. [48]

who, in addition to a system with a fixed gaze, also equipped their robot with a sonar system

that allowed scanning. In their experiments, aiming the beam at nearby obstacles did incur

a benefit and resulted in better obstacle avoidance. The average time between collisions

increased from about 30 seconds to 42 seconds, probably because aiming the beam at nearby

obstacles allowed these to be localized more accurately. These results confirm that, under con-

ditions that allow the bat to localize obstacles, it could use active beam aiming to its benefit.

It should be noted that the algorithm implemented by [48] was not the DLAL Strategy: the

robot aimed its beam at the obstacle but turned away from them—this behavior is not possible

under the DLAL Strategy as proposed by Ghose et al. [6] and Falk et al. [7].

Conclusion

In this paper, we examined obstacle avoidance based on minimal but robust cues. Confirming

earlier work in simulation, the robot was able to avoid about 90% of obstacles in a cluttered

arena. In addition, the algorithm successfully guided the robot through a corridor lined with

stochastic reflectors. Relying on interaural level differences, the Fixed Head Strategy outper-

formed the DLAL Strategy: locking the acoustic gaze to the driving direction increased

performance.
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