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Abstract: In this work, a highly efficient and environmentally friendly method for extracting palla-
dium from hydrochloric acid media was developed. The method uses a magnetic sorbent carrying an
organophosphorus extractant, which is not washed from the sorbent into the aqueous phase. The
extractant was characterized by 1H, 13C, and 31P NMR spectroscopy and MALDI TOF mass spec-
trometry, and the palladium complex based on it was characterized by IR spectroscopy. According to
an in vitro microbiological study, the extractant was non-toxic to soil microflora. It was established
that the water uptake and saturation magnetization of the magnetic sorbent were sufficient for use in
sorption processes. The sorption efficiency of palladium(II) with the developed sorbent can reach
71% in one cycle. After treatment of the spent sorbent with 5 M hydrochloric acid, palladium was
completely extracted from the sorbent. The new sorbent is proposed for the extraction of palladium
from hydrochloric acid media obtained by the leaching of electronic waste.

Keywords: phosphazene; extraction; stripping; sorption; magnetic sorbent; palladium; polyvinyl
alcohol; carbonyl iron; green chemistry

1. Introduction

Palladium is a noble metal of the platinum group and is widely used in various
fields of science and technology. For example, palladium is used in electronics as part
of multilayer ceramic capacitors of printed circuit boards [1], in the automotive industry
in catalytic converters in cars [2], as well as in jewelry [3], chemical catalysis [4,5], and
hydrogen energy production [6]. However, the content of palladium in natural deposits of
platinum group metals is extremely low. In particular, the average palladium content in
low-sulfide platinum–palladium ores from the Kievey and North Kamennik deposits is
3.32 ppm, and that in the Fedorova Tundra deposit is 1.20 ppm [7]. Therefore, the search
for methods to recover palladium from industrial waste and secondary resources, such
as spent automotive catalysts or waste electrical and electronic equipment (WEEE), is a
promising area of research.

To date, there is no highly efficient, selective, and simple method for extracting pal-
ladium from WEEE. Pyrometallurgical processes require very high temperatures (over
1500 ◦C) and generate a large amount of waste and atmospheric emissions [8]. During the
hydrometallurgical treatment of WEEE, a leaching solution of WEEE is prepared in concen-
trated hydrochloric acid in the presence of oxidizing agents, for example, aqua regia [9],
which is followed by the separation and extraction of palladium(II), platinum(IV), gold(III),
silver(I), copper(II), tin(II), lead(II), nickel(II), iron(II), and zinc(II) using electrodeposition,
extraction, ion exchange, membrane separation, and other techniques.

Solvent extraction with organic compounds (extractants) is the most promising method
for the recovery of metals from industrial waste compared to other methods due to
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high productivity, economic feasibility, high speed, and simple process design [10–21].
Organophosphorus extractants are becoming increasingly important in hydrometallurgical
processes [22] due to their high selectivity, good solubility of both extractants and their
metal complexes in nonpolar solvents, high degree of stripping, chemical stability, acid
resistance, and low cost. However, a significant disadvantage of liquid organophosphorus
extractants is their high toxicity. The introduction of organophosphorus extractants into a
sorbent matrix would make it possible to avoid their negative impact on the environment.

To date, the processes of metal sorption by mineral (silica gel, zeolites, bentonite,
activated carbon, activated alumina, and so on) and polymeric sorbents have been studied.
Mineral sorbents weakly interact with metal ions and are difficult to separate from the
aqueous phase and regenerate [23]. Among polymeric sorbents for metals, the most widely
used are polymers containing surface hydrophilic groups capable of coordinating metals,
for example, chitosan. The benefits of chitosan as a polymeric sorbent include the lack
of toxicity, biocompatibility, high density of functional groups on its surface, and ease of
functionalization. The drawbacks of chitosan are its low sorption capacity, sensitivity to the
pH of the aqueous phase, limited reuse, poor mechanical properties, and low stability in
acidic media [24]. To increase the sorption capacity, chitosan is modified with compounds
containing donor nitrogen, oxygen, and sulfur atoms, which makes the process more
expensive [25–27].

To provide for easy separation of the sorbent from the aqueous phase using a per-
manent magnet, magnetic particles, for example, magnetite nanoparticles, are added to
the polymer along with the extractant [28–30]. However, the agglomeration of magnetite
nanoparticles in a polymer matrix reduces the magnetic properties [31], so it is necessary to
use a finely dispersed magnetic carrier.

To improve the efficiency of palladium extraction, chelate compounds containing
at least two donor atoms are used. However, many chelate complexes are soluble in
water, some are toxic, and due to low content of coordination sites, they poorly bind
metals. Of interest are polyfunctional compounds, aryloxycyclophosphazenes, since they
are biocompatible, resistant to hydrolysis in an acidic environment, and insoluble in water.
The replacement of chlorine atoms in the starting chlorophosphazene produces various
structures capable of metal coordination [32,33].

Here, it is proposed to use a phosphazene-containing aminophosphonate with six
coordination sites as an extractant. It is planned that an extractant introduced into a
magnetic gel matrix based on polyvinyl alcohol and acid-resistant carbonyl iron will
effectively and selectively extract palladium(II) from hydrochloric acid media obtained by
leaching WEEE and electrical capacitors.

2. Results and Discussion

The extractant was synthesized by the Pudovik reaction from hexakis-[4-{(N-
allylimino)methyl}-phenoxy]-cyclotriphosphazene (APP) and diethyl phosphite in dioxane,
as shown in Figure 1.
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The product is a light-yellow viscous mass, soluble in most organic solvents and
insoluble in water, which is important in the extraction of metals from aqueous media.
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From the 31P NMR spectra, it can be seen that the signal of the phosphorus nuclei of the
phosphazene ring of the extractant (Figure 2B) is shifted relative to the phosphorus signal of
the original APP (Figure 2A) by 0.51 ppm. This is due to a decrease in the mesomeric effect
acting on the phosphorus atoms due to the disruption of conjugation between the benzene
rings and the azomethine nitrogen atoms, since azomethine groups have been converted to
aminophosphonate groups. The formation of aminophosphonate groups is also confirmed
by the presence of a phosphorus signal at 23.21 ppm. In this case, the integrated intensity
ratio of the phosphorus signals of the phosphazene ring and aminophosphonate groups is
approximately 1:2, which indirectly confirms the completeness of the Pudovik reaction.
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For a more accurate assessment of the conversion of azomethine groups to aminophos-
phonate groups, 1H NMR analysis was performed. It can be seen in the spectrum of the
extractant (Figure 2D) that the proton signals of the azomethine groups at 8.2 ppm have
completely disappeared (Figure 2C), while signals for the protons of the aminophosphonate
CH groups (proton 3, Figure 2D) have appeared at 3.7–4 ppm. The integrated intensity
ratio of the proton signals of the methylene groups in allyl radicals to the proton signals of
the benzene ring is 1:2, which indicates the absence of side reactions involving azomethine
groups during the synthesis. In addition, the number of protons of methyl groups in phos-
phonate radicals fully corresponds to the theoretical content, which confirms the formation
of the target product. It is worth noting that the methyl proton signals form two triplets
(0.98 and 1.12 ppm, Figure 2D) instead of one. The upfield shift of proton 5 (Figure 2D)
relative to proton 7 is due to the contribution of the magnetic anisotropy of the double bond
of allyl radicals. The signal shift of the methylene groups in the ethylphosphonate moieties
in the 1H NMR spectrum is slight, but it is clearly visible in the carbon spectrum (carbons 6
and 8, Figure 3B). On the contrary, the difference between the carbon signals of the methyl
groups is less pronounced (atoms 7 and 9). The upfield shift of the carbon 5 signal from
162 ppm (Figure 3A) to 63 ppm (Figure 3B) also indicates the complete conversion of
azomethine groups to aminophosphonate groups.
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The MALDI-TOF mass spectrum of the extractant (Figure 3C) shows a molecular ion
peak with a solvated matrix proton in the 1925 [M + H]+ region, corresponding to the mass
of the target compound, and a peak for sodium ion-solvated extractant at 1947 [M + Na]+.

It was found by DSC that the extractant is amorphous with a glass transition tempera-
ture in the range of −5 to +5 ◦C (Figure 4).
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Figure 4. DSC curve of the extractant.

The extractant was tested in palladium extraction from chloride media. As a result
of extraction, the corresponding complex was obtained, which turned out to be insoluble.
A comparison of the IR spectra of the extractant (Figure 5A) and the palladium complex
(Figure 5B) showed that palladium is coordinated by phosphoryl groups, as evidenced by
a change in the shape of the P=O stretching band at 935 cm−1. It was also assumed that the
double bonds of allyl groups would additionally be involved in coordination; however, the
vibrational band of the double bonds of allyl groups at 1501 cm−1 remained unchanged.
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Figure 5. IR spectra of the extractant (A) and its palladium complex (B).

According to the elemental analysis of the palladium complex (Table 1), there is
approximately one molecule of palladium chloride per two phosphoryl groups of the
extractant. This follows from the atomic ratio of phosphorus and palladium in the obtained
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complex, which is 3.42:1.17; i.e., it is close to the theoretical elemental ratio for the complex
with the indicated structure (3.45:1.15).

Table 1. Elemental composition of the palladium complex of the extractant, %.

Chemical
Element

Actual Content Theoretical Content

Weight Atomic Weight Atomic

C 41.01 32.24 41.05 32.17
N 5.15 3.47 5.13 3.45
O 15.7 9.25 15.63 9.20
P 11.23 3.42 11.34 3.45
Cl 8.65 2.30 8.67 2.30
Pd 13.1 1.17 13.00 1.15
H 5.16 48.15 5.18 48.28

Since palladium(II) exists in aqueous hydrochloric acid as chloride complexes
PdCl42− [34], in the case of aminophosphonates, the extraction of palladium(II) at high
acid concentrations proceeds according to the outer-sphere mechanism via protonation of
the aminophosphonate nitrogen atom to give the complex {[PdCl4]2−·[HR]+

x}, where R is
the coordination sites. With a decrease in the concentration of hydrochloric acid, the coordi-
nation mainly follows the intra-sphere mechanism involving the chelation of palladium
with phosphoryl groups. Moreover, in the case of synthesized phosphazene, palladium can
be chelated by phosphoryl groups located both at the same and at different phosphorus
atoms of the phosphazene ring. As a result, the formation of structurally diverse chelate
complexes is possible (Figure 6).

Gels 2022, 8, x FOR PEER REVIEW 7 of 15 
 

 

Table 1. Elemental composition of the palladium complex of the extractant, %. 

Chemical 

Element 

Actual Content Theoretical Content 

Weight Atomic Weight Atomic 

С 41.01 32.24 41.05 32.17 

N 5.15 3.47 5.13 3.45 

O 15.7 9.25 15.63 9.20 

P 11.23 3.42 11.34 3.45 

Cl 8.65 2.30 8.67 2.30 

Pd 13.1 1.17 13.00 1.15 

H 5.16 48.15 5.18 48.28 

Since palladium(II) exists in aqueous hydrochloric acid as chloride complexes 

PdCl42− [34], in the case of aminophosphonates, the extraction of palladium(II) at high 

acid concentrations proceeds according to the outer-sphere mechanism via protonation 

of the aminophosphonate nitrogen atom to give the complex {[PdCl4]2−·[HR]+x}, where R 

is the coordination sites. With a decrease in the concentration of hydrochloric acid, the 

coordination mainly follows the intra-sphere mechanism involving the chelation of pal-

ladium with phosphoryl groups. Moreover, in the case of synthesized phosphazene, 

palladium can be chelated by phosphoryl groups located both at the same and at differ-

ent phosphorus atoms of the phosphazene ring. As a result, the formation of structurally 

diverse chelate complexes is possible (Figure 6). 

 

Figure 6. Palladium(II)-extractant chelate complexes with intra-sphere coordination of palladium 

(R = C2H5, Ar = p-C6H4). 

To assess the effect of the extractant on the environment, which is important when it 

enters wastewater and soil, microbiological studies were carried out. It was found that 

when the extractant is applied to the surface of a nutrient medium inoculated with soil 

microflora, the extractant does not have an inhibitory effect on it. Conversely, a stimu-

lating effect was noted compared to the control group, as evidenced by the increase in the 

number of microorganisms in the sample treated with the extractant (Table 2). 

  

Figure 6. Palladium(II)-extractant chelate complexes with intra-sphere coordination of palladium
(R = C2H5, Ar = p-C6H4).

To assess the effect of the extractant on the environment, which is important when
it enters wastewater and soil, microbiological studies were carried out. It was found that
when the extractant is applied to the surface of a nutrient medium inoculated with soil
microflora, the extractant does not have an inhibitory effect on it. Conversely, a stimulating
effect was noted compared to the control group, as evidenced by the increase in the number
of microorganisms in the sample treated with the extractant (Table 2).
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Table 2. Study of the effect of the extractant on soil microflora.

Optical Density,
Units

Number of Microorganisms, CFU mL−1

Bacteria Yeast and Fungi

Control 9.03 8.0 × 109 6.0 × 105

Sample 9.29 1.29 × 1010 2.6 × 106

The stimulating effect of the extractant is probably due to the destruction of the
phosphazene ring under the action of microbial enzymes and the formation of ammonium
phosphates, which act as fertilizers.

Polymer sorbents were formed from a two-phase system: an extractant solution in
THF and an aqueous solution of polyvinyl alcohol (PVA) with glutaraldehyde (GA). With
rapid mixing of the components, the solutions gave a stable and relatively viscous emul-
sion, which further ensured a uniform distribution of the extractant in the polymer. The
structuring of the system was provided by the addition of catalytic amounts of hydrochloric
acid, while intermolecular crosslinking of polymer chains occurred due to the formation of
acetals via the reaction of PVA hydroxyl groups and GA aldehyde groups.

When studying gelation, it was found that the gelation time and water absorption
decrease with the increasing amount of GA added, and the amount of liquid displaced from
the sorbent increases (Table 3), which is due to an increase in the degree of cross-linking of
the polymer. From the obtained results, it follows that the best sorbent for use in sorption
processes is sorbent number one, since it has the highest water uptake and does not displace
water during gelation. Therefore, further studies were carried out using this sample.

Table 3. Parameters of synthesized sorbents.

No. Gelation Time Displaced Liquid, wt % Water Uptake, wt %

1. 1 day 0 54.7
2. 1 day 23.4 53.4
3. 12 h 43.1 45.1
4. 7 h 71.6 39.4
5. 5 h 75.1 22.1

When conducting IR studies, it was found that the spectrum of the sorbent (Figure 7B)
exhibits a vibrational band in the region of 1208–1160 cm−1, which is absent in the spectrum
of PVA cross-linked with glutaraldehyde (Figure 7A). This band is also observed in the
spectrum of the extractant (Figure 7C) and is characteristic of the stretching vibrations of
the P=N units of the phosphazene ring. This fact indicates that the extractant is present
in the sorbent after washing and drying, and also that the phosphazene ring has been
preserved during the synthesis and isolation of the sorbent.

The study of the extraction properties of the sorbent showed that it is effective for the
sorption of palladium(II) from aqueous hydrochloric acid solutions. It was found that the
extraction efficiency increases with a decrease in the acidity of the medium and reaches 57%
when a 0.25 mol L−1 hydrochloric acid solution is used (sorbent weight 0.1 g, volume of the
aqueous phase 6 mL). This value is an order of magnitude higher than that for the liquid
extraction of palladium(II) from hydrochloric acid solution with commercial monodentate
extractant Cyanex 923 dissolved in toluene [35] (Figure 8). When the amount of sorbent
was doubled, the extraction efficiency reached 71%.
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During two cycles of extraction with one portion of the sorbent (0.1 g) for each cycle,
the amount of palladium recovered reached 89%.

It was also found that 100% stripping of palladium from the sorbent is accomplished
in one cycle with 5 mol L−1 hydrochloric acid. After stripping, the sorbent can be reused
without changing the extraction efficiency.
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Figure 8. Extraction efficiency of palladium by the magnetic sorbent. In [35], palladium(II) was
extracted from a hydrochloric acid medium using Cyanex 923 under the following initial conditions:
[Pd] = 5 × 10−4 mol L−1, [Cyanex 923] = 0.1 mol L−1.

Since production wastes and secondary raw materials containing palladium con-
tain other metals almost in all cases, it was necessary to evaluate the extraction selec-
tivity of the developed sorbent. For example, WEEE and electrical capacitors always
contain copper together with palladium. Therefore, the Pd(II) sorption was studied from a
0.25 mol L−1 hydrochloric acid solution in the presence of copper(II) chloride. As a result,
52% of palladium was selectively separated by the developed sorbent in one cycle, while
all copper remained in the leaching solution.

Magnetic properties were imparted to the sorbent by adding encapsulated iron in the
gelation stage. The stability of the dispersion was ensured by the viscosity of the system.
As can be seen from the micrograph of the magnetic sorbent film (Figure 9), iron particles
are evenly distributed in the gel and form small agglomerates, with their linear size not
exceeding 200 µm.
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According to vibrating magnetometry data (Figure 10), the saturation magnetization
of the sorbent is approximately 14 emu g−1. This value is sufficient for the sorbent to be
separated by a magnet from water and non-magnetic particles and used in the processes of
metal extraction from metallurgical waste and secondary raw materials.
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The study of the properties of the magnetic sorbent showed that it has similar extrac-
tion characteristics in terms of the weight of the iron-free sorbent.

3. Conclusions

The new magnetic sorbent based on polyvinyl alcohol, metallic iron, and a poly-
dentate phosphazene-containing extractant is a promising material for the solid-phase
extraction of noble metals from leaching solutions of WEEE and electrical capacitors. This
is due to its acid resistance, high efficiency and selectivity, excellent sorption and magnetic
properties, and environmental safety. The efficiency of sorption of palladium(II) by the
developed sorbent is 57% in one cycle and 89% in two sorption cycles. The spent magnetic
sorbent can also be disposed of by burial in the soil, since it does not inhibit the activity of
soil microflora.

4. Materials and Methods
4.1. Materials

Polyvinyl alcohol (PVA), carbonyl iron, glutaraldehyde (GA), hydrochloric acid, di-
ethyl phosphite, p-toluenesulfonic acid, dioxane, tetrahydrofuran, palladium(II) chloride,
copper(II) chloride, chloroform, and potassium carbonate were products of Sigma Aldrich
(Saint Louis, MO, USA). Dioxane and tetrahydrofuran were dried over sodium metal
followed by distillation. The encapsulation of carbonyl iron was carried out according to
the procedure described in [36].

4.2. Methods
1H, 13C, and 31P NMR spectra were recorded on an Agilent/Varian Inova 400 spec-

trometer (Agilent Technologies, Santa Clara, CA, USA) at 400.02 MHz, 100.60 MHz, and
161.94 MHz, respectively. The mass spectrum was recorded on a Microflex LRF mass spec-
trometer (Bruker Daltonic GmbH, Leipzig, Germany). 3-Hydroxypicolinic acid was used as
a matrix. IR spectra were measured on a Nicolet 380 spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) in the spectral range of 4000–500 cm−1 with a wavenumber accuracy
of 0.01 cm−1. Differential scanning calorimetry (DSC) measurements were conducted using
a NETZSCH STA 449F1 instrument (Erich NETZSCH GmbH & Co. Holding KG, Selb,
Germany). The hysteresis loop of a magnetic composite swollen in water was recorded
using a LakeShore 7407 vibrating magnetometer (LakeShore Cryotronics Inc., Westerville,
OH, USA). The distribution of iron microparticles in the polymer matrix was visually
assessed using a Levenhuk MED D25T optical microscope (PRC, controlled by Levenhuk,
Inc., Tampa, FL, USA). The contents of Pd(II) and Cu(II) in aqueous hydrochloric acid
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solutions were determined using an XSeriesII ICP-MS instrument (Thermo Fisher Scientific,
USA). The composition of the palladium complex of the extractant was determined on an
X-Max SDD Inca Energy Dispersive spectrometer for electron probe microanalysis (Oxford
Instruments, Abingdon, UK).

Studies on the effect of the extractant on the soil microflora were carried out in vitro in
flasks on a liquid nutrient medium in a shaker incubator. An enrichment culture of soil
microorganisms obtained by cultivating a nutrient soil on a liquid medium of the following
composition was used as an inoculation material: peptone 1.0 g L−1, yeast extract 0.5 g L−1,
NaCl 0.5 g L−1, and glucose 2.0 g L−1. The medium pH was 6.5. The soil to medium
ratio was 1:2. The cultivation was carried out at 30 ◦C for 48 h with stirring at 200 rpm.
The growth of microflora was evaluated spectrophotometrically by measuring the optical
density at λ = 600 nm.

To determine CFU, the method of tenfold dilutions (Koch’s method) was used. The
obtained enrichment culture (1 mL) was added into flasks with 100 mL of liquid nutrient
medium of the above composition, and then, the extractant diluted in 1 mL of acetone was
added. Thus, the concentration of the extractant in the medium was 0.03314%. Then, 1 mL
of sterile tap water was added to the control flask (control group).

After incubation at 30 ◦C for 48 h at 200 rpm, the resulting suspension was sown on
a solid medium in Petri dishes. To do this, dilutions of the suspension were prepared in
sterile tap water. An exact volume of dilution was added to Petri dishes with agarized
nutrient medium and spread with a glass spatula over the surface of the nutrient medium,
and colonies were counted after 1–15 days of incubation.

4.3. Synthesis of Hexakis-[4-{(N-allylimino)methyl}-phenoxy]-cyclotriphosphazene

Hexakis-[4-{(N-allylimino)methyl}-phenoxy]-cyclotriphosphazene (APP) was synthe-
sized according to the procedure described in [37].

4.4. Synthesis of Hexakis-[4-{α,α-(N-allylamino)(O,O-
diethylphosphoryl)methylidine}phenoxy]cyclotriphosphazene (Extractant)

A 50 mL round-bottom flask equipped with a reflux condenser and a magnetic stirrer
was charged with APP (0.5 g, 0.4566 mmol), diethyl phosphite (0.59 mL, 0.4566 mmol),
and p-toluenesulfonic acid (catalyst) (79 mg, 10 mol %), and the mixture was dissolved
in 30 mL of dioxane. After complete dissolution, the reaction mixture was stirred at the
boiling point of dioxane for 6 h in an argon atmosphere. Dioxane was distilled off, and the
resulting liquid was dissolved in chloroform. Potassium carbonate (0.05 g) was added to
the solution, and the mixture was stirred for 24 h at 25 ◦C. The solution was separated from
the precipitate by decantation, and chloroform was distilled off on a rotary evaporator. The
resulting substance was dried in an oven under vacuum at a temperature of 90 ◦C for 5 h.
Yield: 0.70 g (80%).

4.5. Extraction of Palladium with the Developed Extractant

A solution of palladium(II) chloride (0.05 g, 0.282 mmol) in 0.5 M hydrochloric acid
(3 mL) was prepared in a 10 mL glass vial. At the same time, a solution of the extractant
(0.18 g, 0.0936 mmol) in chloroform (3 mL) was prepared. The extractant solution was
added to the palladium(II) chloride solution and stirred at 25 ◦C for 48 h. The solid
palladium complex formed at the interface was washed several times with distilled water
and chloroform. The complex was dried under vacuum at 70 ◦C for 4 h.

4.6. Synthesis of Sorbents

Five solutions of PVA (0.8 g) in water (4.52 mL) containing 0.05, 0.1, 0.2, 0.4, and
0.8 mL of HA, respectively, were prepared in 10 mL glass vials. Five identical solutions
of the extractant (0.1 g, 0.0520 mmol) in THF (1 mL) were prepared separately. Extractant
solutions were added to the PVA solutions and vigorously stirred. Catalytic amounts of
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hydrochloric acid (3 drops) were added and stirred again. The emulsions were left at room
temperature until gelation.

The gel was washed several times with distilled water and dried in a vacuum oven at
80 ◦C for 6 h.

4.7. Sorption of Palladium by the Developed Sorbent

Six solutions of palladium(II) chloride (0.012 g, 0.0677 mmol) in hydrochloric acid
(6 mL) of various concentrations (0.25, 0.5, 1.5, 3, and 4.5 M) were prepared in 10 mL glass
vials. Then, the sorbent (0.1 g) was placed in each vial, and the mixture was stirred for 48 h
at room temperature.

4.8. Stripping of Palladium

The spent sorbent was treated with 5 M hydrochloric acid with stirring for 48 h at
room temperature.

4.9. Sorption of Palladium by the Developed Gel in the Presence of Copper

A solution of palladium(II) chloride (0.012 g, 0.0677 mmol) and copper(II) chloride
(0.012 g, 0.08925 mmol) in 0.25 M hydrochloric acid (6 mL) was prepared in a 10 mL glass
vial. Then, the sorbent (0.1 g) was placed in the vial and stirred for 48 h at room temperature.

4.10. Synthesis of a Magnetic Sorbent Containing Acid-Resistant Iron

In a 10 mL glass vial, polyvinyl alcohol (0.8 g) was dissolved in distilled water (4.52 g).
Then, encapsulated carbonyl iron powder (1 g) was introduced into the solution. After that,
glutaraldehyde (0.05 mL), a solution of the extractant (0.1 g) in THF (1 mL), and 3 drops of
hydrochloric acid were added. The mixture was stirred for about 7 min until the viscosity
increased, after which it was left at room temperature until completely cured.

The gel was washed several times with distilled water and dried in a vacuum chamber
at a temperature of 80 ◦C to constant weight.
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