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Abstract: Neurological diseases (NDs) are progressive disorders, the progression of which can
be significantly affected by a range of common diseases that present as comorbidities. Clinical
studies, including epidemiological and neuropathological analyses, indicate that patients with type
2 diabetes (T2D) have worse progression of NDs, suggesting pathogenic links between NDs and
T2D. However, finding causal or predisposing factors that link T2D and NDs remains challenging.
To address these problems, we developed a high-throughput network-based quantitative pipeline
using agnostic approaches to identify genes expressed abnormally in both T2D and NDs, to identify
some of the shared molecular pathways that may underpin T2D and ND interaction. We employed
gene expression transcriptomic datasets from control and disease-affected individuals and identified
differentially expressed genes (DEGs) in tissues of patients with T2D and ND when compared
to unaffected control individuals. One hundred and ninety seven DEGs (99 up-regulated and 98
down-regulated in affected individuals) that were common to both the T2D and the ND datasets were
identified. Functional annotation of these identified DEGs revealed the involvement of significant
cell signaling associated molecular pathways. The overlapping DEGs (i.e., seen in both T2D and
ND datasets) were then used to extract the most significant GO terms. We performed validation
of these results with gold benchmark databases and literature searching, which identified which
genes and pathways had been previously linked to NDs or T2D and which are novel. Hub proteins
in the pathways were identified (including DNM2, DNM1, MYH14, PACSIN2, TFRC, PDE4D,
ENTPD1, PLK4, CDC20B, and CDC14A) using protein-protein interaction analysis which have not
previously been described as playing a role in these diseases. To reveal the transcriptional and
post-transcriptional regulators of the DEGs we used transcription factor (TF) interactions analysis
and DEG-microRNAs (miRNAs) interaction analysis, respectively. We thus identified the following
TFs as important in driving expression of our T2D/ND common genes: FOXC1, GATA2, FOXL1, YY1,
E2F1, NFIC, NFYA, USF2, HINFP, MEF2A, SRF, NFKB1, USF2, HINFP, MEF2A, SRF, NFKB1, PDE4D,
CREB1, SP1, HOXA5, SREBF1, TFAP2A, STAT3, POU2F2, TP53, PPARG, and JUN. MicroRNAs that
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affect expression of these genes include mir-335-5p, mir-16-5p, mir-93-5p, mir-17-5p, mir-124-3p. Thus,
our transcriptomic data analysis identifies novel potential links between NDs and T2D pathologies
that may underlie comorbidity interactions, links that may include potential targets for therapeutic
intervention. In sum, our neighborhood-based benchmarking and multilayer network topology
methods identified novel putative biomarkers that indicate how type 2 diabetes (T2D) and these
neurological diseases interact and pathways that, in the future, may be targeted for treatment.

Keywords: bioinformatics; computational biology; gene ontology; protein; pathways; type 2 diabetes;
neurological disease

1. Introduction

Type 2 diabetes (T2D) is a global health burden that affects hundreds of millions of people [1]. It is
characterized by glucose dyshomeostasis, hyperglycaemia and insulin resistance, with predisposing
factors that include obesity, poor quality diet, insufficient physical activity and genetic factors [2,3].
These factors interact to cause failure of circulating glucose level regulation which can result in an
inability to supply sufficient insulin and eventual beta-cell loss that exacerbates the condition [4,5].
Glucotoxicity caused by chronic hyperglycemia induces cell injury of many cell types but hepatocytes
and pancreatic cells in particular [6]. Hyperglycaemia classically causes vascular disease, damaging
blood vessels and leading to a range of cardiovascular diseases. In addition, hyperglycemia has a
number of long term effects that exacerbate impairments of central nervous system (CNS) function
and cognitive function [7]. Metabolic changes seen in T2D patients lead to chronic CNS inflammation
that contribute to neurodegeneration [8]. Other T2D associated metabolic disturbances are associated
with atrophy in several regions of the brain (e.g., hippocampal) that in turn are associated with
cognitive impairment [9]. The brain is a very insulin-sensitive organ, so insulin resistance itself can
affect memory and learning [10]. Indeed, glucose levels affect neuronal maintenance, neurogenesis,
neurotransmitter regulation, cell survival and synaptic plasticity [11]. Moreover, it is notable that
neurodegenerative diseases are accompanied by high production of inflammatory mediators, oxidative
stress, Deoxyribonuclic acid (DNA) damage, and mitochondrial dysfunction which in turn also
contribute to the degenerative cascade and exacerbate insulin resistance [12]. T2D is also associated
with excessive immune system activation [13].

While the detailed mechanisms remains unclear, epidemiological, cognitive, and neuropathological
evidence shows associations between T2D and neurodegenerative diseases such as Alzheimer’s
disease (AD) [14], amyotrophic lateral sclerosis (ALS) [15], cerebral palsy (CP) [16], epilepsy disease
(ED) [17], Huntington’s disease (HD) [18], multiple sclerosis (MS) [19], and Parkinson’s disease
(PD) [20]. Interestingly, neuroimaging studies of the CNS of individuals with T2D also show structural
alterations that resemble those in neurological disease patients [21]. The high incidence of T2D thus
raises issues around its interaction with other diseases occurring in the same individuals.

Epidemiological studies show a particularly strong association between T2D and AD [14]. AD
is characterized by the accumulation of β-amyloid (Aβ) into neuritic plaques and the presence of
intracellular aggregates of tau protein in neurofibrillary tangles, amylin deposition as well as synaptic
loss, neuroinflammation, and neuronal death [14]. Although its etiology still remains unclear, genetic
predisposition and aging are strong risk factors for AD [22]. Moreover, the presence of (Aβ) and tau in
the pancreas and insulin-sensitive tissues and their roles in inducing peripheral insulin resistance or
disruptions in insulin secretion indicate that this may contribute to the incidence of AD [14].

A wealth of evidence indicates a link between T2D and ALS [15]. ALS is a disorder characterized
by progressive muscular atrophy, cognitive impairment, and pyramidal deficit, due to the degeneration
of upper and lower motor neurons [23]. Motor neuron loss is associated with mutations in the Cu/Zn
superoxide dismutase (SOD1) gene in this disease. ALS patients have altered lipid and glucose
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metabolism with increased energy consumption [24] and hypermetabolism [25]. Nevertheless, the
biological mechanisms linking T2D to ALS are yet unclear even though there are clearly important
risk factors in common, including environmental factors, higher body mass index (BMI), elevated
cholesterol level and hyperlipidemia [26].

T2D also shows associations with CP, a neurodevelopmental disorder characterized by permanent
movement-related disabilities, evident in early life, due to abnormalities in the brain centres that
control movement and balance [16]. There are developmental issues in the fetus that lead to CP may
have a link to maternal T2D incidence [27], and as maternal obesity and T2D might raise the risk of CP
occurring [16]. Notably, children with CP may develop T2D as an adult. The etiology of CP is unclear
but the role of perinatal factors such as chorioamnionitis hypoxic-ischemic encephalopathy as well as
brain injury occurring during the perinatal and postnatal periods may contribute to CP [28].

T2D is also linked to ED [17]. This is a group of neurological diseases characterized by epileptic
seizures. The precise relationship between T2D and epilepsy remains unclear. It is known that epilepsy
or seizures are associated with autoimmune or inflammatory disorders and in the pro-inflammatory
processes [29]. Additionally, hyperglycemia may exert adverse effects on the central nervous system
which leads to ED [30]. Some known risk factors including degenerative brain disorders and head
injuries, stroke and dementia are considered as predisposing factors to ED [31].

HD is a neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin
gene (HTT) encoding huntingtin protein and characterized by progressive disturbances of mood
and motor function, and by cognitive dysfunction [32]. The pathogenetic mechanisms behind HD
include misfolding and aggregation of the huntingtin protein, oxidative stress, impaired mitochondrial
metabolism, excitotoxicity in affected brain regions, and impairment of the ubiquitin-proteasome
system [32]. Although Huntington’s disease (HD) is primarily considered a rare neurodegenerative
disorder, insulin resistance and impaired glucose metabolism contribute to its development [33].

MS is a chronic inflammatory and progressive immune-mediated disease of the central nervous
system (CNS), characterized by a selective and coordinated inflammatory destruction of the myelin
sheath, with damage to the axon [34]. Inflammation, demyelination, and axonal degeneration are
associated with MS. Moreover, insulin resistance may induce inflammatory responses, oxidative stress
and could exacerbate cognitive impairments in individuals with MS [19]. Though the links between
T2D and risk of MS incidence is unclear, there are common genetic and environmental factors that
contribute to the MS [34].

PD is clinically characterized by severe motor symptoms that include postural instability, resting
tremor, muscular rigidity, and slowness of movements and pathologically characterized by the
preferential loss of dopaminergic neurons [20]. PD features the presence of intracellular inclusions,
known as Lewy bodies, rich in fibrillar α-Synuclein (aS), a protein suggested being involved in synaptic
vesicle recycling and docking [35]. Several epidemiological studies have demonstrated that PD
patients have impaired insulin signaling and insulin resistance, and hyperglycaemia which play a role
to suppress dopaminergic neuronal activity and that decreasing dopamine turnover that contributes to
the possible progression of PD [36].

In sum, there is good evidence that there are pathologically and clinically significant relationships
between T2D and many NDs but the association has not been widely examined. As the etiology of T2D
and NDs are quite complex and their risk factors somewhat tend to overlap, their biological basis and
the molecular mechanisms that underlie this link are still not well understood. Finding interactions
between T2D and NDs is very difficult, but is of great interest in medical endocrinology. T2D and NDs
are very complex diseases in terms of their clinical presentations, and because of this they are hard to
study by conventional hypothesis-driven endocrinology research, despite the high clinical importance.
Moreover, there is still a lack of bioinformatics studies addressing the relationship between T2D and
NDs. The aim of this study was to identify such links between T2D and NDs, since understanding the
nature of these links could bring important insights into the mechanisms that underlie these diseases.
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This led us to employ a bioinformatics system pipeline, to analyze gene expression data from studies
of disease-affected tissues for clues to the nature of the relationship between T2D and NDs.

Here, we focus on finding ND-associated differentially expressed genes (DEGs), molecular
pathways and putative discriminative biomarkers that are common to both T2D and NDs.
We subsequently performed the validation of the results with gold benchmark experimentally validated
databases that include dbGaP, OMIM and OMIM Expanded, and literature.

2. Materials and Methods

2.1. Datasets Employed in This Study

We query datasets from the National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) [37]. Queries for each disease returns a number of datasets but most
of them were discarded for having a sample size below our selected cutoff sample size of at
least 7, having no two conditions such as control vs case or control vs treated, replicate datasets,
having undesirable formatting or irrelevant experimental focus, RNAseq datasets, and datasets from
non-human organisms. Here, we used datasets by seeking those that would minimise any bias and
noise for this type of analysis. This process identified 8 datasets that are highly relevant to T2D, AD,
ALS, CP, ED, HD, MS, and PD are appropriate for our study.

We analyzed different human gene expression datasets with accession numbers GSE23343 [38],
GSE28146 [39], GSE833 [40], GSE31243 [41], GSE22779 [42], GSE1751 [43], GSE38010 [44]. and
GSE19587 [45], having control and disease affected individuals for our study. The T2D dataset
(GSE23343) contained gene expression data obtained from liver biopsies of 10 T2D hyperglycemic
patients and 7 normoglycemic controls using an Affymetrix Human Genome U133 Plus 2.0 arrays.
The AD dataset (GSE28146) was microarray data (also Affymetrix U133 Plus 2.0 arrays) on RNA from
snap-frozen brain tissue where white matter tissue was extracted by laser capture methods to collect
only CA1 hippocampal gray matter. The ALS dataset (GSE833) employing Affymetrix HuGeneFL
Hu6800 arrays, was a study of postmortem spinal cord gray matter samples from 7 ALS patients
and from 4 control. The CP (GSE31243) dataset was generated from 40 Affymetrix human genome
U133A 2.0 microarray studies of hamstring muscle samples from 20 controls (taken during tissue
reconstruction) and 20 CP patients. The ED dataset (GSE22779) was a gene expression profile of
peripheral blood mononuclear cells from 12 healthy control and individuals 4 with epilepsy in a
study of in vivo glucocorticoid treatment; only data from blood cells extracted before glucocorticoid
treatment were used. The HD dataset (GSE1751) was taken from peripheral blood cells from 14 healthy
control and 12 symptomatic HD-affected individuals along with 5 presymptomatic HD patients; this
also used U133A arrays. The MS dataset (GSE38010) using U133A array data from 5 MS patient
brain lesions (identified histologically) compared with 2 brain tissue samples from control individuals.
The PD dataset (GSE19587) was an analysis taken from affected brain areas of 12 postmortem brains of
PD patients and 10 control samples of unaffected brain tissue using Affymetrix U133A Plus 2.0 arrays.

2.2. Preprocessing and Identification of Differentially Expressed Genes

We acquired gene expression microarray datasets from the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO). All these datasets were generated by comparing
diseased tissue against controls to identify differentially expressed genes (DEGs) associated with their
respective pathology. To make uniform the mRNA expression data from different platforms and to
avoid the problems of experimental systems, we normalized the gene expression data comprising
disease state and control data by using the Z-score transformation (Zij) for each NDs gene expression
profile using the following equation:

Zij =
gij − X̄

σi
(1)
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where σi implies standard deviation and gij indicates gene expression magnitude i in sample j. Such a
transformation allows direct comparisons of gene expression values across samples and diseases. The
datasets were normalized using the Robust Multi-Array Average expression measure (version 1.30.1)
as implemented in the “affy” package (version 1.56.0) of the Bioconductor platform (version Rx64
3.3.0) in R. We performed the analysis of the microarray data using Linear Models for Microarray Data
(Limma) [46]. Unpaired t-test statistic was used to identify genes differentially expressed in patients
compared to normal samples. Moreover, to determine the statistical significance between groups,
a two-way analysis of variance (ANOVA) with the false discovery rate (FDR) test was performed.
Based on standard statistical criteria, a threshold of at least 1 log2 fold change (logFC) and t-tests giving
a p-value of 0.01 were chosen. p-value < 0.01 and logFC > 1 for up-regulated genes and p-value < 0.01
and logFC < −1 for down-regulated genes were used. Genes with significantly different expression
were thus selected. Gene symbols and names extracted for each disease. Gene symbol records with
null or missing data were discarded for each disease. We identified both unique genes that were both
over and under-expressed in NDs and T2D. We then pairwise compared the DEGs from T2D datasets
with that of our AD, ALS, CP, ED, HD, MS, and PD datasets to find DEGs common to T2D and the
NDs. Genes with the greatest magnitude up and down-regulation were selected from those common
to the individual disease and T2D.

We then applied neighborhood benchmarking and topological methods to show the associations
between genes and diseases. A gene-disease network in short GDN was built to identify gene-disease
connections, in which nodes can be either diseases or genes; such a network is represented as a bipartite
graph where T2D is the center of this network using Cytoscape V 3.6.1. [47]. Diseases are associated
when sharing at least one significantly dysregulated gene. For gene-disease association, we consider a
set of human diseases, denoted by D and a set of human genes, denoted by G to find whether gene
g ∈ G is associated with disease d ∈ D. Moreover, we consider that if Gi and Gj is the sets of genes
with significantly up and down-regulated that were associated with diseases Di and Dj, respectively,
then the number of shared dysregulated genes (ng

ij) associated with both disease Di and Dj is defined
as follows [48]:

ng
ij = N(Gi ∩ Gj). (2)

The co-occurrence is the number of common genes between two diseases in the GDN and
common neighbors identified employing Jaccard Coefficient methods [48], where edge predictions
score (association score) for the node pair is:

E(i, j) =
N(Gi ∩ Gj)

N(Gi ∩ Gj)
, (3)

where G is the set of nodes and E is the set of edges. We also applied R software packages comoR [49],
and POGO [50] to cross-check disease comorbidity associations.

2.3. Identification of Molecular Pathway and Gene Ontology

To obtain further insights into the molecular pathways and gene ontology (GO) of T2D that
overlap with AD, ALS, CP, ED, HD, MS, and PD, we performed gene set enrichment analysis to identify
pathways and GO of the overlapping DEGs with EnrichR [51]. Pathways are central to organism
responses to stimuli, and pathway-based analysis is a recently developed approach to understand how
complex diseases may be related to each other through their underlying molecular mechanisms [52].
GO is a conceptual model for the representation of gene functions and their relationship to gene
regulation [53]. We considered 7 pathway databases: KEGG [54], Reactome [55], NCI-Nature [56],
WiKi [57], BioCarta [58], Panther [59] and HumanCyc pathway database [60] and Gene ontology (GO)
domain: Biological Process (BP).
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2.4. Protein-Protein Interactions Analysis

Protein-protein interaction networks (PPIs) represent the physical contacts between two or more
proteins molecules and are essential to all cell processes [61]. We also generated protein-protein
interaction (PPI) networks based on the physical interaction of the proteins of DEGs by using
information from the STRING database [62] via Network Analyst using the confidence score 900, where
proteins are represented by nodes and protein interactions represented by edges. Using topological
parameters, for example, a degree greater than 15°, highly interacting proteins were identified from
PPI analysis.

2.5. Transcription Factors-microRNA Interactions Analysis

We studied the DEGs-Transcription Factors (TFs) and DEGs-microRNAs (miRNAs) to identify the
regulatory biomolecules (i.e., TFs and miRNAs) that regulate DEGs of interest at the transcriptional and
post-transcriptional level. We utilized the JASPAR database to analyze the DEGs-TFs interaction [63].
We employed miRNA-DEGs interactions from TarBase [64] and miRTarBase [65]. The topological
analysis was performed via Network Analyzer in Cytoscape [47] and Network Analyst [66]. The TFs
were screened out based on the degree (≥20) from the DEGs-TFs network. The miRNAs were selected
based on the degree (≥15) from the DEGs-miRNAs network.

2.6. An Overview of the Analytical Approach

Our network-based systematical and quantitative pipeline to evaluate gene expression in human
disease comorbidities is summarized as shown in Figure 1. The integrated pipeline of used here was
implemented using the R language, code which is available on request. We developed the proposed
pipeline using GEOquery [67] for downloading GEO datasets and expression set class transformation;
limma [46] for differentially expressed gene identification from microarray data; genefilter [68] for
filtering genes. The version of the used software and packages was R version 3.5.1, R Studio 1.0.136,
Bioconductor 3.8, GEOquery 2.50.5, Affy 1.56.0, limma 3.38.3, genefilter 1.64.0.

Figure 1. An overview of the network-based systematic and quantitative approach. Neurological
diseases that were investigated comprised of Alzheimer’s disease (AD), amyotrophic lateral sclerosis
(ALS), cerebral palsy (CP), epilepsy disease (ED) , Huntington’s disease (HD), multiple sclerosis (MS),
and Parkinson’s disease (PD).

Our approach employs gene expression analyses, disease gene association networks, signaling
pathway mechanisms, gene ontology (GO) data, protein-protein interactions (PPIs) network,
DEGs-Transcription Factors (TFs) interaction analysis, and DEGs-MicroRNAs (miRNAs) interaction
analysis to identify putative discriminatory biomarkers between T2D and NDs. Furthermore, we also
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incorporated three gold benchmark verified datasets, OMIM (www.omim.org), OMIM Expanded, and
dbGaP (www.ncbi.nlm.nih.gov/gap) to retrieve genes associated with known diseases and relevant
disorders for validating the proof of principle of our network-based approach.

3. Results

3.1. Gene Expression Analysis

To identify and investigate the gene expression effects of T2D that may influence the progression
of NDs, we analyzed the gene expression microarray data collected from the National Center for
Biotechnology Information (NCBI). Based on significant p-values, we found 1320 DEGs for T2D with
false discovery rate (FDR) of 0.01 and absolute logFC of 1 using R Bioconductor packages (Limma).
Similarly, we identified the most significant DEGs for each ND after statistical analysis. We identified
1606 DEGs in AD, 2901 in ALS, 588 in CP, 1887 in ED, 1338 in HD, 7463 in MS and 1558 in PD which is
shown in Table 1.

Table 1. The differentially expressed gene (DEG) for all employed Datasets in the present study.

Disease
Name GEO Platform Tissues/

Cells
GEO
Accession

Raw
Genes

Case
Samples

Control
Samples

UP
Reg.
Genes

Down
Reg.
Genes

Type 2
Diabetes
(T2D)

Affymetrix Human
Genome U133 Plus 2.0
Array

Liver GSE23343 54613 10 7 622 698

Alzheimer’s
disease

Affymetrix Human
Genome U133 Plus 2.0
Array

CA1
tissue GSE28146 54675 22 8 847 759

Amyotrophic
lateral
sclerosis

Affymetrix Human Full
Length HuGeneFL Array

Spinal
cord GSE833 22277 7 5 735 2166

Cerebral
palsy

Affymetrix Human
Genome U133 Plus 2.0
Array

Muscle GSE31243 22277 20 20 243 345

Epilepsy
disease

Affymetrix Human
Genome U133 Plus 2.0
Array

Peripheral
Blood GSE22779 54675 12 4 882 1007

Huntington’s
disease

Affymetrix Human
Genome U133 Plus 2.0
Array

Whole
Blood GSE1751 22283 17 14 365 973

Multiple
sclerosis

Affymetrix Human
Genome U133 Plus 2.0
Array

Brain GSE38010 33398 5 2 3987 3476

Parkinson’s
disease

Affymetrix Human
Genome U133A 2.0
Array

Brain GSE19587 22277 12 10 1167 422

The cross-comparison analysis also identified common DEGs between T2D and each ND. We
found that T2D shares 5, 5, 11, 15, 7, 35 and 21 significantly up-regulated genes whereas 12, 25, 6, 16,
7, 29 and 3 significant down-regulated genes for the AD, ALS, CP, ED, HD, MS, and PD respectively.
To get statistically significant associations between T2D and the NDs, we built up- and down-regulated
diseasome relationships network centered on the T2D and a link indicated between a disease and a
gene when mutations in that gene are known to lead to the specific disease, as shown in Figures 2
and 3 whereas two diseases are comorbid, if they share associated genes.

www.omim.org
www.ncbi.nlm.nih.gov/gap
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Figure 2. Up-regulated Gene-Disease-network (GDN) between type 2 diabetes (T2D) and neurological
diseases (NDs) comprising of commonly up-regulated genes node and different categories of diseases
node represented by round shaped robin’s egg blue colour and octagon-shaped red colour.

Figure 3. Down-regulated Gene-Disease-network (GDN) between T2D and NDs comprising of
commonly down-regulated genes node and different categories of diseases node represented by
round shaped robin’s egg blue colour and octagon-shaped red colour.
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The most important up-regulated overlapping genes are as follows: (a) FLI1, PACSIN2, BICD1,
TCP11L2, and ENTPD1 among T2D, ED, and MS, (b) PEG10 and EFCAB14 among T2D, PD, and MS,
(c) ITGB8 among T2D, HD, PD, and MS, (d) FBLN1 among T2D, ALS, and MS, (e) IGFBP5 among
T2D, CP, and MS, (f) SGCB among T2D, HD, and MS, (g) SLC25A30 among T2D, PD, and CP. The
significant down-regulated overlapping genes are as follows: (a) ST6GALNAC5 and RIMS1 among
T2D, AD, and MS, (b) ZBTB7A and YME1L1 among T2D, ALS, and ED, (c) FUT6 among T2D, AD, and
ALS, (d) BRF1 among T2D, ALS, and CP, (e) CDC14B among T2D, ALS, ED, and MS, (f) CD47 among
T2D, ALS, HD, and ED, (g) NRG1 among T2D, ALS, HD, and MS, (h) DNM1 among T2D, CP, and MS,
(i) TLB1XR1 among T2D, HD, and MS, and (j) GPR161 among T2D, ALS, and MS.

3.2. Pathway and Functional Association Analysis

We performed pathways analysis to identify how complex diseases are interrelated with other
diseases by the underlying molecular mechanisms. We performed gene set enrichment analysis
to identify pathways using a bioinformatics resource: EnrichR [51] and considered 7 pathways
databases to carry out tests using DEGs common between T2D and each ND. We also performed the
regulatory analysis to get more insights into the molecular pathways involved in these comorbidities.
We pinpointed overrepresented pathways among DEGs common to T2D and NDs and classified them
into functional categories. Pathways deemed significantly enriched in the common DEG sets were
reduced by manual curation to include only those pathways which have a p-value of below 0.05.
We retrieved significant pathways by EnrichR which are significantly connected with DEGs of T2D
and NDs as shown in Table 2.

Table 2. Pathways common to T2D and the NDs revealed by the commonly expressed genes. These
include significant pathways common to (a) T2D and AD (b) T2D and ALS (c) T2D and CP (d) T2D
and ED (e) T2D and HD (f) T2D and MS and (g) T2D and PD.

(a) Common significant pathway common between T2D and AD

Pathway Name p-Value Source

Neuroregulin receptor degredation protein-1 Controls ErbB3 receptor recycling 3.78× 10−2 Biocarta
Cytokine-cytokine receptor interaction 1.17× 10−2 KEGG
Toll-like receptor signaling pathway 2.92× 10−2 KEGG
Glycosphingolipid biosynthesis 3.36× 10−2 KEGG
IL1-mediated signaling events 1.89× 10−2 NCI-Nature
TCR signaling in naive CD8+ T cells 4.53× 10−2 NCI-Nature
Ubiquitin proteasome pathway 3.09× 10−2 Panther
Ionotropic glutamate receptor pathway 3.36× 10−2 Panther
Glutamate Neurotransmitter Release Cycle 1.02× 10−2 Reactome
Signaling by Interleukins 1.32× 10−2 Reactome
Cytokine Signaling in the Immune system 1.83× 10−2 Reactome
Oxidative Stress-Induced Senescence 2.07× 10−2 Reactome
Neurotransmitter Release Cycle 4.23× 10−2 Reactome
Transmission across Chemical Synapses 4.68× 10−2 Reactome
Apoptosis Modulation and Signaling 2.97× 10−4 Wiki

(b) Common significant pathway common between T2D and ALS

Pathway Name p-Value Source

Neuroregulin receptor degredation protein-1 Controls ErbB3 receptor recycling 1.48× 10−3 Biocarta
Cytokine-cytokine receptor interaction 3.10× 10−3 KEGG
Glycosphingolipid biosynthesis 1.05× 10−2 KEGG
Ubiquitin mediated proteolysis 1.28× 10−2 KEGG
Glutamatergic synapse 2.85× 10−2 KEGG
Immune System 3.74× 10−3 Reactome
Innate Immune System 7.98× 10−3 Reactome
Insulin receptor signaling cascade 8.94× 10−3 Reactome
Cytokine Signaling in the Immune system 1.05× 10−2 Reactome
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Table 2. Cont.

Neuronal System 1.17× 10−2 Reactome
Neurotransmitter Receptor Binding And Downstream Transmission in The
Postsynaptic Cell 1.47× 10−2 Reactome

Transmission across Chemical Synapses 2.05× 10−2 Reactome
Adaptive Immune System 2.30× 10−2 Reactome
NO/cGMP/PKG mediated Neuroprotection 1.19× 10−2 Wiki
Toll-like Receptor Signaling 3.90× 10−2 Wiki

(c) Common significant pathway common between T2D and CP

Pathway Name p-Value Source
Focal adhesion 4.47× 10−3 KEGG
Dopaminergic synapse 9.70× 10−3 KEGG
Cell adhesion molecules (CAMs) 1.28× 10−2 KEGG
Rapid glucocorticoid signaling 2.65× 10−2 NCI-Nature
Inflammation mediated by chemokine and cytokine signaling pathway 4.19× 10−4 Panther
Adaptive Immune System 7.50× 10−6 Reactome
Immune System 1.47× 10−4 Reactome
Neurotransmitter Receptor Binding And Downstream Transmission In The
Postsynaptic Cell 1.21× 10−2 Reactome

Electric Transmission Across Gap Junctions 1.66× 10−2 Reactome
Transmission across Electrical Synapses 1.66× 10−2 Reactome
Neuronal System 1.84× 10−2 Reactome
Neurofascin interactions 2.32× 10−2 Reactome
Transmission across Chemical Synapses 3.39× 10−2 Reactome
Inflammatory Response Pathway 4.53× 10−3 Wiki
Insulin signaling in human adipocytes 2.65× 10−2 Wiki
Toll-like Receptor Signaling Pathway 4.68× 10−2 Wiki

(d) Common significant pathway common between T2D and ED

Pathway Name p-Value Source

Cell adhesion molecules (CAMs) 1.14× 10−2 KEGG
Ubiquitin mediated proteolysis 4.95× 10−2 KEGG
TCR signaling in naive CD8+ T cells 4.03× 10−2 NCI-Nature
Rapid glucocorticoid signaling 4.70× 10−2 NCI-Nature
Apoptosis signaling pathway 2.35× 10−2 Panther
Ubiquitin proteasome pathway 2.75× 10−2 Panther
Adaptive Immune System 6.15× 10−3 Reactome
Oxidative Stress-Induced Senescence 1.75× 10−2 Reactome
Immune System 2.26× 10−2 Reactome
Deposition of new CENPA-containing nucleosomes at the centromere 3.90× 10−2 Reactome
Spinal Cord Injury 3.42× 10−2 Wiki

(e) Common significant pathway common between T2D and HD

Pathway Name p-Value Source
Neuroregulin receptor degredation protein-1 Controls ErbB3 receptor recycling 2.59× 10−4 Biocarta
Glycosphingolipid biosynthesis 1.54× 10−2 KEGG
Cell adhesion molecules (CAMs) 2.32× 10−2 KEGG
Cytokine-cytokine receptor interaction 3.53× 10−2 KEGG
Neurotrophic factor-mediated Trk receptor signaling 2.72× 10−2 NCI-Nature
Ubiquitin proteasome pathway 1.41× 10−2 Panther
Cholesterol biosynthesis 4.53× 10−2 Panther
Immune System 1.82× 10−3 Reactome
Cytokine Signaling in the Immune system 1.54× 10−2 Reactome
Innate Immune System 2.00× 10−2 Reactome
Adaptive Immune System 4.10× 10−2 Reactome
Toll-Like Receptors Cascades 2.12× 10−2 Reactome
NO/cGMP/PKG mediated Neuroprotection 1.67× 10−2 Wiki
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Apoptosis 4.87× 10−2 Wiki
Tryptophan metabolism 1.60× 10−2 Wiki

(f) Common significant pathway common between T2D and MS

Pathway Name p-Value Source

Neurotrophin signaling pathway 1.17× 10−2 KEGG
Glycosphingolipid biosynthesis 1.36× 10−2 KEGG
Adipocytokine signaling pathway 1.39× 10−2 KEGG
Autophagy 1.69× 10−2 KEGG
Glutamatergic synapse 3.07× 10−2 KEGG
GABAergic synapse 3.68× 10−2 KEGG
Neurotrophic factor-mediated Trk receptor signaling 8.37× 10−3 NCI-Nature
Insulin/IGF pathway-protein kinase B signaling cascade 5.05× 10−3 Panther
Apoptosis signaling pathway 5.17× 10−3 Panther
Ubiquitin proteasome pathway 1.16× 10−2 Panther
Ionotropic glutamate receptor pathway 1.36× 10−2 Panther
Transmission across Chemical Synapses 8.34× 10−6 Reactome
Neuronal System 1.71× 10−5 Reactome
Neurotransmitter Receptor Binding And Downstream Transmission In The
Postsynaptic Cell 1.77× 10−4 Reactome

Insulin receptor signaling cascade 2.65× 10−3 Reactome
Oxidative Stress-Induced Senescence 1.13× 10−2 Reactome
Brain-Derived Neurotrophic Factor (BDNF) signaling pathway 2.98× 10−2 Wiki

(g) Common significant pathway common between T2D and PD

Pathway Name p-Value Source

Neuroregulin receptor degredation protein-1 Controls ErbB3 receptor recycling 4.04× 10−4 Biocarta
Toll-like receptor signaling pathway 2.21× 10−3 KEGG
Cell adhesion molecules (CAMs) 7.20× 10−3 KEGG
Allograft rejection 1.70× 10−2 KEGG
Graft-versus-host disease 1.96× 10−2 KEGG
Intestinal immune network for IgA production 2.63× 10−2 KEGG
Innate Immune System 1.07× 10−3 Reactome
Insulin receptor signaling cascade 4.07× 10−3 Reactome
Immune System 1.50× 10−2 Reactome
Chemokine receptors bind chemokines 3.50× 10−2 Reactome
Adaptive Immune System 4.73× 10−2 Reactome
Transmission across Electrical Synapses 2.60× 10−2 Reactome

Among the identified pathways, we found that cytokine-cytokine receptor interaction pathway
associated with adaptive inflammatory host defenses, cell growth, differentiation, cell death [54].
Glycosphingolipid biosynthesis pathway is associated with abundant amphipathic lipids expression
in the nervous system [54]; Ubiquitin proteasome pathway associated with immune response and
inflammation, neural and muscular degeneration, morphogenesis of neural networks and response to
stress and extracellular modulators [59]; Ionotropic glutamate receptor pathway associated with the
mediatation of the majority of excitatory synaptic transmission throughout the central nervous system
and synaptic plasticity [59]; Glutamate neurotransmitter release cycle maintains the neurotransmitter
glutamate in the central nervous system [55]; Transmission across chemical synapses pathway
associated with the communication between neurons, muscle or gland cells [55]; Glutamatergic synapse
pathway associated with the regulation of several neuronal functions, such as neuronal migration,
excitability, plasticity, long-term potentiation (LTP) and long-term depression (LTD) [57]; Neuronal
system pathway comprised of at least 100 billion neurons are associated with the communication
among astronomical number of elements with functional connection between neurons [55]; Cell
adhesion molecules (CAMs) pathway associated with a vital role in the development and maintenance
of the nervous system [54]; Electric transmission across gap junctions pathway associated with the
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function of communicating neurons in the nervous systems [55]; Transmission across electrical synapses
pathway associated with the mechanical conductive link between two neighboring neurons [55]; Spinal
cord injury pathway associated with the loss of muscle function, sensation, or autonomic function in the
parts of the body [57]; Neurotrophic factor-mediated Trk receptor signaling pathway associated with
neuronal differentiation, survival and growth [56]; Neurotrophin signaling pathway associated with
differentiation and survival of neural cells [54]; Adipocytokine signaling pathway associated with the
process of inflammation, coagulation, fibrinolysis, insulin resistance, diabetes and atherosclerosis [54];
Brain-derived neurotrophic factor (BDNF) signaling pathway associated with growth, differentiation,
plasticity, and survival of neurons. BDNF is also implicated in various neuronal disorders such as
Alzheimer’s disease, Huntington’s disease [57].

To obtain further insights into the molecular roles and biological significance, enriched common
DEGs sets were processed by GO methods using Enrichr, which identifies related biological processes
(BP) in order to group them in functional categories. The list of processes and terms was then curated
to include those terms with a p-value below 0.05. The cell processes thus identified are summarized in
Table 3.

Table 3. Gene ontology identification of biological processes common to (a) T2D and AD (b) T2D and
ALS (c) T2D and CP (d) T2D and ED (e) T2D and HD (f) T2D and MS and (g) T2D and PD.

(a) Common significant GOs of T2D and AD

GO ID Pathway p-Value

GO:0032000 positive regulation of fatty acid beta-oxidation 5.99 × 10−3

GO:0016064 immunoglobulin mediated immune response 6.73 × 10−3

GO:2000269 regulation of fibroblast apoptotic process 6.73 × 10−3

GO:0031998 regulation of fatty acid beta-oxidation 8.22 × 10−3

GO:0051588 regulation of neurotransmitter transport 1.05 × 10−2

GO:0007498 mesoderm development 1.64 × 10−2

GO:0051961 negative regulation of nervous system development 1.71 × 10−2

GO:0046928 regulation of neurotransmitter secretion 2.08 × 10−2

(b) Common significant GOs of T2D and ALS

GO ID Pathway p-Value

GO:0006352 DNA-templated transcription, initiation 2.46 × 10−3

GO:0050870 positive regulation of T cell activation 4.48 × 10−3

GO:0048935 peripheral nervous system neuron development 1.01 × 10−2

GO:0021522 spinal cord motor neuron differentiation 1.01 × 10−2

GO:0021559 trigeminal nerve development 1.01 × 10−2

GO:2000145 regulation of cell motility 1.10 × 10−2

GO:0048665 neuron fate specification 1.15 × 10−2

GO:1902692 regulation of neuroblast proliferation 1.58 × 10−2

GO:0048663 neuron fate commitment 2.01 × 10−2

GO:2000177 regulation of neural precursor cell proliferation 2.15 × 10−2

GO:0014033 neural crest cell differentiation 2.30 × 10−2

GO:0045597 positive regulation of cell differentiation 3.23 × 10−2

GO:0051961 negative regulation of nervous system development 3.28 × 10−2

GO:0019228 neuronal action potential 3.42 × 10−2

GO:0021953 central nervous system neuron differentiation 4.68 × 10−2

GO:0050768 negative regulation of neurogenesis 4.82 × 10−2

(c) Common significant GOs of T2D and CP

GO ID Pathway p-Value

GO:0071363 cellular response to growth factor stimulus 5.47 × 10−3

GO:0048681 negative regulation of axon regeneration 6.38 × 10−3

GO:0070571 negative regulation of neuron projection regeneration 7.18 × 10−3

GO:0099590 neurotransmitter receptor internalization 8.77 × 10−3
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GO:0048679 regulation of axon regeneration 8.77 × 10−3

GO:0021952 central nervous system projection neuron axonogenesis 8.77 × 10−3

GO:0008045 motor neuron axon guidance 8.77 × 10−3

GO:0106030 neuron projection fasciculation 8.77 × 10−3

GO:0071880 adenylate cyclase-activating adrenergic receptor signaling pathway 1.67 × 10−2

GO:0071875 adrenergic receptor signaling pathway 1.67 × 10−2

GO:1990090 cellular response to nerve growth factor stimulus 1.82 × 10−2

GO:0010977 negative regulation of neuron projection development 4.08 × 10−2

GO:0016192 vesicle-mediated transport 4.18 × 10−2

GO:0001934 positive regulation of protein phosphorylation 4.22 × 10−2

(d) Common significant GOs of T2D and ED

GO ID Pathway p-Value

GO:0006897 endocytosis 6.45 × 10−3

GO:0007599 hemostasis 1.15 × 10−2

GO:0090286 cytoskeletal anchoring at the nuclear membrane 1.30 × 10−2

GO:0034214 protein hexamerization 1.44 × 10−2

GO:0034063 stress granule assembly 1.73 × 10−2

GO:0097205 renal filtration 1.73 × 10−2

GO:0035278 miRNA mediated inhibition of translation 1.73 × 10−2

GO:0071470 cellular response to osmotic stress 2.15 × 10−2

GO:0034656 nucleobase-containing small molecule catabolic process 2.30 × 10−2

GO:0021953 central nervous system neuron differentiation 4.68 × 10−2

(e) Common significant GOs of T2D and HD

GO ID Pathway p-Value
GO:0042127 regulation of cell proliferation 6.92 × 10−5

GO:0022409 positive regulation of cell-cell adhesion 2.16 × 10−4

GO:0048665 neuron fate specification 5.19 × 10−3

GO:0048663 neuron fate commitment 9.06 × 10−3

GO:0014033 neural crest cell differentiation 1.04 × 10−2

GO:0043161 proteasome-mediated ubiquitin-dependent protein catabolic process 1.49 × 10−2

GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 2.65 × 10−2

GO:0007399 nervous system development 3.43 × 10−2

(f) Common significant GOs of T2D and MS

GO ID Pathway p-Value
GO:0070229 negative regulation of lymphocyte apoptotic process 4.32 × 10−4

GO:0099590 neurotransmitter receptor internalization 5.27 × 10−4

GO:0051588 regulation of neurotransmitter transport 8.67 × 10−4

GO:0050804 modulation of chemical synaptic transmission 2.29 × 10−3

GO:0046928 regulation of neurotransmitter secretion 3.50 × 10−3

GO:2000146 negative regulation of cell motility 3.66 × 10−3

GO:0090181 regulation of cholesterol metabolic process 7.75 × 10−3

GO:0072657 protein localization to membrane 1.43 × 10−2

GO:0007005 mitochondrion organization 1.60 × 10−2

GO:0010595 positive regulation of endothelial cell migration 2.11 × 10−2

GO:0010646 regulation of cell communication 2.17 × 10−2

GO:0050658 RNA transport 2.70 × 10−2

GO:0010628 positive regulation of gene expression 3.43 × 10−2

GO:2000145 regulation of cell motility 4.71 × 10−2

GO:0014033 neural crest cell differentiation 4.92 × 10−2
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(g) Common significant GOs of T2D and PD

GO ID Pathway p-Value

GO:0070486 leukocyte aggregation 9.16 × 10−3

GO:0070584 mitochondrion morphogenesis 1.14 × 10−2

GO:0090128 regulation of synapse maturation 1.26 × 10−2

GO:0045624 positive regulation of T-helper cell differentiation 1.37 × 10−2

GO:0048854 brain morphogenesis 1.37 × 10−2

GO:0019228 neuronal action potential 2.73 × 10−2

GO:0097061 dendritic spine organization 2.84 × 10−2

GO:0030199 collagen fibril organization 3.40 × 10−2

GO:0061448 connective tissue development 3.51 × 10−2

GO:0048813 dendrite morphogenesis 3.73 × 10−2

GO:0099601 regulation of neurotransmitter receptor activity 3.84 × 10−2

3.3. Protein-Protein Interactions (PPIs) Analysis

Using our enriched common disease genesets, we constructed putative PPI networks with
web-based visualization resource STRING via Network Analyst using the confidence score 900 by
the distinct 159 DEGs, as shown in Figure 4. The PPIs make up the so-called interactomics of the
organism where anomalous PPIs cause multiple diseases. Two diseases are known to be related where
one or more commonly associated protein subnetworks are shared. Using topological parameters, for
example, the degree greater than 15°, highly interacting proteins were identified from PPI analysis.

Figure 4. The protein-protein interactions (PPIs) network is built with the significantly dysregulated
genes common to type 2 diabetes (T2D) and neurological diseases (NDs).

The simplified PPI networks were generated with the Cyto-Hubba plugin [69] to identify the
most significant hub proteins as shown in Table 4 and the topological parameters were determined by
Network Analyzer in Cytoscape [47] as shown in Figure 5.

This data provides evidence that PPI subnetwork exists in our enriched genesets and confirms the
inclusion of relevant functional pathways. These identified hub proteins could be useful for therapeutic
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targets although further characterization is needed for their roles. The summary of hub protein is
shown in Table 4.

Figure 5. The simplified PPIs network is built with the significantly dysregulated genes common to
type 2 diabetes (T2D) and neurological diseases (NDs) to identify the 10 most significant hub proteins
marked as red, orange and yellow colour.

Table 4. Summary of hub proteins identified by protein-protein interaction analysis encoded by DEGs
that are common to type 2 diabetes (T2D) and neurological diseases (NDs).

Protein Symbol Degree Description Feature

DNM1 65 Dynamin 1 GTP binding
DNM2 84 Dynamin 2 GTP binding and GTPase activity
MYH14 82 Myosin Heavy Chain 14 Calmodulin binding and motor activity

PACSIN2 60 Protein Kinase C And Casein
Kinase Substrate In Neurons Identical protein binding and lipid binding

TFRC 10 Transferrin Receptor Double-stranded RNA binding

PDE4D 39 Phosphodiesterase 4D Enzyme binding and protein domain specific
binding

ENTPD1 32 Ectonucleoside Triphosphate
Diphosphohydrolase 1

Hydrolase activity and
nucleoside-diphosphatase activity

PLK4 45 Polo Like Kinase 4 Identical protein binding and protein kinase
activity

CDC20B 20 Cell Division Cycle 20B Pathways related to DNA damage response

CDC14A 36 Cell Division Cycle 14A Phosphatase activity and phosphoprotein
phosphatase activity

3.4. Identification of Transcriptional and Post-Transcriptional Regulators of the Differentially Expressed Genes

TFs are proteins that regulate transcriptional and gene expression in all living organisms.
TFs play a vital role in all cellular processes [70]. miRNAs are short RNA species involved in the
post-transcriptional regulation of gene expression. The miRNAs are important biological regulators,
for instance, neuronal differentiation, neurogenesis, and synaptic plasticity and they play vital roles in
neurodegenerative diseases [71].
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To identify the transcriptional and/or -post-transcriptional regulators of the DEGs, we performed
the interaction of the DEGs-TFs analysis as shown in Figure 6 and DEGs-miRNAs interaction analysis
as shown in Figure 7.

Figure 6. The DEGs-TF interactions regulating the differentially expressed genes common to type 2
diabetes (T2D) and neurological diseases (NDs).

Figure 7. The DEGs-miRNAs interactions regulating the differentially expressed genes common
between type 2 diabetes (T2D) and neurological diseases (NDs).
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The biomolecules (i.e., TFs and miRNAs) are summarized in Table 5. The FOXC1, GATA2, FOXL1,
YY1, E2F1, NFIC, NFYA, USF2, HINFP, MEF2A, SRF, NFKB1, USF2, HINFP, MEF2A, SRF, NFKB1,
PDE4D, CREB1, SP1, HOXA5, SREBF1, TFAP2A, STAT3, POU2F2, TP53, PPARG, JUN were identified
as the key regulators of the identified DEGs.

The miRNAs (mir-335-5p, mir-16-5p, mir-93-5p, mir-17-5p, mir-124-3p) were identified to
provide an in-depth understanding of the DEGs at post-transcriptional regulators. The summary of
transcriptional and/or post-transcriptional regulatory biomolecules of differentially expressed genes
that are common to T2D and NDs is shown in Table 5.

Table 5. Summary of transcriptional and/or post-transcriptional post regulatory biomolecules of
differentially expressed genes overlapped between type 2 diabetes (T2D) and neurological diseases
(NDs) that includes (a) Regulatory Transcription Factors and (b) Regulatory microRNAs.

(a) Regulatory Transcription Factors

Symbol Description Feature

FOXC1 Forkhead Box C1 NA-binding transcription factor activity and transcription
factor binding

GATA2 GATA binding protein 2 DNA-binding transcription factor activity and chromatin
binding

FOXL1 Forkhead Box L1 NA-binding transcription factor activity and DNA-binding
transcription factor activity, RNA polymerase II-specific

YY1 YY1 Transcription Factor NA-binding transcription factor activity and transcription
coactivator activity

E2F1 E2F transcription factor 1 DNA-binding transcription factor activity and transcription
factor binding.

NFIC Nuclear Factor I C
DNA-binding transcription factor activity and proximal
promoter DNA-binding transcription activator activity, RNA
polymerase II-specific

NFYA Nuclear Transcription Factor
Y Subunit Alpha

DNA-binding transcription factor activity and transcription
regulatory region DNA binding

USF2 Upstream Transcription
Factor 2, C-Fos Interacting

DNA-binding transcription factor activity and
sequence-specific DNA binding

HINFP Histone H4 Transcription
Factor

DNA-binding transcription factor activity and enzyme
binding

MEF2A Myocyte Enhancer Factor 2A DNA-binding transcription factor activity and protein
heterodimerization activity

SRF Serum Response Factor DNA-binding transcription factor activity and
sequence-specific DNA binding

NFKB1 Nuclear Factor Kappa B
Subunit 1

DNA-binding transcription factor activity and
sequence-specific DNA binding

PDE4D Phosphodiesterase 4D enzyme binding and protein domain specific binding

CREB1 CAMP Responsive Element
Binding Protein 1

DNA-binding transcription factor activity and enzyme
binding

SP1 Sp1 Transcription Factor DNA-binding transcription factor activity and
sequence-specific DNA binding

HOXA5 Homeobox A5
DNA-binding transcription factor activity and RNA
polymerase II proximal promoter sequence-specific DNA
binding
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SREBF1
Sterol Regulatory Element
Binding Transcription Factor
1

DNA-binding transcription factor activity and chromatin
binding

TFAP2A Transcription Factor AP-2
Alpha

DNA-binding transcription factor activity and
sequence-specific DNA binding

STAT3 Signal Transducer And
Activator Of Transcription 3

DNA-binding transcription factor activity and
sequence-specific DNA binding

POU2F2 POU Class 2 Homeobox 2 DNA-binding transcription factor activity and protein
domain specific binding

TP53 Tumor Protein P53 NA-binding transcription factor activity and protein
heterodimerization activity

PPARG Peroxisome Proliferator
Activated Receptor Gamma

DNA-binding transcription factor activity and chromatin
binding

JUN Jun Proto-Oncogene, AP-1
Transcription Factor Subunit

sequence-specific DNA binding

(b) Regulatory microRNAs

Symbol Description Feature

mir-335-5p MicroRNA 335 Afflicted with Alzheimer’s disease

mir-16-5p MicroRNA 16 Afflicted with apoptosis of neural cells

mir-93-5p MicroRNA 93 Involved in DNA damage pathways

mir-17-5p MicroRNA 17 Act as oncogene or tumour suppressor gene depending on
the cellular context

mir-124-3p MicroRNA 124
Abundant in the brain and involved in neurodegenerative
disease

3.5. Validating Potential Targets Using Gold Benchmark Databases and Literatures

First of all, to validate our identified potential targets, we used OMIM, OMIM Expanded, and
dbGaP datasets; these datasets collect curated and validated genes that indicate disease association data
from the literature. In the validation, we presented a combined relation of OMIM, OMIM Expanded,
and dbGaP databases. For evaluating the validity of our work, we provided statistically significant
DEGs (genes common to T2D and neurological diseases (NDs)) to the online tool EnrichR [51] and
collected enriched genes and their corresponding neurological disease names from OMIM, OMIM
Expanded, and dbGaP databases. To find significant NDs, manual curation is applied considering a
p-value of 0.05. Then, several diseases such as cancer, infectious diseases are removed from this list
because they are not of interest in this study.

We also validated our identified potential targets by checking the biomedical literature to find
genes clinically used as biomarkers for any of the NDs. We found that Van Cauwenberghe et al. [72]
identified the MS4A2 gene associated with AD and Munshi et al. [73] identified the CR1 gene associated
with AD. Eykens et al. [74] identified the APOE gene associated with ALS. Fahey et al. [75] identified
the TENM1 gene associated with CP. UBE3A and CHD2 genes are associated with ED [76,77]. Arning
et al. identified the UCHL1 [78] gene associated with HD. Baranzini et al. [79] identified the HLA-DRB1
gene to be associated with MS. Redenšek et al. identified [80] the HLA-DQB1 gene as associated with
PD. This indicates that our analyses of significant genes in NDs match with existing records. We then
constructed a Gene-Disease Network (GDN) based on genes and their associated neurological diseases
from gold benchmark databases and literature using Cytoscape. This network showed gene-disease
associations whereby if a gene mutation is known to lead to a specific disease, a link is indicated
between disease and gene; this is shown in Figure 8.
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Figure 8. Disease network of type 2 diabetes (T2D) with neurological diseases (NDs) where robin’s egg
blue colour round shaped nodes represent genes and octagon shaped red colour nodes represent T2D
and NDs.

4. Discussion

T2D and NDs are complex diseases but we have attempted here to take advantage of this
complexity by looking at pathway and looking at interactions between type 2 diabetes (T2D) and
neurological diseases, due to their great clinical importance. T2D is known to affect neurological
diseases but how it does this is generally unclear (though some vascular based mechanisms are usually
considered) and it is very hard to study by hypothesis-driven biochical or endocrinological research.
This is why we employed well-established bioinformatics methods and analytical approaches that
examine functional disease overlaps in genes and pathways, and provide an important but agnostic
tool to identify new factors that play a part in these comorbidity interactions and which, by implication,
may be important pathogenic mechanisms for these and other related diseases. We studied the
microarray gene expression datasets from publicly available repositories employing a network-based
bioinformatics pipeline. We identified DEGs common to T2D and NDs and constructed diseasome
networks to provide insights into the interactions of these comorbidities using the diesease-common
DEGs. These DEGs enabled identification of associated dysregulated molecular pathways and related
GO terms. One particular technical point is that a large number of pathways and GO categories were
reduced by manual curation after filtering using a p-value threshold of 0.05. We identified different
pathways by investigating cell proteins (i.e., gene products) and their interactions considering seven
pathway databases.

In addition to the pathways and GO terms we investigated interactors of the products of our
DEGs of interest using protein-protein interaction (PPI) analysis and hub protein identification as well
as DEGs-TFs, and DEGs-miRNAs interaction that has not been previously studied for these diseases.
These studies’ provide information about the molecules that could be the key drivers of pathogenesis
for these comorbidities. The STRING database contains known protein-protein interactions which
we used to identify the PPI for products of our genes of interest. For our purpose, we considered
only experimentally verified PPI data, not predicted PPIs. We reconstructed the PPI based on the
identified DEGs common to T2D and NDs and identified the central hub proteins using topological
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parameters. Among the hub proteins we identified, dynamin (DNM1) has been implicated in central
nervous systems [81] and DNM2 is involved in Charcot-Marie-Tooth neuropathy [82]. However, a role
for MYH14 in diabetes or neurodegenerative diseases is not reported. PACSIN2 expression has been
found to be upregulated in diabetic kidney disease [83]. Borie et al studied the polymorphism of the
TFRC gene involved in Parkinson’s disease [84]. Rahman et al. identified PDE4D commonly expressed
in blood cell and brain tissues of AD [85]. A mutation of ENTPD1 has been identified in Spastic
paraplegia type 64 in individuals diagnosed with suspected neurodegenerative disease patients [86].
To date, no role for PLK4, CDC20B, and CDC14A in NDs has been reported.

Transcription factors (TFs) are critical determinants of transcription of their various target genes,
so their levels can identify potential biomarkers for neurodegenerative diseases. In this study,
we identified relevant TFs as the regulator of the DEGs through TF-mRNA interaction networks that
are relevant to the pathogenesis of T2D and NDs. TF-association has also been used by Rahman et al.
in a network-based method to profile gene expression of DEGs associated with AD; they identified a
number of AD-associated TFs, including JUN, YY1, E2F1, FOXC1, GATA2, SRF, USF2, PPARG, FOXL1,
and NFIC [87], consistent with the present study. In contrast to TFs, microRNAs (∼22ntlong) act
post-transcriptionally to regulate expression. These are single nucleotide RNA which bind target
mRNA, leading to the target cleavage and reduced expression. These miRNAs have many advantages
of non-invasive biomarkers and can be detected in body fluids such as urine, saliva and makes them
potentially attractive as biomarkers. Indeed, there are miRNAs that show good potential as biomarkers
for neurodegenerative diseases [88]. Thus, we studied DEGs-miRNA interaction networks to identify
relevant miRNAs as potential targets for NDs. Among the identified miRNAs, the miRNA-335 was
particularly associated with AD [71]. In addition, miRNA-16 was reported to be involved in apoptosis
in neural cells [89]. Furthermore, the down-expression of this miRNA is involved in the accumulation
of amyloid protein precursor (APP) protein in AD [90]. The miRNA-124 is found abundantly in neural
cells and as known involvement in NDs. The reduced expression is miRNA associated with AD, PD,
and HD [88]. There is no evidence for ND association with miR-17-5p although it has pathogenic
actions both enhancing and suppressing tumour development depending on the cellular contexts [91].

The above indicates that our approach has the potential to reveal some of the important
mechanisms that underlie disease pathogenesis and provide novel hypotheses of disease mechanisms
and may identify new biomarkers. Such genetic data analyses will be a key element in the development
of predictive medicine and elucidating the underlying mechanisms that connect T2D and NDs and
may indicate possible new drug targets. Nevertheless, our data show some limitations. It should
be noted that no clinical confirmation of the roles of proteins generated from our identified genes of
interest. Furthermore, the low number of samples for some diseases analyzed which may not fully
sample the disease-associated genes that we used to determine the common DEGs. Thus, further
experimentation is needed to properly evaluate the biological significance of the identified potential
targets candidates in this study.

5. Conclusions

The present study analyzed transcriptomics datasets of the T2D and neurodegenerative diseases
employing a multi-omics approach to decode the overlapped genes that were expressed between T2D
and NDs. The gene set enrichment analysis revealed significantly enriched dysregulated pathways.
Integration of the overlapped DEGs with different biomolecular interaction networks yielded 10 hub
proteins form protein-protein interaction, regulatory TFs from DEG-TF interactions analysis, and
miRNAs from DEGs-miRNAs interactions analysis. All of these hub genes and pathways are novel,
that is, they have not previously been shown to be important in these diseases or in the disease
interactions and most of the TFs and miRNAs identified are also novel. In this way, the present
study presented molecular signatures at proteins level (i.e., hub proteins and TFs), and RNA levels
(i.e., mRNAs, miRNAs), pathway and GO level but further studies are needed to establish them
as biomarkers. These results indicate differentially expressed genes of T2D that may be key to the
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progression of NDs and may give new insights into these diseases. It also points the way to identifying
mechanistic links between the T2D and various ND and that explains why their association with
T2D. This study also suggests that T2D shares several common multifactorial degenerative biological
processes that contribute to neuronal death, which may, in turn, lead to functional impairment.
Additionally, we believe that our high-throughput transcript analysis of tissues using rigorous agnostic
approaches would allow the discovery of disease-modifying therapeutic targets. Treatments aimed
at attenuating the identified dysregulated pathways have the potential to ameliorate neurological
dysfunctions in the T2D patient.
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