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Abstract
Aedes albopictus is a highly invasive mosquito species that has become widespread across the globe. In addition, it is an 
efficient vector of numerous pathogens of medical and veterinary importance, including dengue, chikungunya and Zika 
viruses. Among others, the vector potential of mosquitoes is influenced by their microbiome. However, this influence is very 
dynamic and can vary between individuals and life stages. To obtain a rough overview on the microbiome of Ae. albopictus 
populations in Germany, pooled female and pooled male individuals from seven German locations were investigated by total 
RNA sequencing. The mosquito specimens had been collected as larvae in the field and processed immediately after adult 
emergence, i.e. without females having fed on blood. RNA fragments with high degrees of identity to a large number of 
viruses and microorganisms were identified, including, for example, Wolbachia pipientis and Acinetobacter baumannii, with 
differences between male and female mosquitoes. Knowledge about the natural occurrence of microorganisms in mosquitoes 
may be translated into new approaches to vector control, for example W. pipientis can be exploited to manipulate mosquito 
reproduction and vector competence. The study results show how diverse the microbiome of Ae. albopictus can be, and the 
more so needs to be adequately analysed and interpreted.
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Introduction

Aedes albopictus is a thermophilic mosquito species native 
to the Asian-Pacific region. Due to globalisation and its high 
ecological and physiological plasticity, it has become wide-
spread in many regions in the world. Presently, Ae. albopic-
tus is considered the most invasive mosquito species of the 
world (Benedict et al. 2007; Bonizzoni et al. 2013). Climate 
warming and the resulting mild winters favour the establish-
ment, reproduction and spread of Ae. albopictus in temperate 
climes, such as Central Europe (e.g., Walther et al. 2017; 
Fălcuţă et al. 2020).

Aedes albopictus is highly vector-competent for numerous 
arboviruses, including dengue, chikungunya, yellow fever, 
Zika, West Nile and various encephalitis viruses (Paupy 
et al. 2009; Martinet et al. 2019). It thus has a major impact 
on human and veterinary health. The vector competence, 
i.e. the ability of a haematophagous arthropod to transmit a 
pathogen, can be influenced by the arthropod’s microbiome 
(Engel and Moran 2013; Jupatanakul et al. 2014) which is 
defined by Berg et al. (2020) as ‘a characteristic microbial 
community occupying a reasonable well-defined habitat 
which has distinct physio-chemical properties’.

It has been shown that the microbiome may have a general 
impact on the development, reproduction and physiology of 
an invertebrate (Minard et al. 2013; Coon et al. 2014, 2016, 
2017). For example, the endosymbiont Wolbachia pipien-
tis is known to be widely distributed in invertebrates (Yang 
2000; Hilgenboecker et al. 2008). Bourtzis and O’Neill 
(1998) and Ahmad et al. (2017) have demonstrated that W. 
pipientis can affect both the reproduction of insects and the 
replication and dissemination of pathogenic viruses in an 
insect vector. These effects are major reasons why the study 
of the microbiome of mosquitoes has become so popular in 
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recent years. However, the microbiome is not static, but may 
change during development and can be influenced by many 
factors such as sex, age and life stage of the host, geographic 
location, breeding habitat characteristics and food supply 
(Wang et al. 2011; Zouache et al. 2011; Boissière et al. 2012; 
Terenius et al. 2012; Jupatanakul et al. 2014; Chen et al. 
2020). Water temperature and nutrient content of the breed-
ing habitat, for example, can strongly influence its bacterial 
community and thus have an impact on the microbiome of 
developing mosquito larvae (Hörtnagl et al. 2010; Onch-
uru et al. 2016). In turn, the microbiome ingested from the 
breeding habitat may considerably influence larval growth 
and development (Coon et al. 2014, 2016, 2017).

Insects take up a variety of microorganisms from their 
environment (Strand 2018). In the case of mosquitoes, this 
mainly occurs in the larval stage, when individuals are 
confronted with large numbers of microorganisms in their 
aquatic habitats during feeding. Larval nutrition can there-
fore have a major impact on the composition of the micro-
biome (Wang et al. 2011; Boissiere et al. 2012; Coon et al. 
2016). By contrast, occasions to take up microorganisms 
in the adult stage are limited: both sexes feed on sugary 
plant juices and only females feed on blood, with the latter 
occasionally facilitating the uptake of disease agents. There 
is evidence that the insect host can exert some control over 
its microbiome via the innate immune response (Douglas 
2015; Smith et al. 2015).

In recent years, the microbiome of several mosquito spe-
cies has been studied, among them Ae. albopictus, Aedes 
japonicus, Anopheles gambiae and Culex pipiens, with 
the focus of most studies being on the midgut microbiota 
of adult mosquitoes (Wang et al. 2011; Gimonneau et al. 
2014). It turned out that the microbiome of some species is 

extremely diverse, and a variety of bacterial phyla such as 
Actinobacteria, Proteobacteria, Bacteroidetes or Firmicutes 
could be detected (Moro et al 2013; Zotzmann et al. 2017; 
Wang et al. 2018).

The extent to which the microbiome of a species differs 
between populations and individuals is largely unexplored. 
Furthermore, nothing is known about microorganisms natu-
rally occurring in Ae. albopictus in Germany, the influence 
they have on their host and whether they pose a threat to 
humans or may be exploited to their benefit. This study pre-
sents the first preliminary insights into the microbial RNA 
metagenome of Ae. albopictus from Germany which can be 
considered to represent the mosquito’s microbiome. When 
interpreting the results, however, it is essential to keep in 
mind that RNA reads similar to a certain microbial species 
vary considerably in number, and contigs generated from 
them are of various lengths and have various degrees of 
probability to be identical to a certain microbial species.

Materials and methods

Mosquito origin

The Ae. albopictus specimens investigated in this study 
had been collected as larvae in the field at seven sites in 
Germany in 2020 (Fig.  1): Mengen, Freiburg-Waldsee, 
Freiburg-Zähringen, Kernen, Munich, Fürth and Jena. 
These were the locations successfully checked for the pres-
ence of Ae. albopictus aquatic stages from all German cities 
known to possess established populations at the time of the 
study. Individuals were obtained by sieving potential breed-
ing containers in cemeteries (Mengen, Freiburg-Waldsee, 

Fig. 1   Collection sites in Ger-
many of Ae. albopictus speci-
mens examined (blue dots)
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Freiburg-Zähringen, Munich, Jena), in gardens of a settle-
ment (Kernen) and an allotment garden complex (Fürth).

Collected larvae were kept in water from their breeding 
habitat until adult emergence while being fed ad libitum 
with ground TabiMin fish food pellets (Tetra, Melle, Ger-
many). Shortly after hatching, adults were killed by freezing 
at − 20 °C, without being offered blood or a sugar solution. 
They were morphologically identified on a chilling table 
using a stereomicroscope according to the determination 
key by Becker et al. (2010) and stored in 75% ethanol until 
further processing. Except for the Freiburg-Zähringen site, 
from where only one female and no male were available, two 
females and two males per site were analysed.

Nucleic acid extraction and sequencing

For nucleic acid extraction, the mosquitoes were removed 
from the ethanol and dried for about 1 min at room tempera-
ture for the alcohol to evaporate. Subsequently, 13 female 
and 12 male mosquitoes were pooled by sex and then com-
pletely homogenised in 500 µl serum-free ZB5d medium 
(FLI-intern cell culture medium = Eagle’s minimal essential 
medium with Earle’s and Hank’s salts plus non-essential 
amino acids) containing 5 µl of a ready-to-use mixture of 
penicillin–streptomycin and 1 µl of a ready-to-use mixture 
of gentamicin-amphotericin (Thermo Fisher Scientific, 
Dreieich, Germany). Three steel beads with a diameter of 
3 mm (TIS GmbH, Gauting, Germany) were added and 
the samples agitated for 2 min at 30 Hz in a TissueLyser II 
(Qiagen, Hilden, Germany). Nucleic acid was then extracted 
from 200 µl of the supernatant using the NucleoMag VET 
kit (Macherey–Nagel, Düren, Germany) according to the 
manufacturer’s instructions, but without the addition of car-
rier RNA. The concentration of extracted RNA (12.2 ng/µl 
for the female sample, 11.3 ng/µl for the male sample) was 
measured using a NanoDrop Lite (Thermo Fisher Scientific).

Further processing of the sample for total RNA sequenc-
ing with Ion Torrent technology, including manual library 
preparation, was performed following the protocol described 
by Wylezich et al. (2018). Briefly, the extracted RNA was 
transcribed into double-stranded cDNA using the cDNA 
Synthesis System Kit (Roche, Mannheim, Germany), then 
fragmented by an M220 Focused-ultrasonicator (Covaris 
Ltd., Brighton, UK) and prepared for Ion Torrent-compatible 
library generation by means of the GeneRead L Core Kit 
(Qiagen) and Ion Xpress barcode adapters (Thermo Fisher 
Scientific). The resulting library was subjected to quality 
control in a 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, USA), using the High Sensitivity DNA Kit (Agilent 
Technologies) and quantification with a KAPA Library 
Quantification Kit (Roche). The library was then sequenced 
on an Ion Torrent S5 XL System (Thermo Fisher Scientific) 
according to the manufacturer’s instructions.

Data analysis

Sequencing results were edited and analysed using Geneious 
Prime version 2021.0.1 (Biomatters, Auckland, New Zea-
land). For this, sequences trimmed to a minimum length 
of 25 bp by the Geneious BBDuk tool were merged by the 
BBMerge tool, using a merge rate set to ‘high’. Both merged 
data and data that could not be merged were assembled de 
novo to cluster all closely related sequences into contigs, 
based on a ‘custom sensitivity’ setting. The obtained con-
sensus sequences were sorted according to their length, 
resulting in groups of contigs with similar base pair length. 
Each contig of these groups was subsequently aligned with 
GenBank entries (www.​ncbi.​nlm.​nih.​gov), with equal results 
being summarised.

Results

A total of 5,000,504 RNA reads were generated for the 
female Ae. albopictus pool and 4,653,856 reads for the 
male pool. In the microbial RNA metagenome of female 
mosquitoes, RNA fragments with high identities to 42 dif-
ferent microorganismal species from 37 different families 
were detected, whereas in males RNAs with high identities 
to a total of 38 different species from 36 families were found 
(Table 1, Supplementary Tables 1 and 2). In the pool of 
female mosquitoes, there were a total of 213 contigs (in the 
range of 69.91–100% percent identity (p.i.), 91–100% query 
cover and 32–1674 bp), 20 (9.35%) of which matched with 
eukaryotic, 136 (64.02%) with bacterial and 57 (26.63%) 
with viral species. In the male mosquito pool, a total of 
1380 contigs (82.99–100% p.i., 96–100% query cover, 
28—1702 bp) was analysed, 19 (1.87%) of which could be 
assigned to eukaryotes, 338 (24.29%) to bacteria and 1023 
(73.83%) to viruses (Fig. 2). Often, an identification at the 
species level was not possible and only the genus could be 
determined.

Contigs with high identities to 13 species and 12 genera 
of viruses/microorganisms were identified in mosquitoes of 
both sexes (Fig. 3). Contigs arguing for seven microbial spe-
cies formerly described in Ae. albopictus were found in both 
female and male mosquitoes. Four additional microbial spe-
cies suggested by the contigs had been found in other mos-
quito species previously. Another two species of bacterial 
contigs female Ae. albopictus were suggestive of had also 
been found in other mosquito species, but were not present 
in our pool of male mosquitoes. Instead, a bacterial species 
indicated by contigs found in the male pool, but not in the 
female one of this study, had previously been detected in 
other mosquito species.

Table 1 shows all viruses and microorganisms whose 
RNA was identified in Ae. albopictus with a p.i. of at least 
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97% and a query cover of 100%, representing a minimum 
contig length of 56 bp. RNAs with less p.i. and query cover, 
shorter lengths or RNAs that could not be assigned to a spe-
cies, but only to a genus or higher systematic level, are listed 

in Supplementary Tables 1 and 2. Only the first group of 
RNAs is discussed in the following.

RNAs with identity to Aedes albopictus anphevirus 
(89.23–100% p.i., 42–370  bp, 281 contigs) and Aedes 

Table 1   Species of viruses/microorganisms whose RNA matched that isolated from Ae. albopictus to at least 97% (see Supplementary Tables 1 
and 2 for more details and species with RNA identity lower than 97%)

Species Phylum Found in sex Remark

Viruses
Aedes albopictus anphevirus Riboviria ♂♀ Insect-specific virus; previously detected in Ae. albopictus (Manni and 

Zdobnov 2020)
Aedes phasmavirus Riboviria ♂♀ Previously detected in Ae. albopictus (Shi et al. 2020)
Barstukas virus Riboviria ♂♀ Previously detected in various Aedes mosquitoes (Batson et al. 2021)
GuapiaÇu virus Riboviria ♂♀ Insect-specific virus; previously detected in Ae. terrens and Ae. scapularis 

(Batson et al. 2021; Oliveira Ribeiro et al. 2021)
High Island virus Riboviria ♂♀ Previously detected in mosquitoes and other invertebrates (Sadeghi et al. 

2017)
Usinis virus Riboviria ♂♀ Previously detected in Ae. albopictus (Batson et al. 2021)
Wenzhou sobemo-like virus Riboviria ♂♀ Previously detected in Ae. albopictus (Kubacki et al. 2020)
Bacteria
Acidovorax avenea Proteobacteria ♀ Plant pathogen (Walcott and Gitaitis 2000)
Acinetobacter baumannii Proteobacteria ♂♀ Human pathogen; previously detected in Ae. albopictus (Minard et al. 2013)
Acinetobacter dispersus Proteobacteria ♂ Previously detected on human skin and human wounds, in water and soil 

(Nemec et al. 2016)
Acinetobacter johnsonii Proteobacteria ♂♀ Human pathogen; previously detected in Ae. albopictus and other mosquito 

species (Seifert et al. 1993; Minard et al. 2013)
Acinetobacter oleivorans Proteobacteria ♂ Previously detected in soil (Uniyal et al. 2016)
Acinetobacter tandoii Proteobacteria ♀ Previously detected in termites (van Dexter and Boopathy 2019)
Aeromonas hydrophila Proteobacteria ♀ Pathogenic to many different vertebrates and humans; lives in water habitats 

(Emerson and Norris 1905; Wohlgemut et al. 1970; Hazen et al. 1978; 
Agger et al. 1985)

Arthrobacter woluwensis Actinobacteria ♀ Potential human pathogen (Bernasconi et al. 2004; Li et al. 2021)
Chryseobacterium aureum Bacteroidetes ♂ Previously detected in river water in Korea (Lee et al. 2019)
Chryseobacterium indoltheticum Bacteroidetes ♂ Potential human pathogen; previously detected in marine mud (Calderón 

et al. 2011)
Chryseobacterium scophthalmum Bacteroidetes ♂ Fish pathogen (Shahi et al. 2018)
Elizabethkingia anophelis Bacteroidetes ♂♀ Human pathogen: previously detected in An. gambiae (Kämpfer et al. 2011)
Escherichia coli Proteobacteria ♂♀ Intestinal bacterium; previously detected in An. funestus (Straif et al. 1989)
Hydrogenophaga pseudoflava Proteobacteria ♀ Previously detected in the midgut of An. gambiae (Straif et al. 1989)
Leclercia adecarboxylata Proteobacteria ♂ Potential human pathogen (Hess et al. 2008)
Limnobacter humi Proteobacteria ♂ Previously detected in humus soil (Nguyen and Kim 2017)
Micrococcus luteus Actinobacteria ♀ Potential human pathogen (Fosse et al. 1985)
Paracoccus yeei Proteobacteria ♀ Human pathogen; previously detected in the salivary glands of Ae. aegypti 

(Arias and Clark 2019; Balaji et al. 2021)
Pseudomonas luteola Proteobacteria ♀ Human pathogen; previously detected in humid environments (Kostmann 

et al. 1990; Altinok et al. 2007)
Serratia marcescens Proteobacteria ♂ Human pathogen; previously detected in Anopheles mosquitoes (Hejazi and 

Falkiner 1997; Bai et al. 2019)
Wolbachia pipientis Proteobacteria ♂♀ Previously detected in Ae. albopictus (Wiwatanaratanabutr 2013)
Zooglea resiniphila Proteobacteria ♂ Previously detected in activated sludge (An et al. 2016)
Eukaryota
Candida sake Ascomycota ♂♀ Previously detected in oral cavity of HIV-positive people (Hoegl et al. 1998)
Conidiobolus coronatus Zoopagomycota ♀ Potential human pathogen; previously detected on dead leaf (Fischer et al. 

2008)
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phasmavirus (96.57–100% p.i., 30–350 bp, 13 contigs) were 
detected in both female and male Ae. albopictus (Table 1). 
Both viruses are considered insect-specific and had been 
isolated from adult Ae. albopictus before, with Aedes phas-
mavirus being detected in all life stages of the mosquito 
(Manni and Zdobnov 2020; Shi et al. 2020). In addition, 
both Ae. albopictus sexes harboured RNA similar to Barstu-
kas virus (97.91–100% p.i., 83–524 bp, 5 contigs) and Gua-
piaçu virus (98.50–98.83% p.i., 133–170 bp, 2 contigs) 
which had previously been identified in adult Aedes mos-
quitoes (Batson et al. 2021). RNA suggesting High Island 
virus (97.69–98.70% p.i., 120–386 bp, 3 contigs), Usinis 
virus (99.74–100%, p.i., 118–390 bp, 6 contigs) and Wen-
zhou sobemo–like virus (96.47–100% p.i., 31–1677 bp, 750 
contigs) was also found in both female and male Ae. albop-
ictus. High Island virus had formerly been detected in adult 

mosquitoes of the species Psorophora ciliata (Sadeghi et al. 
2017), Usinis virus in adult Ae. aegypti and Ae. albopictus 
(Batson et al. 2021) and Wenzhou sobemo-like virus in adult 
Ae. albopictus (Kubacki et al. 2020).

In addition to the RNA of these viruses, RNA with 
high identities to various bacteria was identified. Among 
others, RNA largely matching Acinetobacter baumannii 
(97.50–100% p.i., 40–170 bp, 3 contigs), A. johnsonii 
(98.76–100% p.i., 150–188 bp, 7 contigs), Elizabethk-
ingia anophelis (99.12–100% p.i., 90–480 bp, 7 contigs), 
Escherichia coli (97.37–100% p.i., 53–167 bp; 14 con-
tigs) and W. pipientis (96.91–100% p.i., 33–1052 bp, 204 
contigs) was found in both female and male Ae. albopic-
tus. Acinetobacter baumannii and A. johnsonii are human 
pathogens and had previously been reported from adult 
Ae. albopictus (Seifert et al. 1993; Minard et al. 2013), A. 

Fig. 2   Percentage of contigs 
from RNA reads from Ae. 
albopictus females and males 
according to viral, bacterial and 
eukaryotic origin

Fig. 3   Assignment of RNA 
contigs obtained from Ae. 
albopictus to viral, bacterial and 
eukaryotic species, according to 
mosquito sex
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baumannii also from lice and fleas (Kempf et al. 2012). 
The ubiquitous E. coli is a potentially pathogenic (Kaper 
et al. 2004), widely spread intestinal bacterium of humans 
and other vertebrates, which had been recognised in adult 
Anopheles funestus and An. gambiae before (Straif et al. 
1989). Elizabethkingia anophelis has emerged as a human 
pathogen in Africa and Asia (Lau et al. 2016) and had 
previously been detected in adult An. gambiae (Kämpfer 
et al. 2011). Wolbachia pipientis is a widely distributed 
essential bacterial symbiont of mosquitoes, which had fre-
quently been described from Ae. albopictus (e.g. Wiwa-
tanaratanabutr 2013; Park et al. 2016) and other mosquito 
species (e.g. Kittayapong et al. 2000).

Finally, RNA corresponding to that of Candida sake 
(100% p.i., 104–189 bp, 3 contigs) was detected in both 
Ae. albopictus females and males in this study. The fungus 
belongs to a genus widely distributed in arthropods but has 
also been extracted from the oral cavity of HIV-positive 
humans (Hoegl et al. 1998).

In addition to RNA fragments suggesting the same 
microbial species to occur in both Ae. albopictus females 
and males, RNA fragments referring to some bacteria 
were found in one mosquito sex only (Supplementary 
Tables 1 and 2). These include those of the bacteria A. 
dispersus (99.72% p.i., 422 bp, 1 contig), A. oleivorans 
(100% p.i., 1378 bp, 2 contigs), Chryseobacterium aureum 
(99.11% p.i., 676 bp, 1 contig), C. indoltheticum (100% 
p.i., 602–686 bp, 3 contigs), C. scophthalmum (99.79% 
p.i., 470 bp, 1 contig), Leclercia adecarboxylata (100% 
p.i., 96–546 bp, 6 contigs), Limnobacter humi (100% p.i., 
106 bp, 1 contig), Serratia marcescens (100% p.i., 80 bp, 
1 contig) and Zooglea resiniphila (100% p.i., 56 bp, 1 
contig) in the males (Table 1). Acinetobacter dispersus 
can be frequently found on human skin and in water and 
soil (Kang et al. 2011; Nemec et al. 2016). Acinetobacter 
oleivorans had been detected in soil (Kang et al. 2011) 
and C. aureum in river water in Korea (Lee et al. 2019). 
Chryseobacterium indoltheticum is a widespread bacte-
rium occurring in soil and water which may be pathogenic 
to humans (Calderón et al. 2011), and C. scophthalmum is 
a fish pathogen (Shahi et al. 2018). Leclercia adecarboxy-
lata had previously been documented in other insects such 
as the potato beetle Leptinotarsa decemlineata (Muratoglu 
et al. 2009) and is also considered potentially pathogenic 
for humans (Hess et al. 2008). By contrast, L. humi had 
been recognised from humus soil (Nguyen and Kim 2017). 
Another human pathogen similar to RNA which was found 
in male Ae. albopictus was S. marcescens (Hejazi and 
Falkiner 1997). This bacterium had been detected in adult 
An. sinensis mosquitoes previously (Bai et al. 2019) and 
might become a problem in mosquito laboratory colonies 
(Seitz et al. 1987). Zooglea resiniphila had been found in 
activated sludge (Gao et al. 2018).

RNAs with similarity to some bacterial species were 
identified in the female Ae. albopictus of this study but not 
in the males (Table 1). These include Acidovorax avena 
(100% p.i., 121 bp, 1 contig), Acinetobacter tandoii (100% 
p.i., 558 bp, 1 contig), Aeromonas hydrophila (100% p.i., 
33–1012 bp, 5 contigs), Arthrobacter woluwensis (100% 
p.i., 120–411 bp, 4 contigs), Hydrogenophaga pseudoflava 
(100% p.i., 176–189 bp, 2 contigs), Micrococcus luteus 
(100% p.i., 118–140 bp, 2 contigs), Paracoccus yeei (100% 
p.i., 126–168 bp, 2 contigs) and Pseudomonas luteola (100% 
p.i., 137–198 bp, 2 contigs). Acidovorax avenea is a plant-
pathogenic bacterium (Walcott and Gitaitis 2000), whereas 
A. tandoii had been detected in termites (van Dexter and 
Boopathy 2019). Aeromonas hydrophila is a pathogen of 
many different vertebrates including humans (Emerson and 
Norris 1905; Wohlgemut et al. 1970; Agger et al. 1985), 
which can naturally be found in water habitats (Hazen et al. 
1978). Arthrobacter woluwensis is a potential human patho-
gen, which can cause endocarditis, among other symptoms 
(Bernasconi et al. 2004; Li et al. 2021). Hydrogenophaga 
pseudoflava had previously been detected in the midgut of 
adult An. gambiae (Straif et al. 1989). RNA fragments sug-
gesting another potential human pathogen, which had led 
to human meningitis in the past, is M. luteus (Fosse et al. 
1985). Paracoccus yeei, on the other hand, is a human bac-
terial pathogen, which had formerly been isolated from the 
salivary glands of adult Ae. aegypti (Balaji et al. 2021) and 
can lead to human dialysis-related peritonitis (Arias and 
Clark 2019). Pseudomonas luteola is another fish pathogen, 
which can cause, for example, meningitis and wound infec-
tion in immunocompromised humans (Kostmann et al. 1990; 
Altinok et al. 2007).

In addition to RNAs with high identities to the above 
bacteria found in only one sex of Ae. albopictus, RNA with 
a high identity to the fungus Conidiobolus coronatus, which 
has a human-pathogenic potential (Fischer et al. 2008), 
could be detected in the female mosquitoes.

Discussion

The mosquitoes in this study were pooled from seven sites 
within Germany known to be populated by Ae. albopictus. 
Since the tiger mosquito is controlled in Germany by Bti 
(Bacillus thuringiensis israelensis) larvicide as soon as local 
reproduction is detected (Becker et al. 2017, 2022), the find-
ing of larvae is difficult and was limited in the framework of 
this study. Due to the pooling of the collected samples, no 
statement can be made about the geographical origin of the 
microorganisms or the individual colonisation of Ae. albop-
ictus specimens. Moreover, all viruses and microorganisms 
referred to in this study were identified exclusively by their 
RNAs and the alignment of those with sequences in the used 
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databases. Therefore, it is not known whether exactly these 
species were present or other (unknown) species with closely 
related RNA sequences, whether they were viable viruses, 
living symbionts or similar and able to replicate/multiply in 
Ae. albopictus, and whether they were arbitrarily taken up 
from the environment and had no additional correlation to 
the mosquitoes.

As adult mosquitoes emerged from collected larvae 
were tested here, and no food sources whatsoever had been 
offered to the investigated adults, the detected RNAs, or the 
microbes characterised by them, must be supposed to have 
been transmitted transstadially from mosquito larva to pupa 
and through metamorphosis to adult. During metamorpho-
sis, the midgut of mosquitoes is transformed and the diges-
tive cells are histolised (Fernandes et al. 2014). The survival 
of microorganisms or the persistence of RNA, respectively, 
must therefore be supposed to be possible only intracellu-
larly or with certain mechanisms of adapted symbionts. To 
clarify this and check for the viability of microorganisms, 
instead of mere RNA, cultivation attempts are necessary, but 
were not carried out in this study.

As we studied the microbial RNA metagenome of com-
plete mosquitoes, it cannot be determined in which organ or 
tissue the found RNAs had been localised. Principally, the 
composition of the bacterial fauna in different organs of a 
mosquito can be very variable, and some bacteria colonise 
several organs in the mosquito at the same time (Gao et al. 
2020). The tropism of microbes might give information 
about their migration paths in the mosquito, or about trans-
missibility from mosquito parent to offspring or mosquito 
female to blood host. For the latter, the emergence of the 
microorganism in the mosquito salivary glands would be 
requisite (Anderson et al. 2010). Whether this was the case 
for the potential human pathogens RNAs found were sugges-
tive of, such as A. baumannii, E. coli or A. hydrophila, can-
not be determined retrospectively. In addition to the locali-
sation of the microorganisms in the mosquito, the pathogen 
load which was also not determined in this study might be 
decisive for a mosquito to become a vector. Thus, the mere 
presence of a pathogen in the mosquito might not be suf-
ficient for transmission (Beerntsen et al. 2000).

The presence in the microbiome of certain bacteria is 
beneficial to the mosquito. For example, A. baumannii and 
A. johnsonii improve blood digestion and nectar assimilation 
in Ae. albopictus (Minard et al. 2013). However, the influ-
ence on mosquito development, reproduction and physiology 
of most microorganisms found in the microbiome is largely 
unknown.

The most common phyla ever found in the microbi-
ome of adult Ae. albopictus include Proteobacteria, 
Bacteroidetes, Firmicutes and Actinobacteria (Mancini 
et al. 2018). The most common bacterial genera found 
in Aedes, Anopheles and Culex species are Enterobacter, 

Escherichia, Klebsiella, Pseudomonas and Serratia as 
detected in mosquitoes from the USA, England and India 
(Demaio et al. 1996; Touré et al. 2000; Pidiyar 2002). 
RNA with identities to all four bacterial phyla as well as 
to all five genera were found in the Ae. albopictus sam-
ples from Germany. In addition, RNA fragments indicating 
viruses and fungi, such as Riboviria and Ascomycota, were 
identified. In summary, RNAs with identities to a high 
number of microorganisms were detected in the German 
Ae. albopictus some of which represent microorganisms 
already described from this mosquito species previously, 
such as W. pipientis, A. baumannii or Usinis virus (Minard 
et al. 2013; Wiwatanaratanabutr 2013; Batson et al. 2021). 
Some other viruses or microbial species suggested by the 
RNA analysis in this study, such as High Island virus, 
Guapiaçu virus and E. anophelis, have not been detected 
in Ae. albopictus before, but in other mosquito species and 
other invertebrates (Kämpfer et al. 2011; Sadeghi et al. 
2017; Batson et al. 2021; Oliveira Ribeiro et al. 2021). 
Furthermore, RNA fragments suggesting microorganisms 
previously not described from mosquitoes at all, such as L. 
humi, Z. resiniphila and C. aureum, were found.

It has also been shown that the midgut microbiome of 
adult mosquitoes may reduce a mosquito’s susceptibility to 
pathogens (Dong et al. 2009; Bahia et al. 2014) and have a 
general influence on its vector competence (Dodson et al. 
2014; Jupatanakul et al. 2014). It can thus be harnessed by 
manipulating its microorganisms to artificially reduce vec-
tor competence. In culture, for example, E. coli was geneti-
cally modified in order to express two surface molecules that 
suppress the development of Plasmodium berghei. Unfortu-
nately, E. coli had difficulties in colonising the mosquitoes 
and disappeared from their midgut shortly after infection 
(Riehle et al. 2007). In addition, there are studies that show 
that an infection of mosquitoes with Wolbachia leads to a 
strong inhibition of the development of potential pathogens. 
The infection with Wolbachia of the wMel strain, for exam-
ple, leads to a highly reduced replication of dengue virus in 
Ae. aegypti. The reason for this seems to be the Wolbachia-
linked upregulation of the immune system of the mosquito 
(Blagrove et al. 2012). Such a way of influencing vector 
competence is certainly also possible with the help of other 
organisms from the microbiome.

Since insecticides and physical measures are often inef-
ficient tools for mosquito control (Bourtzis et al. 2016; Pang 
et al. 2017; Flores and O'Neill 2018), W. pipientis is also 
exploited for innovative biological control by manipulating 
mosquito reproduction. Wolbachia infection can lead to the 
feminisation of genetically male insects, to the killing of 
male siblings by females or cytoplasmic incompatibility, 
which ensures that females can successfully mate only with 
males harbouring the same Wolbachia strain (Werren et al. 
2008).
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Efficient control tools are particularly important in areas 
where mosquitoes serve as vectors of human disease agents 
such as Zika virus, yellow fever virus and malaria parasites. 
Knowledge about the natural occurrence of microorganisms 
in mosquitoes can therefore contribute to developing and 
designing new forms of vector control.

It is difficult to explain the differences in the RNA pres-
ence between female and male Ae. albopictus in this study. 
Individuals of both genders were collected from the same 
breeding sites of the seven locations, so differences between 
the microbial RNA cannot be attributed to developmental 
conditions. However, RNA with high identities to 25 spe-
cies of microorganisms were found in the males but not in 
the females, and RNA with high identities to 29 species of 
microorganisms were found in the females but not in the 
males, with clear differences in the distribution of microor-
ganism to kingdoms (in females, most contigs were assigned 
to bacteria, whereas in males most contigs were assigned to 
viruses). For example, RNA fragments arguing for plants 
were found in the pool of males, but not in the pool of 
females. That sex has an influence on the microbiome has 
been shown in previous studies (Chen et al. 2020). Also, 
Rani et al. (2009) detected Chryseobacterium, Pseudomonas 
and Serratia species only in females of Anopheles stephensi. 
One possible explanation for the differences might be owing 
to the limited number of individuals examined, with such 
differences becoming smaller the more individuals are 
studied per site. Another explanation might be that female 
and male larvae in fact have different food preferences and 
therefore take up different microorganisms with their food, 
but this is mere speculation and cannot be substantiated. 
Although it is known that larvae consume a wide range of 
food (Gimnig et al. 2002; Ye-Ebiyo et al. 2003) and have 
different feeding preferences depending on species (Merritt 
et al. 1992), no data exist about different feeding preferences 
of female and male larvae of the same species.

Especially in cases of a low  percent identity and a 
low query coverage of the found contig sequences with 
sequences in GenBank, results have to be considered 
carefully with regard to the occurrence of the respective 
microorganisms in German Ae. albopictus. This applies, 
for example, to Kocuria rhizophila. RNA found in female 
Ae. albopictus matched this soil bacterium with a percent 
identity of 85.43% only and was registered with only one 
read. Due to the low percent identity, it is unlikely that the 
detected RNA belonged to exactly this species. Also, in the 
case of very short sequence lengths, the linked microor-
ganisms must be viewed critically. This was the case for 
Wuchereria bancrofti-RNA where the sequence length was 
45 bp only. Although percent identity and query cover-
age were both close to 100%, the probability of the RNA 
belonging to another organism, possibly a filarial species 
not described so far, is very high. Hitherto, W. bancrofti has 

not been reported from Ae. albopictus, and its geographic 
distribution range is restricted to subtropical and tropical 
regions (Service 2001).

Possible contamination must also be considered and, in 
fact, has already been described in similar studies. Genera 
such as Flavobacterium, Micrococcus, Microbacterium, 
Chryseobacterium, Neskia and Acidovorax have been found 
contaminating laboratory reagents like DNA extraction kits 
(Salter et al. 2014). In this study, Flavobacterium, Micrococ-
cus, Chryseobacterium and Acidovorax could be detected 
in both sexes of German Ae. albopictus, Neskia only in 
females.

Conclusion

The microbiome of vector species such as Ae. albopictus 
holds much potential for the development of efficient control 
measures and the reduction of vector competence. However, 
the influence of many microorganisms on the mosquito is 
still largely unexplored.

Studying the composition of a mosquito’s microbiome 
is difficult, as it is influenced by many factors and can vary 
considerably both within a species and between species. It 
is necessary to investigate the influences of the microbiome 
in more detail and to examine its diversity in a large number 
of mosquito microbiomes.

To clarify the question of which influence the microor-
ganisms of the microbiome have on the mosquito, it would 
be helpful to cultivate the microorganisms. However, culti-
vation is only possible with a small number of species of the 
microorganisms detected so far. Only with detailed knowl-
edge about the composition and influence of the microbi-
ome on the mosquito can these microorganisms be used for 
innovative approaches to vector and disease management. 
The study demonstrates that the microbiome of German Ae. 
albopictus is comprehensive and might be worth further 
investigations.
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